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Abstract
Pipe flow has been a challenge that gave rise to investigations on turbulence—long
before turbulence was discerned as a research problem in its own right. The discharge
of water from elevated reservoirs through long conduits such as for the fountains
at Versailles suggested investigations about the resistance in relation to the different
diameters and lengths of the pipes as well as the speed of flow. Despite numerous mea-
surements of hydraulic engineers, the data could not be reproduced by a commonly
accepted formula, not to mention a theoretical derivation. The resistance of air flow
in long pipes for the supply of blast furnaces or mine air appeared even more inacces-
sible to rational elaboration. In the nineteenth century, it became gradually clear that
there were two modes of pipe flow, laminar and turbulent. While the former could be
accommodated under the roof of hydrodynamic theory, the latter proved elusive.When
the wealth of turbulent pipe flow data in smooth tubes was displayed as a function of
the Reynolds number, the empirically observed friction factor served as a guide for
the search of a fundamental law about turbulent skin friction. By 1930, a logarithmic
“wall law” seemed to resolve this quest. Yet pipe flow has not been exhausted as a
research subject. It still ranks high on the agenda of turbulence research—both the
transition from laminar to turbulent flow and fully developed turbulence at very large
Reynolds numbers.
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1 Introduction

Turbulence emerged as a research field in its own right only in the twentieth century.
Turbulent pipe flow, on the other side, has been observed much earlier by practition-
ers concerned with the design of water conduits. Pipe flow became the subject of
hydraulics, a science as old as civilization. For centuries, pipe flow and hydraulics
were almost synonymous. The word “hydraulics” amalgamates the Greek words for
water (hydor) and pipe (aulos). For our ancestors in antiquity, hydraulics involved
practical experience with pipe flow in conduits for water supply and in sophisticated
devices such as water clocks or water organs (Rouse and Ince 1957, Chapters 1–3).
Prior to the seventeenth century, however, there is no evidence of systematic pipe flow
investigations, not to speak of turbulence.

There are other empirical gateways to turbulence, such as the wake of bodies mov-
ing through water and air, jets, atmospheric turbulence, etc., but pipe flow deserves
particular interest as the oldest gateway to turbulence—followed and accompanied by
open channel flow—because of its long-standing practical importance. The history
of pipe flow sheds light on the gradual evolution of an engineering concern into a
fundamental question of science. My narrative leads from the earliest pipe flow mea-
surements for the water art at Versailles in the late seventeenth century (2) via efforts
of hydraulic experts in the late eighteenth and early nineteenth century (3 and 4) and
new challenges arising with gaseous fluids in long pipes (5) to the establishment of the
Darcy–Weisbach equation—with a friction factor as subject of further investigation
(6). The following sections focus on the growing awareness of two modes of flow,
laminar and turbulent, that culminated (but not originated) in the landmark paper of
Osborne Reynolds (7) which in turn enabled the display of the friction factor as a
function of the Reynolds number and the establishment of “Blasius’ law” for turbu-
lent pipe flow (8). The failure of contemporary theoretical attempts to determine a
critical Reynolds number for the onset of turbulence was proclaimed in 1921 as the
“turbulence problem” (9). By the same time, “Blasius’ law” became the starting point
for theories about turbulent skin friction. It launched a rivalry between Ludwig Prandtl
and Theodore von Kármán for a universal “wall law” and a series of new pipe flow
experiments at high Reynolds numbers (10). Although the quest for a basic under-
standing of wall-bounded turbulence appeared concluded by 1930 by a logarithmic
law that was confirmed by the measurements, the achievement became rather a new
beginning than an end of pipe flow investigations as I briefly sketch in an outlook
on later developments (11). Experiments and theories on pipe flow still rank high on
the agenda of turbulence research. The unbroken topicality of pipe flow over several
centuries suggests more general conclusions, particularly concerning the historiogra-
phy and epistemology of turbulence and other research with a long history between
science and engineering (12).
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2 The conduits at Versailles

The first published record of pipe flow measurements concerned the requirements for
thewater art atVersailles and other royal gardens of the “SunKing”, LouisXIV, such as
the height of fountain jets driven from the discharge of elevatedwater reservoirs. Under
these premises, hydraulics was put on the agenda of the newly founded royal academy
in Paris (Blay 1986). Two years after its foundation, on 11 July 1668, the academicians
JeanPicard andEdmeMariottewere chargedwith a studyof “the force of runningwater
for pressing and moving”1—a task that led to a number of experimental investigations
on the relation of water discharge through pipes from reservoirs at different heights
and through circular holes of various diameter. The results were published in academy
memoirs and summarized in a Traité du Mouvement des Eaux et des Autres Corps
Fluides (Mariotte 1686). Not least because of this work, published posthumously by
his academic colleague Philippe de La Hire, Mariotte is regarded as “the father of the
experimental method in France” (Rouse and Ince 1957, p. 63).

The pipe flow measurements at Versailles were not a one-time event, nor were
Mariotte and Picard the only academicians concerned with this investigation. In the
1660s and 1670s, Versailles and its water supply system was a giant construction site
under permanent academic surveillance with regard to the levelling of the canals, pipes
and reservoirs for the fountains in the park (Descamps 2003). It involved outstanding
scholars such as Christiaan Huygens and Ole Rømer as well as less known academi-
cians like Claude Antoine Couplet, for whom Versailles presented the opportunity
to develop his hydraulic skills with pipe flow measurements until he rose to promi-
nence as the academy’s permanent treasurer (de Fontenelle 1722). In 1696, Couplet’s
son, Pierre, also became a member of the academy—and a collaborator of his father
on the pipe flow experiments at Versailles (Heyman 1976). Many years later, on 22
March 1732, he presented to the academy a comprehensive report about these inves-
tigations (Couplet 1932). The “rules” of pipe flow, as reported in Mariotte’s treatise,
were derived from measurements that did not regard the lengths of the conduit as an
important variable. Couplet junior criticized the earliest pipe flow measurements at
Versailles because they could not answer the crucial question about the resistance of
the water in the conduits:

This is a question which despite its importance has hardly been clarified; its
solution seems to depend on the knowledge of the friction of the water in the
pipes in relation to the different diameters, lengths and speed of the water.2

Couplet argued that only a great number of experiments could provide this knowl-
edge and that Versailles was the perfect site to perform these measurements. By
the early eighteenth century, water supply systems did not yet involve large pipes
made from cast iron like those at Versailles, where only the best was good enough
to achieve the King’s demands. Couplet’s experiments focused on the discharge of

1 “de la force des eaux courantes à presser et à mouvoir” (Blay 1986, p. 93).
2 “C’est une question qui, toute importante qu’elle est, n’a point encore été éclaircie, et dont il paroît que
la solution dépend de la connoissance du frottement des eaux dans leurs conduites par rapport à différents
diamètres et longueurs différentes, et par rapport à leurs différentes vitesses” (Couplet 1932, p. 114).
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water through five pipes made of cast iron that varied in length from 296 to 2340
toises (1 toise=6 feet=1.83m) and in diameter from 4 to 18 pouces (1 pouce=1
inch=2.54cm). Through these long pipes, the discharge was quite different fromwhat
was to be expected according to Mariotte’s rules. Couplet attributed this discrepancy
to the friction of the water against the inner wall of the pipes:

It is astonishing that this friction of the water against the walls of this pipe caused
a decrease in the flow of water about 30 times greater than the quantity of water
which came out through this pipe.3

The conduits included elbows where trapped air disrupted the water column in the
pipes. In the case of the longest conduit, it could takemore than ten days until the water
from the reservoir was discharged. Couplet did not arrive at a formula for pipe flow
friction, but the conclusion from his measurements was obvious: Friction retarded the
flow of water in the pipes considerably—the smaller the pipe diameter and the longer
the conduit and the larger the flow speed, the more so. Elbows and bends added to the
friction.

Couplet’s measurements were regarded important enough to be included 5years
later in Bernard Forest de Bélidor’s famous Architecture hydraulique (Belidor 1737,
Livre IV, Chapitre II). They deserved particular interest also because of their location at
Versailles, “perhaps the only place of the world where one finds everything one could
wish in order to perform experiments of that sort we are discussing here”.4 He paid
tribute to Couplet by extensive quotes from his academy memoir, including a copper
engraving that showed the profile of the five conduits at which the measurements had
been performed (Fig. 1).

3 Pipe flow accounts in the late eighteenth century

As soon asmetallic pipes became usedmore broadly for thewater supply of cities, pipe
flowmeasurements on long conduitswere no longer confined to royal gardens. In 1771,
Charles Bossut, professor ofmathematics at the École duGénie inMézières, published
a treatise on hydrodynamics where he included the results of his measurements from
conduits used for the water supply of Mézières (Bossut 1771, chapter VI). By and
large, he agreed with Couplet’s findings, so that he allowed himself to proceed one
step further to “form a general and sufficient practical idea of the loss of speed that
water makes in pipes, either straight or curvilinear”.5 Instead of a formula for the

3 “Il est étonnant que ce frottement de l’eau contre les parois de ce tuyau ait causé une diminution
d’écoulement d’eau environ 30 fois plus grande que la quantité d’eau qui est sortie par cette conduite”
(Couplet 1932, p. 148).
4 “…depuis que M. Couplet a donné dans les Mémoires de l’Académie Royale des Sciences, année 1732,
un détail bien circonstancié de toutes les opérations qu’il a faites autrefois avec M. son père et M. Villard,
sur la dépense des tuyaux de conduite qui amènent l’eau dans les réservoirs de Versailles, qui est peut-être
le seul endroit au monde où l’on trouve tout ce que l’on peut désirer, pour faire d’ expériences de la nature
de celles dont nous parlons” (Belidor 1737, p. 273).
5 “En combinant nos expériences avec celles de M. Couplet, on se formera une idée générale et suffisante
dans la pratique, de la perte de vitesse que l’eau fait dans les tuyaux de conduite, soit rectilignes, soit
curvilignes” (Bossut 1771, p. 159).
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Fig. 1 The five conduits at Versailles used for Couplet’s pipe flow experiments (Belidor 1737, Livre IV,
Chapitre II, plate I)

friction, he provided tables for the presentation of his results from which a user might
choose the case closest to the one he wants to treat.

