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Abstract
We report on an unpublished and previously unknown manuscript of John von Neu-
mann and contextualize it within the development of the theory of shock waves
and detonations during the nineteenth and twentieth centuries. Von Neumann studies
bombs comprising a primary explosive charge along with explosive booster material.
His goal is to calculate the minimal amount of booster needed to create a sustain-
able detonation, presumably because booster material is often more expensive and
more volatile. In service of this goal, he formulates and analyzes a partial differential
equation-based model describing a moving shock wave at the interface of detonated
and undetonated material. We provide a complete transcription of von Neumann’s
work and give our own accompanying explanations and analyses, including the cor-
rection of two small errors in his calculations. Today, detonations are typicallymodeled
using a combination of experimental results and numerical simulations particular to
the shape and materials of the explosive, as the complex three dimensional dynamics
of detonations are analytically intractable. Although von Neumann’s manuscript will
not revolutionize our modern understanding of detonations, the document is a valuable
historical record of the state of hydrodynamics research during and afterWorldWar II.

1 Introduction

Thehistory of shockwave theory hearkens back, at least, to Siméon-Denis Poisson’s “A
Paper on the Theory of Sound,” published in 1808 (Poisson 1808, 1998; Salas 2007).
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In this work, Poisson, who himself built on the theories of Joseph-Louis Lagrange,
used physical laws to formulate a differential equation describing the vibrations of
air molecules and the resulting transmission of sound waves through the air. Poisson
demonstrated that for a one-dimensional spatial domain, the solution to his model
consists of wave-like profiles of the air velocity v(x) satisfying the implicit expression
v = f [x − (a + v)t], where a is the speed of sound and f is an arbitrary function.

In 1848, George Gabriel Stokes’ “On a Difficulty in the Theory of Sound” picked
up on the threads of Poisson’s results (Stokes 1998). Stokes demonstrated that if f is
taken as a sine wave, v(x)will develop points of infinite slope in finite time.Moreover,
after that time, the solution cannot be written as an algebraic expression of the form
familiar in Stokes’ era. Stokes dealt with the problem of infinite slope by proposing a
“jump” in the solution, which we now know as a shock. Stokes struggled with the idea
of this new type of solution, ultimately disclosing to the reader, “It seems tome to be of
the utmost importance, in considering the application of partial differential equations
to physical, and even to geometric problems, to contemplate functions apart from all
ideas of algebraical expression.” Throughout his life, Stokes vacillated on whether or
not he believed his own hypothesis regarding shocks, ultimately including a disclaimer
in his collected works (Salas 2007). One of Stokes’ principal concerns was that the
mathematical model failed to preserve conservation of energy in the system.

Belief in the existence of shocks found firmer scientific footing with developments
in the field of thermodynamics. In 1870,WilliamRankine proposed “jump conditions”
at shocks which did, in fact, enforce conservation of energy. An insight that followed
was that the thermodynamic process within the shock must be non-adiabatic. In 1885,
Pierre-Henri Hugoniot demonstrated that in order for the system to conserve energy,
there must be a jump in entropy across the shock (Hugoniot 1889, 1998). The two
aforementioned observations led to the so-called Rankine–Hugoniot (RH) equations,
which describe the conservation of mass, momentum, and energy across the shock,
and which remain fundamental to understanding the properties of the discontinuity.

Our discussion thus far has drawn heavily from the history outlined in Salas
(2007). The works of Poisson, Stokes, and Hugoniot that we have cited are avail-
able in a compilation of republished historical papers key to the development of
shock wave theory (Johnson and Chéret 1998), which additionally contains relevant
works of Samuel Earnshaw,Georg FriedrichBernhardRiemann, LordRayleigh, Geof-
frey Ingram Taylor, Hans Bethe, and Hermann Weyl. The valuable work of Clifford
Truesdell contextualizes Stokes’ oeuvre and gives a broad view of challenges in the
development of shock wave theory and thermodynamics Truesdell (1980, 1984).

Towards the end of the nineteenth century, the mathematical research on shock
waves found application to explosions. Simple models of explosive shock waves often
mention the eponymousChapman–Jouget (CJ) state, which is the hypothesized state of
the chemical products behind the reaction zone of a detonation. In this zone, products
move at the minimum possible velocity greater than the speed of sound in the deto-
nation medium in order to propagate the wave forward without interference from the
shock’s rarefaction waves (Dremin 2012; Guo et al. 2016; Chéret 1999). Also known
as the “zero-reaction zone” model, CJ theory implicitly supposes that the transforma-
tion of explosive materials into products via a shock wave is instantaneous (Dremin
2012).
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Proposed by Chapman (1899) and built upon by Jouguet (1905, 1906), the hypoth-
esis coalesced into the first theory of detonations at the start of the twentieth century
(Chéret 1999). While the theory is useful in predicting detonation states, it is also lim-
ited in its application due to its breakdown in the case of non-ideal gases (Keshavarz
and Warey 2007). Despite ample experimental evidence that the law was far from
universal, mathematicians and physicists seeking to build generalized models of det-
onations during this time assumed that CJ theory was not just locally true, as was the
original context of its proposal, but useful in determining the state of a flow at any
point downstream of the shock (Chéret 1999).

One of the most ambitious detonation modelers was Hungarian-American John
von Neumann, a titan of scientific discovery who made numerous and influential
contributions to mathematics, physics, and computer science during the first half of
the twentieth century.VonNeumann’s publishedworks comprise six volumes on topics
ranging from functional analysis to game theory to linear programming. During and
after his involvement in the Manhattan Project, von Neumann published ten papers
that use analytical and numerical methods to investigate the hydrodynamics of shock
waves and detonations (von Neumann 1963a, c, d, e, f, g, h, i, j, k). We summarize these
in Table 1.

The next major leap in detonation theory was driven by necessity during
World War II. Between 1940 and 1943, Yakov Borisovich Zel’dovich, John von Neu-
mann and Werner Döring independently contributed to the development of a model
of detonation that would come to be known, by their initials, as ZND theory (Dremin
2012). Although ZND theory uses the hypothesized CJ state, it assumes a finite (rather
than infinitesimally thin) reaction zone that follows the shockwave. In this zone, mate-
rials are compressed before they undergo chemical transformation (Dremin 2012).

In 2017, a private collector shared with us an unpublished, handwritten manuscript
of John von Neumann’s (von Neumann unpublished). We present a transcription and
analysis of this previously unknown and unstudied work and contextualize it within
the history of shock waves and detonations as described above. The transcription is
a faithful reproduction of von Neumann’s writing, with exception of several commas
that have been excluded for readability.

In the manuscript (von Neumann unpublished), von Neumann studies bombs com-
prising a primary explosive charge along with explosive booster material. His goal is
to calculate the minimal amount of booster needed to create a sustainable detonation,
presumably because booster material is often more expensive and more volatile. In
service of this goal, he formulates and analyzes a partial differential equation-based
model describing a moving shock wave at the interface of detonated and undetonated
material. Section 2 provides an overview of the manuscript’s origin and contents. In
Sect. 3, we present each section of von Neumann (unpublished) interspersed with
our own analyses and explanations, including the correction of two small errors in
von Neumann’s work. Finally, in Sect. 4, we conclude by situating (von Neumann
unpublished) in the context of other work of the era, and hypothesizing the motivation
behind themanuscript and the possible reasons it was never published.We suspect that
the document was written during World War II, around the same time as (von Neu-
mann 1963j, k), both of which reference a pending publication relating to boostered
detonations that never materialized (or was never declassified).
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Table 1 John von Neumann’s previously known research on shock waves and detonations, listed in chrono-
logical order

Title Year Description

Theory of detonation waves (von
Neumann 1963j)

1942 Analytical treatment of detonation waves
in one dimension and analysis of when
the CJ hypothesis cannot be assumed

Theory of shock waves (von Neumann
1963k)

1943 Analytical treatment of shocks and
detonations, as well as discussion of
their classifications depending on
reaction types

Oblique reflection of shock waves (von
Neumann 1963f)

1943 Pressure considerations based on theory
and experimentation for the reflection
of shocks waves colliding with oblique
obstacles

Proposal and analysis of a new numerical
method for the treatment of
hydrodynamical shock problems (von
Neumann 1963h)

1944 Numerical treatment of the differential
equations governing a flow “ignoring
the possibility of shocks”

Refraction, intersection, and reflection of
shock waves (von Neumann 1963i)

1945 Interaction of shock waves in two
dimensions

The point source solution (von Neumann
1963g)

1947 Analytical treatment of shock waves
from a point source with infinitely high
pressure in three dimensions

The mach effect and height of burst (von
Neumann 1963d)

1947 Discussion of the interference of shocks
waves from a spherical detonation
source reflecting on the ground

Discussion on the existence and
uniqueness or multiplicity of solutions
of the aerodynamical equations (von
Neumann 1963c)

1949 Lecture discussing the theory behind
one-dimensional shocks and the
extreme difficulty in finding acceptable
physical and mathematical principles
to understand these occurrences in
higher dimensions