As amember of the Paris academy, Bossut’s expert knowledgewas requested also in
other hydraulic projects. In 1776, for example, he witnessed water raising trials with
the famous machine de Marly. This giant machine pumped water via intermediate
reservoirs up to an aquaeduct 162 m above the level of the Seine from where it was
conducted to Versailles. The plan was to dispose of the intermediate reservoirs and
pump the water in a single step up to the aquaeduct. However, the pipes used for this
purpose proved inadequate. These are matters, Bossut wrote to explain the impotence
of his expertise in this affair, “whose knowledge is based on practical trial and error
and which can only be imperfectly appreciated by theory and reasoning”.6

Bossut’s pipe flow measurements called for more extensive investigations about
the friction in long conduits. “I devoured the part of Abbé Bossut’s Hydrodynamics,
which deals with the movement of water”, Pierre du Buat introduced his Principes
d’hydraulique, vérifiés par un grand nombre d’expériences faites par ordre du gou-
vernement. He regarded the pipe flowdata as “the key to hydraulics”. DuBuat reasoned
that the flow on an inclined river bed reached a uniform speed only because the accel-
erating force of gravity was balanced by friction, and

6 “…dont la connaissance tient à un tâtonnement pratique et qui nepeuvent être qu’imparfaitement appréciés
par la théorie et le raisonnement”. Quoted in Brandstetter (2006, p. 186). See also Barbet (1907, pp. 141–
142).
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that the movement of water in a pipe had a great analogy with the uniform course
of a river bed, since in both cases gravity was the motor, and the resistance of the
bed the moderator. I therefore made use, in order to make a formula of uniform
movement, of the experiments of Abbé Bossut on the pipes, and even of those
he had made on dummy canals, although one datum was missing, which was the
depth of the current. This is how I composed the work that I gave to the public,
under the title of Principles of Hydraulics, in the year 1779.7

As indicated by the title of du Buat’s treatise, his investigations were commissioned
by the government,more precisely by thewarministrywhich also placed at his disposal
two officers from theRoyal Engineering Corps for performing the experiments. Unlike
Bossut’s pipes which had only a “mediocre” slope, du Buat’s experiments comprised
very small and very large inclinations. The slope was calculated by dividing the length
l of the conduit by the height h of the reservoir from which the water was discharged
through the pipes. Furthermore, du Buat and his officers experimented with pipes
bent in different ways, comparing the results with those of straight pipes of the same
diameter and length. In his treatise, du Buat reported the results of 56 experiments
displayed in tables with five entries for each measurement: the length of the pipes,
the height of the reservoir, the slope, the experimentally measured velocity (derived
from the discharge divided by the cross section of the pipe) and the computed velocity
calculated from his formula (du Buat 1786, p. xxv and pp. 71–74).

4 Early pipe flow formulae

Du Buat’s formula did not distinguish between pipe flow and open channel flow. His
basic assumption for both kinds of flow was that equilibrium was established by a
balance of the gravitational force and friction as the retarding force. The former was
related to the slope b = l/h, and the latter to a quantity r = a/p (“rayon”), where
a is the cross section and p the wetted perimeter. Underlying these assumptions was
a particular concept of fluid coherence that imagined a kind of gearing between the
fluid molecules (Darrigol 2005, chapter 3.1.2). This view resulted in a retarding force
proportional to the average velocity of the fluid molecules, at a rate which was itself
proportional to the velocity. Therefore, the friction would be proportional to the square
of the velocity u2 multiplied by r . Du Buat finally arrived at the following formula for
the flow velocity (du Buat 1786, p. 63):

u = 297
(√

r − 0, 1
)

√
b − ln

√
b + 1, 6

− 0, 3(
√

r − 0, 1).

7 “que le mouvement de l’eau dans un tuyau de conduite avait une grande analogie avec le cours uniforme
d’un lit de rivière, puisque de part et d’autre la pesanteur était le moteur, et la résistance du lit le modérateur.
Je me servis donc, pour faire une formule du mouvement uniforme, des expériences de M. l’abbé Bossut
sur les tuyaux de conduite, et même de celles qu’il avait faites sur des canaux factices, quoiqu’il y manquât
une donnée, qui était la profondeur du courant. C’est ainsi que je composai l’ouvrage que j’ai donné au
public, sous le titre de Principes d’Hydraulique, en l’année 1779” (du Buat 1786, pp. xvi–xx).
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The units were Parisian foot. The formula was not derived from a fundamental theory
but rather amalgamated theoretical speculation with experimental measurements.

Du Buat’s account on pipe flow marked the beginning of an era in the history of
fluid mechanics in which experiments challenged pre-conceived theoretical concepts
about the nature of fluid resistance (Darrigol 2005, pp. 221–222). Pioneers of ideal
flow theory in the eighteenth century, such as Johann and Daniel Bernoulli (father
and son) or Leonhard Euler, contributed little to elucidate pipe flow friction. Euler’s
effort in this regard was largely ignored—and would have been doomed to failure if it
had been scrutinized by hydraulic engineers (Bistafa 2015). Both Bossut’s Traité élé-
mentaire d’hydrodynamique and du Buat’s Principes d’Hydraulique, however, were
widely appreciated as valuable contributions. They encouraged further investigations
on pipe flow, which were translated into German. “This book certainly is one of the
most useful and best ones that has appeared for some time in hydraulics”, Reinhard
Woltmann, a German pioneer in hydraulic engineering, praised du Buat’s treatise.
“Theory and experience go together step by step, and it testifies on almost every page
to the skill, diligence and love of truth of the author”. The “almost” alluded to duBuat’s
speculations on the nature of friction. “I confess that I don’t like the author’s imagi-
nation on the resistance due to friction”, Woltmann qualified his praise. He missed a
more detailed consideration of the movement of the water particles close to the wall
where, in his view, “they become hindered by collisions, deviated into other directions
and into an eddying motion whereby the entire flow is decelerated”. Furthermore,
Woltmann was unimpressed by du Buat’s formula with which the experimental data
were fitted. By means of arbitrary quantities, “Mr. Buat has modified his formula until
it fitted precisely all trials”.8

Another German expert on hydraulics, Johann Albert Eytelwein, who had started
his career in the Prussian administration of constructions and co-founded in 1799 the
Berlin Building Academy (Bauakademie), also paid tribute to du Buat in a study “On
the motion of water in conduit pipes”.9 He praised the survey of Couplet’s, Bossut’s
and du Buat’s pipe flowmeasurements and the effort to arrive at a “general expression”
for these results, but he, too, did not like du Buat’s formula—even though for other
reasons than Woltmann. He regarded the formula as largely useless “because of its
complicated form”.10 Eytelwein derived from the same experiments the following
formula:

8 “Dieses Buch ist gewiss eines der nützlichsten und besten, die seit einiger Zeit in der Hydraulik erschienen
sind. Theorie und Erfahrung gehen in demselben Schritt für Schritt beisammen; und es zeugt von der
Geschicklichkeit, dem Fleiße und der Wahrheitsliebe des H. Verf. fast auf allen Seiten. […] Ich gestehe,
dass mir des H. Verf. Vorstellungsart über den Widerstand wegen des Reibens nicht gefällt […] Dagegen
stoßen die Teilchen an, werden aufgehalten, in andere Richtungen und mancherlei wirbelnde Bewegung
gebracht, wodurch der ganze Strom verzögert wird […] hat Hr. Buat seine Formel so lange abgeändert
bis sie auf alle Versuche genau passte” (Woltmann 1791, pp. 142, 152, 162). On Woltmann’s career see
Rühlmann (1885, pp. 280–283).
9 “Von der Bewegung des Wassers in Röhrenleitungen” (Eytelwein 1801, 9. Kapitel). On Eytelwein’s
career, see Rühlmann (1885, pp. 284–289).
10 “Herr du Buat hatte das große Verdienst, zuerst einen allgemeinen Ausdruck mitgetheilt zu haben,
welcher mit den bekannten Erfahrungen übereinstimmt, und der bloß den Fehler hat, dass er wegen seiner
verwickelten Form, nur mit vieler Weitläufigkeit Anwendung findet” (Eytelwein 1801, p. 216). Du Buat’s
formula is discussed in Rouse and Ince (1957, pp. 131–132).
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u = 6, 42

√
50dh

l + 50d
,

where u is the mean flow velocity in the conduit of pipes, d and l the diameter and
length of the conduit, and h the pressure head, i.e., the height between the reservoir
and the lower end of the conduit of pipes; all length units are in “rheinisch” feet. The
discharge M is given by the product of the cross section of the pipe times the velocity

M = 1

4
πd2u = 5.04d2

√
50dh

l + 50d
.

Eytelwein’s pipe flow formula did not fit the data as well as du Buat’s formula—
but had the virtue of being useful for determining the dimensions of pipes for given
purposes. It could be used to solve engineering problems such as: “How large has to
be the diameter of a straight conduit pipe with a length of 100 feet at a pressure head
of 5 feet in order to discharge a half cubic feet per second?”11

In 1804, Gaspard de Prony, director of the École des Ponts et Chaussées and perhaps
the most prominent representative of hydraulic engineering in France, made a major
step forward by suggesting a formula which combined pipe flow and open channel
flow. Prony adopted the view of Charles Coulomb who concluded from experiments
about fluid coherence that there are two forces involved in fluid friction: one due
to the mutual interaction of the molecules of the fluid, and the other due to surface
irregularities at the bounding wall. The former resulted in a friction proportional to
the flow velocity, the latter implied an inertial retardation proportional to the square
of the velocity (Darrigol 2005, pp. 104–106). Prony, therefore, attempted to account
for the experimental data by the ansatz

gdh

4l
= au + bu2,

where g is the gravitational acceleration and a, b are constants to be determined from
measurements. Like Eytelwein, Prony relied on the pipe flow experiments of Couplet,
Bossut and Du Buat. He employed the newly introduced metric system. Altogether,
the set of data comprised the results of 51 experiments with conduits of tin and cast
iron pipes that differed considerably in diameter (from 2.7 to 49cm) and length (from
9.7 to 2280 m). For the determination of a and b, Prony adopted a method developed
by Pierre-Simon Laplace in celestial mechanics for matching observational data to
mathematical expressions.As a result, Prony’sRecherches physico-mathématiques sur
la théorie des eaux courantes represented empirical hydraulic knowledge combined
with sophisticated mathematical elaboration like no other contemporary account (de
Prony 1804).

Prony’s formula dominated hydraulic engineering for several decades. The two
terms proportional to u and u2 seem to foreshadow the distinction of laminar and

11 “Wie groß wird man den Durchmesser einer graden 100 Fuß langen Röhrenleitung bei einer Druckhöhe
von 5 Fuß annehmen müssen, damit solche in jeder Sekunde einen halben Kubikfuß Wasser liefert?”
Inserting M = 1

2 , h = 5, l = 100 yields an equation for d with the result d = 0, 341 feet (Eytelwein 1801,
p. 223).
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turbulent flow, but this is a retrospective interpretation. The notion of viscosity as
introduced by Claude-Louis Navier in the 1820s in the fundamental equations of flow
did not enter pipe flow formulae before the second half of the nineteenth century
(Darrigol 2005, chapter 3).

5 Air flow in long conduits of pipes

WhileProny’s formulamade the pipeflowofwater accessible to hydraulic engineering,
the flow of air in conduits of pipes remained mysterious—although the latter was of
comparable practical relevance in the Industrial Revolution. In order to provide mine
air or operate blast furnaces, air had to be pumped through conduits of pipes with
different diameter and length. In 1797, Joseph Baader, an engineer at the Bavarian
courtwho had spent his formative years in England and Scotland, relayed the following
experience of the English “iron master” John Wilkinson about the procurement of air
for a blast furnace:

He [Wilkinson] intended to use the steep slope of a stream for the operation
of a blast furnace 5000 feet away. He built a large overshot water wheel with a
cylindrical blowing engine and installed an air conduit with 12 inches wide pipes
of cast iron straight towards the furnace. When the machinery was completed
and the water-wheel set in motion for the first time, compressed air escaped to
the astonishment of all present through the most minute openings and through
the valve of the machine itself, while at the other end of the conduit of pipes
there was not the slightest motion of air as was checked by the flame of a candle!
Then one carefully sealed all openings and fastened the valve so that it would
withstand the pressure of the compressed air. When the water wheel was set
in motion again, it turned around slower and slower until it stood still entirely.
Although the air inside the blowing engine was now compressed to the extent
that its elasticity balanced the whole applied force there was not the slightest
current of air at the other end of the conduit. Naturally suspicion was raised
that the conduit was accidentally blocked at some point. In order to check this
hypothesis, a cat was put inside the entrance of the pipe which was then closed;
but the cat happily walked out from the other end and therefore had met no
obstruction!12

12 “Er gerieth auf den Einfall, einen Bach mit einem starken Gefälle zur Betreibung eines Hohofens zu
benützen, der 5000 Fuß, (ohngefähr eine englischeMeile) von der Stelle entferntwar. In dieserAbsicht baute
er ein großes oberschlächtiges Rad mit einer vollständigen Zylindermaschine, und führte eine Windleitung
von 12 Zoll weiten gegossenen eisernen Röhren von der Maschine gerade nach dem Ofen. Als nun die
ganze Anlage vollendet war, und man das erstemal Wasser aufs Rad schlug, zeigte sichs zum großen
Erstaunen aller Gegenwärtigen, dass die zusammengepreßte Luft durch die kleinsten Öffnungen und Fugen,
vorzüglich aber durch ein mit Gewicht beschwertes Ventil (Wastevalve) an der Maschine selbst entwischte,
indes aus der Öffnung am entfernten Ende der Röhrenleitung durch ein vorgehaltenes Licht nicht einmal
die geringste Bewegung zu bemerken war!–Man verstopfte hierauf alle Fugen auf das sorgfältigste, und
beschwerte das Ventil nach und nach mit soviel Gewicht, dass die verdichtete Luft solches gar nicht mehr
zu heben vermögend war, und das Rad, bey vollem Aufschlagwasser, sich immer langsamer und langsamer
bewegte, bis es endlich ganz stille stand. Allein obwohl nunmehr die Luft in der Maschine offenbar auf
einen so hohen Grad verdichtet war, dass ihre Elastizität der ganzen vorhandenen Kraft das Gleichgewicht
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According to Baader’s report, Wilkinson further investigated the mysterious block-
ade of air flow by drilling holes at a distance of 30 feet from another in the pipes.
Thus, Wilkinson observed how the escape of air through these holes became weaker
and weaker further away from the blowing engine, until at a distance of 600 feet only a
faint breath of air was noticed. Baader found it regrettable that the pressure at the drill
holes was not measured by barometer tubes. Thus, one had missed the opportunity
to uncover the law according to which the resistance of a mass of moving air in a
long conduit of pipes increases with the length of the conduit (Baader 1797, p. 167).
He reported about Wilkinson’s experience again at another opportunity (Baader 1805,
pp. IX–XI), but measurements on the flow of air in long pipes were performed only
several years later. In July 1811, the Journal de Physique reported about experiments
of air flow in a 447.5 m long iron pipe with 25 cm diameter. In this case, no blockade
was observed, although the air flow was caused by only a tiny fraction of the power
of Wilkinson’s blowing engine (Lehot et al. 1811).

In 1819, the friction of the air flow became the subject of more systematic measure-
ments at a hospital in Paris where the new technology of gaslight had been introduced
2years before. Pierre Simon Girard, a former collaborator of Prony and an expert on
hydraulics, used the opportunity to measure the flow of gas driven by a gasometer
through a 623-m-long conduit of pipes with a diameter of 81 mm. By comparing the
flow of coal gas with that of air, both driven by the same pressure from the same
gasometer, Girard ascertained that gaseous fluids move through the pipes more or less
independent of their compressibility (“indépendamment du plus ou moins d’élasticité
dont ils peuvent être doués”). From this observation, he concluded that even incom-
pressible fluids should obey the same law of friction:

Therefore, these different phenomena of gasmotion are exactly the same as those
of incompressible liquids, from which we may conclude that the same formulae
must serve to calculate the movement of both.13

Accordingly, Girard applied Prony’s formula derived from experiments on the flow
of water to the flow of gases:

gdhp

4p′l
= au + bu2,

where p and p′ are the specific weights of water and gas, respectively, and h the
height of the water column that drives the gas through the conduit of pipes with
length l and diameter d. Different gases would be matched by this formula with

Footnote 12 continued
hielt, es war doch an dem entfernten Ende der Windleitung noch nicht der schwächste Luftzug zu spüren.
Natürlicherweise entstand jetzt der Verdacht, dass die Röhrenstrecke an irgend einer Stelle durch einen
Zufall verstopft wäre, und um diese Hypothese zu prüfen, steckte man in die Mündung derWindleitung bey
der Maschine eine lebende Katze, welche, nachdem ihr der Rückweg verschlossen ward, nach einiger Zeit
an dem andern offenen Ende (von welchem das enge Blaserohr abgenommen war) glücklich herauskam,
folglich die ganze Röhrenleitung ohne Widerstand durchlaufen hatte!” (Baader 1797, pp. 165–166).
13 “Or, ces divers phénomènes du mouvement des gaz sont exactement les mêmes que ceux du mouvement
linéaire des liquides incompressibles, d’où il est permis de conclure que les mêmes formules doivent servir
à calculer le mouvement des uns et des autres” (Girard 1821, p. 144).
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different coefficients a and b, but for very long pipes the term proportional to u
seemed negligible, and then the coefficients b differed only little.

The experiments with the pipes of the Paris gaslight did not involve very large flow
speeds like those encountered in the pipes of blowing engines for blast furnaces ormine
air. In order to fill this gap, Jean-François d’Aubuisson deVoisins, chief engineer of the
royal mining corps, performed experiments on the flow in large pipes used to provide
air for an ironmine in the department of l’Ariège. Twenty-meter-long pipesmade of tin
with a diameter of 10 cm were joined together to a 387-m-long conduit. The pressure
in the pipes was measured at drill holes 40 m apart by manometers (double-bent glass
tubes filled with mercury). In the course of several years, d’Aubuisson concluded
from a great number of measurements that indeed “the resistance is proportional to
the square of the velocity”, as Girard already had assumed for larger pipes, so that only
a single coefficient remained to be determined from the experiments. In the same vein,
his results corroborated Eytelwein’s formula which, as d’Aubuisson noticed, comes
out as the same as that of Prony as long as the length of the conduit is very large
compared to the diameter (d’Aubuisson de Voisins 1828, p. 444).

6 The Darcy–Weisbach equation

Besides the experiments on air flow in long pipes, d’Aubuisson was involved in the
design of a new water supply system of Toulouse.14 When he reviewed the contem-
porary knowledge on hydraulics as far as it was “useful for engineers”, he divided
his account in one part on hydraulics proper (“L’ hydraulique proprement dite”) and
another part on air measurements (“L’ aérométrie”) (d’Aubuisson de Voisins 1834).
Hence, he assigned pipe flow of water and air to separate chapters, but he argued that
the same forces were responsible for the flow retardation in both cases:

Since the resistance comes from the action of the walls, it will be proportional to
their extent, i.e., to the length of the pipe and the perimeter of the cross section
[…] On the other hand, the larger the cross section, the more the resistance of
the walls will be distributed over a greater number of molecules and therefore
will affect each of them and the total mass less, and will therefore be inversely
related to this number, hence inversely proportional to the cross section.15

Prony’s and Eytelwein’s formulae could be regarded as the mathematical expres-
sion of this view. They provided the theoretical basis from which in most practical
cases the required quantities of a conduit of pipes could be calculated—for water as
well as for gases. Yet the friction of fluids in pipe flow remained a major challenge to
bring theory in line with practice. In 1839, Gotthilf Hagen, a professor of hydraulic