A method for the numerical calculation
of hydrodynamic shocks (von
Neumann 1963e)

1949 Numerical treatment of shocks in a
one-dimensional flow with a finite
reaction zone

Blast wave calculation (von Neumann
1963a)

1955 Numerical treatment of a spherically
symmetric point source shock wave in
an ideal gas

Because much of this research appeared in technical reports that are difficult to obtain in original form, we
cite a more accessible source, namely, the version of each paper published in a posthumous compilation of
von Neumann’s works (von Neumann 1963b)

2 Overview of themanuscript

Von Neumann’s manuscript (von Neumann unpublished) was obtained by a private
collector through a rare book dealer, who authenticated the manuscript. The document
was part of a larger archive of working manuscripts, reports, notebooks and letters
produced by von Neumann and his collaborator Raymond J. Seeger, who originally
compiled the archive. The manuscript we investigate, (von Neumann unpublished), is
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Fig. 1 Top portion of the first page of von Neumann (unpublished) in von Neumann’s handwriting. Here, he
begins by stating several assumptions and defining certain quantities in his detonation model. See Sect. 3.1
for a typed transcription

Fig. 2 Image of the unrelated section of the manuscript in Seeger’s handwriting. We did not study this
portion of the document

not dated. The top right corner of the first page contains von Neumann’s handwritten
initials; see Fig. 1. In the pages following vonNeumann’s primarymanuscript, there are
additional pages entitled “StableEquilibriumof aPlate orMembrane under anExternal
Pressure f ” very likelywritten by Seeger; see Fig. 2.We did not investigate these pages
and restrict our attention to the work confidently attributable to von Neumann. Based
on the complexity of operations between steps in von Neumann (unpublished), we
suspect this document was a write-up of other work, rather than the original derivation.

Von Neumann aims to calculate the ratio of booster material to primary charge nec-
essary to create an operational bomb. In this model, the more powerful (but typically
more expensive and more volatile) booster material helps create a successful detona-
tion in the primary charge. Von Neumann assumes the detonation process creates an
ideal gas with uniform composition as the shock wave progresses through the solid
explosive material. He further assumes that the isentropic reaction reaches thermody-
namic equilibrium instantaneously with a non-adiabatic jump discontinuity at the line
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of the shock wave. Rather than implement a discontinuity in liberated energy between
the booster and main charge, von Neumann simplifies by modeling the energy output
moving away from the center of the explosive as a monotonically decreasing function.
The solution von Neumann reaches is meant to describe a boostered detonation along
a line, cylinder, or sphere, corresponding respectively to dimensions q = 1, 2, 3.

Table 2 summarizes the variables and parameters used in von Neumann (unpub-
lished). Figure 3 provides a schematic of the boostered detonations under consider-
ation. In the following section, we present a transcription of all 19 sections of von
Neumann’s manuscript (von Neumann unpublished), along with our accompanying
analyses. The transcription is von Neumann’s wording verbatim, with the exception
of erroneous commas that we have excluded to improve readability.

3 Manuscript transcription and analysis

3.1 Sec. 1 transcription

1. Consider a solid explosive of specific volume v0, which explodes, liberating energy
e0 per unit mass and transforms it into gas that we assume to be ideal, of adiabatic
exponent γ .

Let p, v be pressure and specific volume of this gas, D the detonation velocity,
V the gas velocity behind the detonation front. We treat the explosive reaction as
instantaneous.

Then the Rankine-Hugoniot equations are:

√
p

v0 − v
= D

v0
= D − V

v
(1)

1

2
p(v0 − v) = 1

γ − 1
pv − e0. (2)

(2) is solved by

v = γ − 1

γ + 1
v0 + 2(γ − 1)

γ + 1
e0 p−1. (3)

Now (1) gives

D =
√

γ + 1

2
v0

p√
p − (γ−1)e0

v0

(4)

V =
√

2

γ + 1
v0

√
p − (γ − 1)e0

v0
(5)

Thus p is indeterminate, but it determines v, D, V by (3), (4), (5).
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Table 2 All variables and parameters in von Neumann (unpublished)