14 Notice Nécrologique sur M. d’Aubuisson de Voisins in: Annales des Mines, 4ème série, tome 11, 1847,
pp. 667, available at http://www.annales.org/archives/x/aubuisson.html#annales.
15 “Puisque la résistance provient de l’action des parois, elle sera proportionnelle à leur étendue, c’est
à-dire, à la longueur de la conduite et au périmètre de la section […]. D’un autre côté, plus la section sera
grande, et plus la résistance des parois se distribuera sur un plus grand nombre de molécules; par conséquent
elle affectera moins chacune d’elles et la masse totale : elle sera donc en raison inverse de ce nombre, lequel
dépend de la grandeur de la section” (d’Aubuisson de Voisins 1834, p. 171).
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engineering at theBerlin Bauakademie, raised “some doubts” about Prony’s andEytel-
wein’s formulae. The influence of temperature, for example, “is completely ignored in
these hydraulic formulae” (Hagen 1839, p. 423). He performed a series of experiments
on the flow of water at different temperatures through a narrow, mean and larger pipe
with diameters of 2.6mm, 4mm and 5.9mm, respectively. Like others before him,
Hagen noticed a dependency of the pipe friction on temperature, but he postponed the
detailed study of this influence (Hagen 1855). For the time being, he derived from his
experiments a formula which would later be called after him and Jean Léonard Marie
Poiseuille, the law of laminar pipe flow.16 Hagen’s textbook reputation is confined to
the “Hagen-Poiseuille law” only, but for his contemporaries he was an authority for
the entire field of hydraulic engineering. He authored a voluminous Handbuch der
Wasserbaukunst and served as an expert adviser for water works and other building
projects in Prussia. In his pipe flow studies, he did not content himself with establishing
a formula for laminar flow, but also observed the transition to turbulent flow:

When I let the water flow freely in the air, for smaller pressure heads the jet
had a permanent shape, and near the pipe it looked like a solid piece of glass;
but as soon as the velocity, by stronger pressure, exceeded the given limit, the
jet started to fluctuate and the efflux was no longer uniform and occurred by
pulses.17

When Hagen investigated a few years later the influence of temperature more
closely, he added saw dust to the water in order to visualize these “two kinds of
motion”:

I observed that for small pressures the saw dust propagated only in the direction
of the tube, whereas for strong pressures it shot from one side to another and
often assumed an eddying motion.18

Thus, Hagen’s pipe flow investigations came close to discoveries that are ascribed
to Osborne Reynolds 30years later (Rouse and Ince 1957, p. 160; Darrigol 2005, p.
256).

Another German hydraulic engineer who paid great efforts to improve Prony’s and
Eytelwein’s pipe flow formulae was Julius Weisbach. In 1845, he published the first
of three volumes of a textbook on mechanics, explicitly for the use of engineers, with
an extensive section on the “dynamics of fluid bodies”. With regard to pipe flow, he
added to the 51 measurements of Couplet, Bossut and du Buat one experiment of an

16 For a discussion of Hagen’s and Poiseuille’s experiments, see Sutera and Skalak (1993) and Darrigol
(2005, chapter 3.7).
17 “Ließ ich nämlich dasWasser frei in die Luft ausströmen, so bildete der Strahl bei kleineren Druckhöhen
eine unveränderte Form, und er hatte in derNähe der Röhre dasAnsehen eines festenGlasstabes; sobald aber
bei stärkerem Drucke die Geschwindigkeit die bezeichnete Grenze überstieg, so fing er an zu schwanken
und der Ausfluss geschah nicht mehr gleichförmig, sondern stoßweise” (Hagen 1839, p. 423), translated in
Darrigol (2005, p. 244).
18 “Indem ich durch dieselbe Röhre zugleich mit dem Wasser auch Sägespähne hindurchtreiben ließ, so
bemerkte ich, dass dieselben bei geringem Drucke nur in der Richtung der Röhre fortschritten, bei starkem
Drucke dagegen, von der einen Seite zur andern geschleudert wurden, und oft in wirbelnde Bewegung
geriethen” (Hagen 1855, p. 81), translated in Rouse and Ince (1957, p. 159) and Darrigol (2005, p. 245).
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hydraulic engineer at Grenoble (Émile Gueymard) and 11 of his own by which the
range of flow velocities in the pipes was considerably increased towards higher speeds.
Weisbach arrived at the formula

h = f
l

d

u2

2g
,

with the friction factor f = a + b√
u
; he determined a and b by the method of least

squares. This formula, Weisbach concluded, fits the measurements “much more pre-
cisely” than the formulae by Prony and Eytelwein (Weisbach 1845, p. 433).

New pipe flow measurements were regarded imperative also in the course of other
hydraulic projects such as for the water supply at Dijon implemented in 1840 by
Henry Darcy, a young engineer from the Corps des Ponts et Chaussées. Les fontaines
publiques de la ville de Dijon, as Darcy titled the treatise about his accomplishment
(Darcy 1856), represented one of the most modern water supply systems by this time.
“The execution of the work on the Dijon water supply gave me the opportunity to
recognize the need to engage in the Recherches I am publishing today”, Henry Darcy
introduced a subsequent treatise.19 Darcy’s memoirs are celebrated as landmarks in
the history of hydraulics and secured him a place in the hall of fame of this discipline
(Rouse and Ince 1957, pp. 169–172; Freeze 1994; Brown 2002a; Gisonni 2003; Hager
2003; Bobeck 2006; Simmons 2008).

The opportunity to perform pipe flow experiments on an heretofore unprecedented
scale came when Darcy was charged in 1850 with the supervision of the Paris water
supply. As he recalled in his treatise about the Dijon fountains:

My original thought was to seek themeans to verify the exactness of the laws that
are generally accepted today. However, it did not take me long to recognize that
I did not have in hand the elements necessary to resolve such a basic question. I
had to wait to take up this question until circumstances permitted. I was able to
take up these earlier thoughts when I was called to Paris as Director ofMunicipal
[Water] Service. I then had at my disposal all the equipment necessary to carry
out the experiments that I had thought about for so long.20

In his experiments,Darcywished to clarify in particular the influenceof thepipewall
roughness and diameter on the flow resistance. Hemeasured the flow profile across the
cross section of a pipe by an improved Pitot tube (Brown 2003) and compared the flow
of water through 100-m-long conduits of pipes of different materials and diameters
between 1 and 50 cm. Furthermore, he employed large hydraulic heads in order to

19 “L’exécution des travaux relatifs à la fourniture d’eau de Dijonm’a donné lieu de reconnaître la nécessité
de me livrer aux Recherches que je publie aujourd’hui” (Darcy 1857, p. V).
20 “Ma première pensée avait été de chercher dans ces expériences les moyens de vérifier l’exactitude des
lois admises jusqu’à ce jour; mais je n’ai pas tardé à reconnaître que je n’avais pas sous la main les éléments
nécessaires pour résoudre une si grave question, et j’ai attendu que les circonstances me permissent de
songer à la reprendre. Je donnai suite à ma pensée première lorsque je fus appelé à Paris, comme directeur
du service municipal. J’avais alors à ma disposition tous les appareils indispensables pour procéder aux
expériences auxquelles je songeais depuis si longtemps” (Darcy 1856, p. 376). English translation in Bobeck
(2006, p. 1003).
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achieve large flow velocities. A good deal of his data such as those from old and rough
pipes could not be reconciled with Prony’s formula. Darcy arrived at a formula for the
head loss which contained a linear and a quadratic term in the velocity, like that of
Prony, but with coefficients that displayed a marked dependency on the pipe diameter.
Furthermore, Darcy noticed that beyond a certain velocity the linear term could be
neglected.21 On the other hand, for pipes with very small diameter and flow velocity,
the quadratic term could be neglected. “M. Poiseuille and I arrived at this expression
by totally different experiments and circumstances”, Darcy remarked about this case
which we now call laminar flow. Darcy contented himself with the remark that “it
seems that two laws appear in the phenomenon produced by the flow of water in the
pipes and that these laws, at least in the diameters that I have used, merge at velocities
of 9–10 cm [per second]”.22

For other pipes, in particular those with rough walls, Darcy’s formula reduced to
an expression proportional to the square of the velocity where the resistance could
be expressed by a friction factor—similar to the one published a few years earlier by
Weisbach (whose work seems to have been unknown to Darcy). Unlike Weisbach’s
friction factor (see above), however, Darcy’s factor showed a functional dependence
on the pipe diameter: f = a + b

d (Darcy 1857, p. 117). Like Weisbach, Darcy deter-
mined the coefficients (a, b) by the method of least squares from the experimental
measurements. Other features (pipe roughness, viscosity of the fluid) were not made
explicit.

It was left to another hydraulic engineer in theUSA, JohnThomas Fanning, to adjust
Weisbach’s expression to Darcy’s better data and to establish what became known as
“Darcy-Weisbach equation” (Brown 2002b). The modern understanding of this law
had to await the similarity theory as applied by Heinrich Blasius to empirical pipe
flow data (see below). In the same vein, Darcy has been praised for “the first accurate
measurements of turbulent pipe velocity distributions” and for providing “the very first
evidence of the existence of the fluid boundary layer” (Simmons 2008, p. 1028). Both
ascriptions need some qualification: Darcy used erroneous assumptions to derive from
his measurements the velocity profiles (Gisonni 2003, p. 34); although he located the
origin for the wall friction in “the small liquid band in contact with the walls” where
“the fluid elements are agitated in vortical motions” (“la petite couche liquide en
contact avec les parois…les éléments de cette couche sont animés de mouvements
giratoires”), he made no attempt to determine the features of this layer (Darcy 1857,
p. 10).

Darcy’s pipe flow measurements became the prototype to which other hydraulic
engineers referred in the design of water supply systems elsewhere. After Darcy’s
death in 1858, his assistant Henri Bazin extended these investigations to the study of
open channel flow where the walls seemed to exert a similar flow retardation as in

21 “…qu’à partir d’une certaine vitesse la valeur du débit ne semble point affectée par la suppression du
premier terme” (Darcy 1857, p. 120).
22 “…nous sommes parvenus, M. Poiseuille et moi, à cette expression, au moyen d’expériences faites dans
des circonstances tout à fait différentes…. il semble que deux lois apparaissent dans le phénomène produit
par l’écoulement de l’eau dans les tuyaux de conduite et que ces lois, au moins dans les diamètres que j’ai
employés, viennent se souder vers les vitesses de 9 à 10 centimètres” (Darcy 1857, pp. 213–215).
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closed pipes.23 The results of Darcy’s and Bazin’s experiments launched a new quest
for a general flow formula (Hager 1994).

In 1874, the Union of GermanArchitectural and Engineering Associations solicited
a review on “measurements concerning the pressure head loss in the flow of water
through conduits of cast iron pipes of various pipe width, flow velocity and under the
influence of successive modification of the inner surfaces”. The motivation for this
review came from the uncertainty “which of the numerous formulae is to be taken
as the basis for any new installations as being closest to the truth”. As a result of
this request, new pipe flow measurements in several German cities (Danzig, Bonn,
Wiesbaden, Hamburg) were performed and analysed with regard to various formulae.
By and large, the validity of Darcy’s formula was found to agree best for new pipes,
even for pipe diameters as large as 122 cm, but no formula could account for older
pipes with rough inner surfaces.24

7 The riddle of two different manners of flow

By the 1860s, the experiments of hydraulic engineers like Hagen, Weisbach, Darcy
and others had abundantly made clear that the flow in very narrow pipes was funda-
mentally different from that in large pipes. The former had been analysed by Hagen
and Poiseuille whose law could be derived from the Navier–Stokes equations. In the
contemporary parlance of the year 1860, capillary flow represented “the only form
of experiment for which the complete theory could be derived from those equations
of motions”, whereas the experimental results of pipe flow in larger pipes could only
be used to derive “practical approximation formulae but not for comparison with a
mathematical theory”.25

The failure of fundamental hydrodynamic theory to cope with this problem became
notorious. In 1872, Adhémar Barré de Saint-Venant, the outstanding expert on theo-
retical mechanics among the French academicians, regarded this problem as “a true
enigma”.26 His pupil Joseph Boussinesq echoed this view: “Fluids move in two differ-
ent manners, according to whether they flow in very narrow tubes or in spaces having
sections comparable to those of pipes and open channels”. Thus, Boussinesq intro-

23 “L’influence capitale qu’exerce la nature de la paroi était incontestable en principe après les expériences
faites sur les tuyaux de conduite par M. Darcy; elle se trouve donc démontrée d’une manière encore plus
frappante pour les canaux découverts” (Darcy and Bazin 1865, p. 79).
24 “Welche Erfahrungen, bezw. Messungen liegen vor über den Druckhöhenverlust beim Durchfluss von
Wasser durch gusseiserne Rohrleitungen für verschiedene Rohrweiten, verschiedene Geschwindigkeiten
und unter dem Einfluss der successiven Oberflächenveränderung im Innern? …welche der zahlreichen
Formeln, als der Wahrheit am nächsten kommend, bei etwaigen Neuanlagen zu Grunde zu legen sei” (Iben
1880, p. 1).
25 “Indessen ist bisher nur eine einzige Form des Experimentes gefunden worden, für welche die voll-
ständige Theorie aus jenen Bewegungsgleichungen hergeleitet werden kann, es ist das die Bewegung
einer Flüssigkeit in sehr engen und sehr langen Röhren. […] so dass man die unter solchen Bedingungen
gewonnenen Ergebnisse zwar zur Ableitung praktischer Approximationsformeln, aber nicht zur Vergle-
ichung mit der mathematischen Theorie gebrauchen kann” (Helmholtz and Piotrowski 1860, pp. 607–608).
See also Darrigol (2005, chapter 3.7).
26 “une véritable enigme”. Rapport sur un mémoire de M. Boussinesq, présenté le 28 Octobre 1872, in
Boussinesq (1877, p. III).
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duced a treatise on the flow of water. In the latter case, one had to take into account
“the eddying agitation” that extends from the walls into the interior of the fluid and
propagates very fast or even abruptly from point to point.27 Boussinesq merged Saint-
Venant’s theoretical views with the engineering knowledge about pipe and channel
flow as described in the treatise of Darcy and Bazin. From “the eddying agitation”,
he derived the concept of an eddy viscosity which would play a fundamental role in
theories of fully developed turbulence in the twentieth century.

Another effort to bring the two different manners of flow under a common the-
oretical roof was published a few years later by Osborne Reynolds, an engineering
professor at Manchester with a tendency towards research problems that have “both
a practical and a philosophical aspect”. This was how he described his objective for
“An Experimental Investigation of the Circumstances which determine whether the
Motion of Water shall be Direct or Sinuous, and of the Law of Resistance in Parallel
Channels” (Reynolds 1883)—a landmark paper in the history of turbulence. Reynolds
has often been credited for achievements which were made by others. Hagen visu-
alized the transition to turbulence many years before Reynolds (see above). Another
part of the “Reynolds legend” (Darrigol 2005, p. 255) concerns the rise of similarity
theory. Reynolds did not claim priority for the study of the scaling invariance of the
Navier–Stokes equation. “I had no intention whatever of laying down the conditions
of dynamical similarity”, Reynolds wrote in 1883 in a letter to Gabriel Stokes [quoted
in Darrigol (2005), p. 256]. The late rise of the “Reynolds number” as a key concept
in fluid mechanics—it received this name only in 1908 (Rott 1990)—further hints at
the haphazard use of similarity theory. Reynolds’s achievements have been analysed
in great detail and need no further review (Launder and Jackson 2011; Darrigol 2005,
chapter 6.5).

But it seems appropriate to focus on some of his findings once more from the
perspective of pipe flow. What we now call “Reynolds number” was introduced as a
quantity for comparing different pipe flows. Reynolds displayed the loss of pressure
in a pipe in a double-logarithmic plot as a function of the flow velocity in order to
expose the common features of different pipe flows. It came as a surprise [“beyond
my original intention” (Reynolds 1883, p. 977)] that he was able to display both
Poiseuille’s and Darcy’s data in the same diagram as straight lines with different
“Log Slopes of Pressure” that intersected at a critical velocity. In a subsequent paper
published 12years later, Reynolds expressed this critical velocity as Kμ/Dρ, where D
is the pipe diameter, μ the viscosity and ρ the density of the fluid, and K “a numerical
constant, the value of which according to my experiments, and, as I was able to show,
to all the experiments by Poiseuille and Darcy, is for pipes of circular section between
1900 and 2000” (Reynolds 1895, p. 125). Thus, the divide between the two manners
of flow, “steady direct” and “sinuous or eddying” in Reynolds’s parlance, was for

27 “Les fluides se meuvent, de deux manières différentes, suivant, qu’ils coulent dans des tubes très-étroits
oudans des espaces ayant des sections comparables à celles des tuyauxde conduite oudes canauxdécouverts.
[…] Au reste, cette production d’une agitation tourbillonnaire au sein de toute masse fluide qui s’écoule
à travers des sections d’une certaine étendue […] Il faut donc…regarder les vitesses vraies, à l’intérieur
d’un fluide qui s’écoule, comme rapidement ou même brusquement variables d’un point à l’autre, capables,
en un mot, de produire des frottements d’un tout autre ordre de grandeur que dans le cas de mouvements
continus…(Boussinesq 1877, pp. 1, 6–7). See also Rouse and Ince (1957, p. 203) and Darrigol (2005, p.
235).
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the first time quantified and subjected under a common theoretical roof. However, it
took many years until Reynolds’s achievement became “a marker for the direction of
research in Engineering Fluid Mechanics for the next century” (Jackson and Launder
2007, p. 20). Contemporary hydraulic engineers hardly recognized Reynolds’ papers
from 1883 and 1895 as key contributions to their field. A review on pipe and channel
flow from 1897 pointed to the work of Hagen and others who had investigated the
two different manners of flow much earlier: “Reynolds has therefore been anticipated
five or six times”. Furthermore, there were experimental pipe flow data “adverse to
Reynolds’ theory, which therefore may be rejected” (Knibbs 1897, pp. 326, 343).

8 Blasius’ law for turbulent pipe friction

In 1903, two American engineers, Augustus V. Saph and Ernst W. Schoder, presented
a joint doctoral thesis to the Cornell University about pipe flow measurements of
heretofore unsurpassed extent and precision. In hundreds of experiments with different
types of pipes of different diameters, they measured the resistance of the flow of
water at different temperatures (thus modifying viscosity like Hagen and others).
They displayed the result of their measurements as logarithmic plots for the head loss
per unit length as a function of the flow velocity. The plots for different pipes could be
grouped as parallel straight lines with two distinct slopes representing the twomanners
of pipe flow. Above a critical velocity, the slope corresponded to smooth pipes “very
nearly” to a head loss h per length l according to

h

l
∼ u1.75

d1.25
.

Saph and Schoder cited Reynolds only for having demonstrated the change in the
character of pipe flow at a critical velocity. They did not express their own results in
terms of the Reynolds number (Saph and Schoder 1903; Steen and Brutsaert 2017).

Reynolds’ papers found more interest among physicists. Arnold Sommerfeld, the-
oretical physicist at Munich University, introduced in 1908 the name “Reynolds
number” (Rott 1990) in a study that aimed at a determination of the transition to
turbulence in the plane flow between two walls moving in opposite directions (plane
Couette flow) (Eckert 2010). By the same time, the experimental physicist Wilhelm
Wien at Würzburg University asked a doctoral student to investigate the occurrence of
turbulence phenomenamore closely in gases instead of water, with a particular interest
in the range of the Hagen–Poiseuille law. Wien had published in 1900 a textbook on
hydrodynamics where he lamented about the gap between theory and practice in this
area: “Here the actual processes are so inconsistent with the theoretical conclusions
that engineering developed a special way of treating hydrodynamic tasks, which is usu-
ally called hydraulics”.28 The experiments of Wien’s doctoral student clearly showed

28 “Hier stimmen die thatsächlichen Vorgänge mit den theoretischen Folgerungen vielfach so ungenü-
gend überein, dass die Technik sich für ihre Zwecke eine besondere Behandlungsweise hydrodynamischer
Aufgaben, die meistens den Namen Hydraulik führt, zurechtgemacht hat”. (Wien 1900, p. III).
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“that the critical value of Reynolds is also decisive for the beginning of turbulent air
flow through narrow pipes”.29

The next step was made by Heinrich Blasius at the Berlin Research Laboratory for
Hydraulics and Naval Architecture (Königliche Versuchsanstalt für Wasserbau und
Schiffbau). Blasius was prepared for this investigation like few others (Hager 2003).
He had finished his studies at Göttingen University as Ludwig Prandtl’s first doc-
toral student with an elaboration of Prandtl’s boundary layer concept (Eckert 2017b).
In 1907/1908, he reviewed the contemporary knowledge on turbulence in a semi-
nar (Eckert 2019, pp. 42–44, 58–59, 127–136). When he moved in 1908 from the
academic environment in Göttingen to the engineering laboratory in Berlin, he was
eager to demonstrate his expert knowledge in practical applications. He became aware
that hydraulics offered many opportunities for similarity considerations. Even after
30years “the law of Reynolds” had hardly penetrated engineering practice, he noted in
the first of several same-titled papers on “The law of similarity in frictional processes”.
When the motion was determined by frictional and inertial forces like in pipe flow, the
law of similarity implied that the friction coefficient was a function of the Reynolds
number ud

ν
, where ν is the kinematic viscosity of the fluid. Besides the friction in pipe

flow, the similarity law provided the basis for wind tunnel tests like those in Prandtl’s
new Göttingen Airship Model Research Institute (Luftschiff-Modellversuchsanstalt).
“There is then no doubt that the introduction of the law in practice is necessary”,
Blasius concluded this paper.30

In November 1911, he presented the same message to a conference on aeronautics
in Göttingen—with the focus on the flow of air instead of water. He concluded from
recent measurements about the head loss of air flow in pipes that “these experiments
carried out with atmospheric air yielded the same coefficient for the same Reynolds
number as the series of experiments with water mentioned above”.When he was asked
in the discussion about the difference between laminar and turbulent flow he presented
the Darcy–Weisbach formula for the head loss

h = λ
l

d

u2

2g

with the friction factor for laminar flow

λ = 64

(
ud

ν

)−1

and for turbulent flow

λ = 0.3164

(
ud

ν

)−1/4

.

29 “Bei Versuchen mit Strömungen der Luft durch enge Röhren hat sich ergeben, dass der kritische Wert
von Reynolds auch hier maßgebend ist für den Beginn turbulenter Strömung” (Ruckes 1908, p. 1020).
30 “Es ist danach kein Zweifel, daß die Einführung des Gesetzes in die Praxis notwendig ist” (Blasius 1911,
p. 1177).
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“The transition from one law to the other takes place at values of ud
ν

between 2000
and 3000”.31 The “other” law for turbulent pipe friction became known as “Blasius’
law”.

For the extensive presentation of his results, Blasius chose the Association of Ger-
man Engineers (Verein Deutscher Ingenieure) as his audience (Blasius 1912a, 1913).
In all of his publications, he left no doubt about the importance of experiments because
the functional dependence of the friction coefficient λ on the Reynolds number did not
result from similarity considerations alone; the supposed formulae had to be matched
to the experimental data. One-third of his final report was dedicated to tables and
diagrams with the results of pipe flowmeasurements. “The most careful and extensive
tests on pressure loss in smooth pipes were carried out by the American engineers
Saph and Schoder”, Blasius acknowledged these experiments as his main source and
inspiration.He called his expression for the turbulent friction coefficient the “improved
Saph-Schoder formula”.32 But he also performed himself measurements on the pipe
flow of water at different temperatures in order to demonstrate how the data from
different experiments collapsed when displayed as a function of the Reynolds num-
ber (Fig. 2). Furthermore, he attempted to trace the origin of discrepancies between
measurements of Reynolds and Saph-Schoder. “I therefore checked Reynolds’ exper-
iments and found that lead pipes have the same resistance as the Saph-Schoder brass
pipes. I therefore suspect that Reynolds has a systematic error in the measurements”.33

Blasius explicitly confined the validity of his turbulent friction factor to completely
smooth pipes. For pipes with a rough inner surface, he concluded from the available
data that the friction factor could no longer be expressed in terms of the Reynolds
number alone. He introduced a parameter ε/d, where ε is the size of the bumbs that
protrude out of the surface, but he abstained from deriving a formula. He left the
roughness issue with the statement “that in any case no pure power law is possible”
for the formula of the friction factor.34

An attempt in this regardwasmade subsequently by Richard vonMises (Siegmund-
Schultze 2018). A few years later, he made himself a name as the founder of the
Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) (Siegmund-Schultze
2020), but at first he regarded himself as a mechanical engineer (Maschinenbau-
Ingenieur)—or so he signed in September 1913 the Elemente der Technischen
Hydromechanik that showcased his familiarity with pipe flow measurements (von
Mises 1914). From Darcy’s measurements with rough pipes, he derived the friction
factor as

31 “Diesemit atmosphärischer Luft angestelltenVersuche ergaben für gleicheReynoldsscheZahl denselben
Koeffizienten, wie die oben erwähnten Versuchsreihen mit Wasser [...] Bei den Werten von ud

ν zwischen
2000 und 3000 findet ein Übergang von dem einen Gesetz zu dem andern statt” (Blasius 1912b, p. 37).
32 “verbesserte Formel von Saph-Schoder” (Blasius 1913, p. 29), see also (Steen and Brutsaert 2017, p.
576).
33 “Ich habe infolgedessen die Reynoldsschen Versuche nachgeprüft und gefunden, daß auch Bleirohre
denselbenWiderstandwie die Saph-SchoderschenMessingrohre haben. Ich vermute demnach bei Reynolds
einen systematischen Fehler der Messungen” (Blasius 1913, p. 14).
34 “…dass jedenfalls kein reines Potenzgesetz in Frage kommt…” (Blasius 1913, p. 21).
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Fig. 2 Blasius’s diagram for the
friction coefficient of laminar
and turbulent pipe flow as a
function of the Reynolds number
(Blasius 1913, Abb. 13)

λ = 0.0024 +
√

k

r
+ 0.3

(ur

ν

)−1/2
,

where k is an empirically determined “absolute roughness” and r the radius of the
pipe (von Mises 1914, p. 75).

Another report that displayed awealth of pipeflowdata as a function of theReynolds
number was published somewhat later by two British engineers from the National
Physical Laboratory (Stanton and Pannell 1914). Apparently unaware of Blasius’
papers, they offered similar diagrams that showed how the data of quite different
experiments with the flow of water and air collapsed when displayed as a function
of the Reynolds number. Among hydraulic engineers, such plots became labeled as
Stanton diagrams (Steen and Brutsaert 2017, p. 580).
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9 The turbulence problem

Transition to turbulence and friction factors that collapsedwhen expressed as a function
of the Reynolds number were not only observed in pipe flow. Blasius also displayed,
for example, data about the skin friction of the flow of water along flat plates pub-
lished in 1908 from towing experiments at a shipbuilding facility (Blasius 1913, p.
39). The pertinence of such experiments for naval architecture was obvious. The rise
of aeronautics before World War I suggested similar investigations in wind tunnels.
“In view of the practical value of the ability to apply this principle [of similarity]
to the prediction of the resistance of aircraft from experiments on models, experi-
mental investigation of the conditions under which similar motions can be produced
under practical conditions becomes of considerable importance”, Stanton and Pan-
nell remarked about the beginning of experiments on inclined planes in 1911 at the
National Physical Laboratory. By adding colouring matter in streams of air and water,
“eddy systems” could be observed at the same Reynolds number (Stanton and Pannell
1914, p. 201). In the wind tunnel of the Göttingen Airship Model Research Institute,
Prandtl and his collaborator Carl Wieselsberger measured the drag of spheres; they
interpreted the sudden drop of the drag coefficient observed earlier in Gustave Eiffel’s
wind tunnel in Paris as a consequence of the transition to turbulence in the boundary
layer of the spheres which happens at a certain Reynolds number (Eckert 2017b, pp.
88–91).

Despite the experimental evidence for the transition to turbulence and the empirical
laws that described fully developed turbulent flow in terms of the Reynolds number,
theory failed to predict critical Reynolds numbers for the onset of turbulence, not to
speak of friction coefficients for fully developed turbulence. The most elaborate “Orr-
Sommerfeld approach” failed to yield criticalReynolds numbers for planeCouette flow
(Eckert 2010). In 1921, Fritz Noether, an applied mathematician and former student
of Sommerfeld, dubbed this riddle in a review article as “the turbulence problem”
(Noether 1921). Five years later, he offered a mathematical proof that this method
was in principle unable to yield a critical limit for the stability of plane flows (Noether
1926).Another theoretical physicist added fuel to thefirewhenhe analysed the stability
of axisymmetric pipe flowby theOrr–Sommerfeld approach: therewas no critical limit
beyond which the laminar Poiseuille profile would become turbulent (Sexl 1927a, b).
Thus, Noether’s verdict that “the turbulence problem is still far from a real solution”
(Noether 1926, p. 232) was not limited to plane flows but seemed valid also for three-
dimensional pipe flow.

While theory was in a deadlock, new pipe flow experiments removed any lingering
doubts about the onset of turbulence beyond a critical Reynolds number. Ludwig
Schiller, an experimental physicist at Leipzig University, spent several research
sojourns in Prandtl’s Göttingen laboratory where he investigated the role of distur-
bances at the entrance of a pipe for the transition to turbulence. By an appropriately
shaped mouth and an inflow that avoided disturbing motions as far as possible, he
was able to maintain laminar flow up to a critical Reynolds number R = 9600. The
lowest critical Reynolds number was attained with an eddying inflow at R = 1160. In
a double-logarithmic plot of the friction factor as a function of the Reynolds number,
the transition to turbulence was displayed by points that followed for small Reynolds
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numbers the Hagen–Poiseuille law ∼ R−1 until they sharply jumped to the Blasius
law for turbulent flow ∼ R−1/4 (Schiller 1921, 1922). In contrast to the theoretically
predicted stability, laminar pipe flow became unstable beyond a critical limit, even
though this limit could be shifted to very large Reynolds numbers.

10 The quest for a “wall law”

With regard to the onset of turbulence, the results of the theorists compared badly
with the amount of mathematical sophistication expended in their effort. Fully devel-
oped turbulence, by contrast, appeared more accessible thanks to the well-established
empirical law of Blasius for pipe flow at high Reynolds numbers. The friction factor
for smooth pipes proportional to R−1/4 served as a lead from which the flow velocity
could be determined as a function of the distance from the wall.

The first who followed this lead were Prandtl in Göttingen and his master pupil
at the Technical University in Aachen, Theodore von Kármán, who became at the
same time Prandtl’s fierce rival in their quest to solve the riddles of turbulence (Eckert
2017a, 2018). Another participant in this quest was Johannes Nikuradse, Prandtl’s
doctoral student in the early 1920s. Nikuradse recalled that Prandtl had presented
on 5 November 1920 at a seminar a “consideration” how the law of Blasius could be
used to derive the turbulent velocity distribution across the pipe’s diameter (Nikuradse
1926, pp. 14–15). According to Nikuradse Prandtl combined Blasius’ law with the
assumption that the shear stress at the wall does not depend on the radius of the pipe.
This argument gave rise to the following derivation:

The pressure loss in a straight pipe (radius r , length l) is related to the shear stress
τ via

Δp = τ · 2rπl

r2π
= 2τ

l

r
.

According to Blasius’ law, the pressure loss for turbulent pipe flow is

Δp = λ · l

r
ρ

u2

2
, with λ = 0.133

(
ud

ν

)−1/4

.

Eliminating Δp from both equations yields

2τ
l

r
= 0.133

(
ud

ν

)−1/4

· l

r
ρ

u2

2
,

or

τ = const.
(ur

ν

)−1/4
ρ

u2

2
.

123



Pipe flow: a gateway to turbulence 271

Dimensional analysis with u = arq then yields

τ ∼ ρν1/4a7/4r (7q−1)/4.

The assumption that the shear stress at thewall does not depend on r demands 7q−1 =
0, or q = 1/7.

Kármánderived the same result independently in an attempt to elaborate a “turbulent
boundary layer theory”. He outlined his concept in a five-page letter to Prandtl and
asked him “whether you have already published your 1/7 law” so that he could refer to
it. He recalled that Prandtl had mentioned this law earlier and therefore was hesitant
to publish it before Prandtl. Furthermore, he was curious whether his derivation was
identical to that of Prandtl.35 “Your derivation of the law of the 7th root basically
agrees with my derivation, but my way of presenting the underlying assumptions is
more physical”, Prandtl answered with regard to the 1/7 law. As far as Kármán’s
“turbulent boundary layer theory” was concerned, Prandtl confessed “that you are
definitively further advanced”. But Prandtl did not want to hurry with the publication
and encouraged Kármán to proceed with his plans. “Ultimately, I can get over it if the
precedence of publication has gone over to friendly territory”.36 So Kármán’s version
appeared first (von Kármán 1921).

Pipe flow experiments thus provided the lead for theory. The law of Blasius from
which the 1/7 law was derived, however, was entirely empirical. When Prandtl was
asked by a colleague about the theoretical derivation of Blasius’ law, Prandtl answered:
“Whoever finds it will become a famousman”.37 In 1924 new pipe flowmeasurements
at the Physikalisch-Technische Reichsanstalt (Jakob and Erk 1924) cast doubt about
the validity of Blasius’ law at very high Reynolds numbers. In a review of these and
other pipe flow measurements, Schiller refrained from his earlier view that Blasius’
law was valid up to R = 200,000 (Schiller 1925, p. 592). Prandtl, too, changed his
mind. He generalized the consideration that had led him from the Blasius law to the
1/7 law in such a way that it yielded the velocity distribution for any empirical law
of pipe flow friction. He concluded that for Reynolds numbers around 200,000 the
velocity profile would be rather ∼ y1/8 than ∼ y1/7. In the same paper, he outlined a
semi-empirical concept which aimed at an expression for the turbulent shear stress in
terms of a length that could be adjusted to the boundary conditions of specific turbulent
flows and compared to themean free path of kinetic gas theory. It became known as the
mixing-length approach (Prandtl 1925; Bodenschatz and Eckert 2011, pp. 54–56). But

35 “Ich möchte Sie jedoch bitten, mir mitzuteilen, ob Sie Ihr 1/7 Gesetz bereits veröffentlicht haben, so
dass ich mich darauf beziehen kann, oder dass Sie es demnächst veröffentlichen wollen. Ferner ist meine
Ableitung mit Ihrer Ableitung identisch oder nicht?” Kármán to Prandtl, 12 February 1921. GOAR 3684.
36 “Ihre Ausführungen über das Gesetz der 7. Wurzel decken sich dem Inhalte nach mit meiner Ableitung,
doch klingt meine Formulierung der Axiome sehr viel physikalischer […] In der allgemeinen Formulierung
der ‘turbulentenGrenzschichttheorie’ sindSie entschiedenweiter als ich […] Ichwerde dannhinterher schon
sehen, wie ich mit meiner anderen Herleitung noch zu meinem Recht komme und werde es schliesslich
verschmerzen können, wenn die publizistische Priorität in befreundeten Besitz übergegangen ist”. Prandtl
to Kármán, 16 February 1921. MPGA, Abt. III, Rep. 61, Nr. 792.
37 “Sie fragen nach der theoretischen Ableitung des Blasius’schenWiderstandsgesetzes für Rohre. Wer die
findet, der wird dadurch ein berühmter Mann!” Prandtl to Birnbaum, 7 June 1923, MPGA, Abt. III, Rep.
61, Nr. 137.
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before he ventured to derive a new formula for the velocity distribution of turbulent
pipe flow he solicited new experiments “in smooth and rough pipes at larger Reynolds
numbers”, as he confided to Kármán. This was one part of a longer “menu” of his
experimental research program on turbulence.38

Prandtl’s expert for pipe flowmeasurements was his former doctoral student Johann
Nikuradse. The experiments with smooth pipes at large Reynolds numbers were per-
formed in 1928/1929 at Prandtl’s new Kaiser Wilhelm Institute for Fluid Mechanics
(Kaiser-Wilhelm-Institut für Strömungsforschung, founded in 1925 in Göttingen next
to the aeronautical model research institute). Nikuradse presented his results in a pre-
liminary report in June 1929 at a conference in Kármán’s Aachen institute (Nikuradse
1930). Kármán regarded Nikuradse’s experiments as a confirmation of his recent the-
oretical results that suggested a logarithmic velocity distribution and a logarithmic
formula for the friction factor (von Kármán 1930, 1931). Prandtl had arrived even ear-
lier at a logarithmic velocity distribution—and dismissed it again because it resulted
in a singularity at the wall. But in view of Nikuradse’s measurements he became con-
verted to the logarithmic laws. The singularity was no longer an argument against the
logarithmic velocity distribution because, in Nikuradse’s words, “a zone immediately
adjacent to the wall, where the flow is laminar, must of course be excluded”.39

Despite Kármán’s priority, however, Prandtl was often credited with the discovery
of the logarithmic wall laws—to the annoyance of Kármán. The quest for a “universal
law of turbulence” had turned into a “first-class rivalry” (von Kármán 1967, pp. 135–
138). But disregarding differences of the theoretical approaches and interpretations
of their achievements—the basic lesson was the same: at higher Reynolds numbers
Blasius’ law lost its validity—and so did the theoretical derivations based on it. The
“universal velocity distribution” was logarithmic (Fig. 3): ϕ = a + b log η, where
η = u∗y/ν is a dimensionless wall distance and ϕ = u/u∗ is a dimensionless velocity,
with u∗ = √

τ0/ρ as the “friction velocity” and τ0 the shear stress at the wall. a and
b are constants. The friction law was

1√
λ

= A + B log(Re
√

λ),

whereλ is the friction factor in theDarcy–Weisbach formula, Re = ūd/ν theReynolds
number with ū the mean velocity averaged over the diameter d and ν the kinematic
viscosity; A and B are constants (Nikuradse 1932, pp. 15–17, 29–32).

Unlike the derivation of the y1/7-formula from Blasius’ law by means of dimen-
sional analysis, the elaboration of the “universal” wall law involved more fundamental
theoretical considerations based on Prandtl’s mixing-length concept and Kármán’s
similarity assumptions (Darrigol 2005, Chapter 7.3.9; Bodenschatz and Eckert 2011,
Chapter 2.6; Leonard and Peters 2011, Chapter 3.2).

38 “Die Geschwindigkeitsverteilungen in glatten und rauhen Rohren sollen mit grösseren Reynoldsschen
Zahlen wiederholt werden. Über die Vorgänge an Wandvorsprüngen, Rauhigkeiten usw. sollen Einzelun-
tersuchungen gemacht werden. Die Vorgänge bei der Entstehung der Wirbel aus der Grenzschicht bei der
Anfahrt der Körper wird [sic] studiert…Das ist ein langer Speisezettel…” Prandtl to Kármán, 26 July 1928.
MPGA, Abt. III, Rep. 61, Nr. 792.
39 “eine Zone unmittelbar an der Wand, wo laminare Strömung herrscht, muss natürlich ausgeschlossen
bleiben” (Nikuradse 1932, p. 26).
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Fig. 3 Nikuradse’s diagram for the wall law, displayed as a semi-logarithmic plot of the dimensionless
velocity as a function of the dimensionless wall distance (Nikuradse 1932, Fig. 24)

Nikuradse also performed a series of pipe flow experiments in order to measure the
effect of coarse and fine roughnesses for all Reynolds numbers (Nikuradse 1933). As
it turned out, even the extension to rough pipes was amenable to theoretical consider-
ations (Figs. 4, 5). Prandtl regarded these results as the successful conclusion of the
development sparked by Blasius’ law 20years ago. “The whole pipe flow problem has
thus found a very comprehensive solution by combining a few empirical values with
theoretical conclusions”, he summarized this achievement in 1933 in a review article
on “Recent Results of Turbulence Research”.40

Kármán, too, regarded the quest for the universal wall law as concluded. He moved
by this time permanently to the USA and reviewed the achieved results under the
title “Turbulence and Skin Friction” in the Journal of the Aeronautical Sciences. In
Kármán’s version, a constant was introduced that was regarded more universal than
those in Prandtl’s theory (von Kármán 1934, p. 10). It became widely known in the
theory of turbulence as Kármán’s constant.

The “comprehensive solution” achieved between 1930 and 1934 by Kármán, Niku-
radse and Prandtl became the standard for subsequent presentations of turbulent pipe
flow—with slightly different emphasis concerning the universality and the underlying
assumptions. Prandtl’s review in the Zeitschrift des Vereines Deutscher Ingenieure
was widely circulated in English translation by the National Advisory Committee for
Aeronautics (NACA) of the USA as aNACA Technical Memorandum (Prandtl 1933b).
In 1945, Hunter Rouse provided a concise elaboration of the “Kármán-Prandtl veloc-
ity equations” and the “Kármán-Prandtl resistance equations” for turbulent pipe flow

40 “Das ganze Rohrproblem hat hiermit auf Grund einer Verknüpfung von wenigen Erfahrungswerten mit
theoretischen Schlüssen eine sehr umfassende Lösung gefunden” (Prandtl 1933a, p. 112).
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Fig. 4 Nikuradse’s diagram for the friction factor as a function of the Reynolds number and the roughness
number defined by r/k, where k is the absolute size of the grains that roughened the inner surface of the
pipe with radius r (Nikuradse 1933, Fig. 9)

Fig. 5 With increasing roughness, the friction factor was found to become independent of the Reynolds
number: 1√

λ
= 1.74 + 2 log r

k (Nikuradse 1933, Fig. 11)

in his Elementary Mechanics of Fluids—a textbook classic for several decades after
WW II (Rouse 1946, Sec. 33 and 34).

123



Pipe flow: a gateway to turbulence 275

11 Later developments

Yet the story does not end with the Kármán–Nikuradse–Prandtl solution. For practi-
cal purposes, Nikuradse’s uniformly roughened pipes have to be distinguished from
industrially produced pipes with randomly sized bumps protruding from the inner sur-
face. These and other qualifications resulted in a variety of equations and charts for
the determination of turbulent pipe flow friction factors (“Colebrook-White equation”,
“Moody chart”, etc.). Even more than 300years after the discharge measurements of
the conduits at Versailles, turbulent pipe flow remained a major engineering concern
(Rennels and Hudson 2012, Chapter 8).

From a more fundamental perspective, the Kármán–Nikuradse–Prandtl solution
may be regarded rather as a beginning than a conclusion. It turned pipe flow into a
major challenge for turbulence research. The rise of statistical theories of turbulence
in the 1930s directed the interest of researchers to the study of turbulent velocity
fluctuations which had become amenable to experimental investigation by hot wire
measurements inwind tunnels (Eckert 2008). “The assumption of similar flow patterns
is identical with the assumption of constant correlation between the components of
the velocity fluctuations”, Kármán pointed to the significance of such measurements
from which he hoped to corroborate his derivation of the wall law (von Kármán
1934, p. 8). While his collaborator at the Guggenheim Aeronautical Laboratory of the
California Institute ofTechnology (GALCIT), FrankWattendorf, publishedfirst results
of suchmeasurements of turbulent air flow in a rectangular channel (Wattendorf 1936),
Kármán further elaborated the statistical theory of turbulence so that also the energy
balance of turbulent channel flow could be computed from the velocity fluctuations
(von Kármán 1937).

For a number of years, the investigation of wind tunnel turbulence was given pref-
erence because of its obvious significance for aeronautical applications, but channel
and pipe flow was not entirely ignored. In 1949, John Laufer, another collaborator at
the GALCIT, reviewed hot-wire measurements from a “two-dimensional wind tun-
nel” where the air was blown through a 23-feet-long rectangular channel with a cross
section of an aspect ratio 12:1. They demonstrated that the hot-wire technique was
well enough developed to provide consistent results for the velocity fluctuations across
the turbulent flow field (Laufer 1950). Subsequently, Laufer joined the aerodynam-
ics group at the National Bureau of Standards under Hugh Dryden where he applied
the hot-wire technique on the air flow in a 16-foot-long seamless brass tube with an
inner diameter of 9.72 inches at two Reynolds numbers, 50,000 and 500,000, corre-
sponding to flow speeds of 10 and 100 feet per second. The hot-wire probe allowed
precise measurements of velocity fluctuations parallel and perpendicular to the pipe
from which the pertinent quantities of the statistical theory of turbulence could be
determined (Reynolds stresses, correlation functions, spectrum, turbulent energy pro-
duction, diffusion and dissipation). It was found, for example, that the edge of the
so-called laminar sublayer (which separates the wall surface from the turbulent flow
field) played a major role for the transfer of kinetic energy into the turbulent region.
These and other findings nourished the view that fully developed turbulent air flow
in large pipes provided “a very useful medium in which to study the structure of
turbulence in shear flow” (Laufer 1954, p. 18).
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Henceforth, pipe flow was regarded more generally as a gateway to the study of
more fundamental problems of fully developed turbulence. In 1961, an international
conference in Marseille reviewed the state of the art and the perspectives for future
research on turbulence; Laufer’s measurements were considered as ground-breaking
(Hinze 1962, p. 130). Throughout the subsequent decades, pipe flow remained a pre-
ferred subject on the agenda of turbulence research—from a theoretical vantage point
as well as experimentally (Kim 2012). “A critical review of the literature relative to
turbulent shear flow would be quite voluminous”, the authors of a paper on “Turbulent
Flow in Smooth and Rough Pipes” introduced their study already 10years after the
Marseille conference (Townes et al. 1972, p. 353). The facilities for turbulent pipe
flow investigations also assumed larger dimensions and enabled greater spatial res-
olution. In the aforementioned study, measurements were reported from air flows in
a 70-feet-long and 11.883-inch-wide pipe where the test section could be traversed
by the hot-wire probe in movements as small as 0.001 inches (Townes et al. 1972, p.
354).

In the 1990s, a new facility at the Department of Mechanical and Aerospace Engi-
neering of Princeton University employed high-pressure air as a working fluid in order
to extend the range of Reynolds numbers by an order of magnitude beyond those
of Nikuradse’s measurements from 1932. The results from the Princeton Superpipe,
as it became famous among turbulence researchers, cast doubt about the previously
assumed scaling laws for fully developed turbulent flow in smooth pipes. They sug-
gested a new friction factor relation—similar to Prandtl’s formula, but with different
constants and an additional term for the near-wall velocity profile (Zagarola and Smits
1998). Yet this did not exhaust the desire for new pipe flow facilities. When the Ital-
ian Air Force in 2006 presented to the University of Bologna a subterranean tunnel
complex used during World War II for airplane construction, the tunnels became the
site for a research laboratory dedicated to precision measurements of turbulent pipe
flows at high Reynolds numbers, the Centre for International Cooperation in Long
Pipe Experiments, CICLoPE (Talamelli et al. 2014). Another recent addition to the
list of pipe flow facilities for investigating fully developed turbulence is the Cottbus
large pipe test facility at Brandenburg University of Technology Cottbus-Senftenberg,
CoLaPipe (König et al. 2014).

The rise of computational fluid dynamics in the late twentieth century further
sparked research on turbulence. With the advent of powerful computers, direct numer-
ical simulation (DNS) matured far enough to compute turbulent pipe flows at high
Reynolds numbers. By 2008, a DNS computation of turbulent pipe flow was con-
ducted on 6.3 · 108 grid points at a Reynolds number of 44,000. Such large-scale
computations enable comparison with theoretical predictions and experimental mea-
surements such as from the Princeton Superpipe (Wu and Moin 2008).

These recent developments underscore the continuity of pipe flow investigations up
to the present time as a gateway to the study of fully developed turbulence. The same
continuity may be observed with investigations of the onset of turbulence. Schiller’s
experiments on the “turbulence problem” in the 1920s (see Sect. 9) had clearly demon-
strated that transition to turbulence in pipe flow could not be fixed at a critical Reynolds
number without taking into account the conditions at the entrance of the pipe. In the
early 1950s, Werner Pfenninger, an expert on boundary layer research at the Northrop
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Corporation Aircraft Division, conducted a number of experiments in order to explore
the limits of laminar air flow in smooth pipes. Inlet disturbances were reduced by
damping screens mounted ahead of a long nozzle that served as the entrance to the test
tube. In order to minimize external disturbances, the test tube was set up in a bomb
shelter. Under such conditions, laminar air flow could be maintained up to Reynolds
numbers of 100,000 (Pfenninger 1961). Other high-precision experiments on the air
flow in smooth pipes focused on the transition zone where “slugs” and “puffs” sig-
nalled an intermittently turbulent flow (Wygnanski and Champagne 1973). Like fully
developed turbulence, the transition to turbulence in pipe flow remained a persistent
challenge—both from an experimental and from a theoretical perspective (Darbyshire
and Mullin 1995; Kerswell 2005; Eckhardt et al. 2007; Mullin 2011; Eckhardt 2018).

12 Conclusion

As pointed out in the Introduction, pipe flow was not the only gateway to turbulence.
Other incentives came from open channel flow and from the drag of bodies such as
projectiles, vessels in towing channels or airship models in wind tunnels. The “wall
law” applied to all kinds of “wall-bounded flows”. Although such parlance became
shop talk among turbulence researchers only in the twentieth century, it was not excep-
tional for duBuat, Prony, Hagen, Darcy, Bazin and their kind to draw parallels between
pipe and channel flow. The focus on pipe flow in this study, therefore, is not meant
to exclude other flows as less important. Yet pipe flow deserves a particular scrutiny.
Its history extends further back in time than that of most other subjects of scientific
inquiry. The means and methods of experimental measurements and theoretical anal-
ysis have changed over the centuries, but the basic questions remained the same:What
are the physical mechanisms that cause the flow retardation? How are the involved
quantities (pipe diameter, pipe length, flow velocity, surface roughness, etc.) related to
another?What is the structure of flow within the pipe?With these questions, pipe flow
became a gateway to research on turbulence—even before turbulence was singled out
as the culprit for the unsolved problems.

Hence, pipe flow serves also as a guide to the roots from which turbulence research
developed before it was conducted under this label. The conduits at Versailles, the
water supply of cities from elevated reservoirs, as well as the gas flow in pipes used
for mine air, blast furnaces or gas light remind us of the social context behind such
studies from the era of the “Sun King” through the Industrial Revolution to the modern
period. Investigations on turbulent flow in newly established research facilities in the
twentieth century tend to obscure the utterly practical origins of turbulence research—
even though the rise of aeronautics added to the practical context of pipe flow studies
which were now often conducted with the hot-wire technology developed for wind
tunnel measurements.

From an epistemological perspective, pipe flow investigations, like most researches
on turbulence, elude a characterization as mere engineering knowledge. Nor do they
fit well with established views of scientific development such as Kuhn’s structure of
scientific revolutions. From an historiographic vantage point, the close ties between
science and engineering as observedwith pipe flow studies over the centuries call for an
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amalgamation of the history of science with the history of technology. Like the history
of pipe flow, the history of turbulence at large may not be told from one of these two
fields without taking into account the other. Turbulence, even in its specific guise as
turbulent pipe flow, is not only an unsolved problem between physics and engineering,
but also a challenge for the history of science and technology that deserves closer study.
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