Symbol Description Symbol Description

vo Specific volume of the solid v Specific volume of the gas

eo, e Energy emitted per unit mass in the
explosion

p Pressure of the gas

V Gas velocity behind the detonation
front

D Velocity of the detonation front

γ Adiabatic exponent of the gas
(γ = cp

cv
where cp is the specific

heat capacity at constant pressure
and cv is the specific heat capacity
at constant volume)

ps , vs , Ds , Vs Values of pressure, specific volume,
detonation velocity and gas
velocity behind the detonation front
when the detonation velocity is at
the minimum characterized by the
CJ hypothesis

w the “sluggishness” of the explosive, a
multiplier of stationary pressure ps
that ensures p and D are greater
than the stationary value; w > 1
and w(n)

a, n Unknown values in the power law
describing the energy of the
explosive at point x ;
e0(x) = ax−2n

q Dimension of the detonation; q =1,2
or 3, corresponding to a line,
cylinder or sphere

x , x ′ Position of a gas particle, where
x ′ < x ; initially, this can mean any
x but when a dependent variable of
X becomes the position of a
particle at t = 0

Sq Surface area of the unit sphere in
q-dimensional space

ea(x) Average energy concentration per
unit mass up to point x

b ea (x)
e(x)

; b is the ratio of booster plus
charge and b − 1 is the amount of
booster

x̄(t) position of detonation front at time t

k pvγ X(x, t) Position at time t of the gas particle
that was at x at t = 0 (Lagrangian
coordinate)

A For ease of notation;
2w−1

w
1

γ+1 (
γ+w−1−1

γ+1 )γ

B For ease of notation; γ+w−1−1
γ+1

z x
x̄ f (z) An unknown function of position;

part of the solution to the
Lagrangian differential equation
Xt tXx = −vpx

C Undetermined multiplier of the
boundary condition as z → ∞

μ Undetermined multiplier of the
function g(vz)

g(vz) Change of function from f (z) P For ease of notation; (γ−1)q−2n
(γ−1)q+2

s Change of variable from z to ex Q for ease of notation; 2 (γ+n)q−2n
(γ−1)q+2

α For ease of notation;√
2w−1
w

1
(n+1)

√
2(γ 2−1)a
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Fig. 3 Explosive devices that von Neumann studies in von Neumann (unpublished). a Boostered explosive
for a one-dimensional device (q = 1), a cylindrical device (q = 2), and a spherical device (q = 3). b
Schematic of the detonation process. In this schematic, we move into the reference frame of the detonation
front. In panel (a), the front moves to the right for q = 1, 2 and radially outward for q = 3. In (b); however,
the front is stationary by design. In Region I, the charges and, eventually, exterior gas, contact the detonation
front at supersonic velocity. In Region II, the detonation front, the material compresses and decelerates to
subsonic speed. Region III consists of exploded material, now in a gaseous phase and moving at sonic speed

3.2 Sec. 1 discussion

Eq. (1) is derived from the RH equation for conservation of mass and the Rayleigh
line for solid explosives, and (2) is derived from the RH equation for conservation of
energy, also known as the Hugoniot equation (Le Roy 2000).

In this section, von Neumann’s derivation requires that p = p1 − p0 in (1) and
p = p1 + p0 in (2), where p1 is the pressure ahead of the shock wave and p0 is the
pressure behind. Thus, von Neumann seems to make an unstated assumption that p0
is negligible. In von Neumann (1963g), he explicitly states that the difference between
p1 and p0 is so great that p0 is negligible, so he assumes p0 is zero. However, the
model in von Neumann (1963g) assumes a gaseous point source, such that “as the
original high pressure sphere shrinks to a point, the original pressure will have to rise
to infinity.” Von Neumann does not make this assumption in any of his other published
works (von Neumann 1963b), and this assumption is not made in detonation models
today.

Von Neumann follows the same initial steps in von Neumann (unpublished) as he
does in von Neumann (1963g), solving for specific volume, detonation velocity, and
gas velocity. Eqs. (3),(4), and (5) in von Neumann (unpublished) are analogous to
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(2.9′), (2.10′) and (2.11′) in von Neumann (1963g) (with the latter expressed here
using the notation of von Neumann (unpublished)):

Expressions from von Neumann (unpublished) Expressions from von Neumann
(1963g)

v = γ−1
γ+1v0 + 2(γ−1)

γ+1 eo p−1 v = γ−1
γ+1v0

D =
√

γ+1
2 v0

p√
p− (γ−1)e0

v0

D =
√

γ+1
2 v0 p

V =
√

2
γ+1v0 p

√
p − (γ−1)e0

v0
V =

√
2

γ+1v0 p

These expressions differ because in von Neumann (unpublished), von Neumann
includes the term e0 in (2). He eliminates this term in von Neumann (1963g) because
e0 = p0v0/(γ − 1) and p0 is negligible. Perhaps e0 is included in von Neumann
(unpublished) because it describes the energy of a solid, rather than a gas as in von
Neumann (1963g), so gas laws do not apply.

Following this calculation, von Neumann (unpublished) and von Neumann (1963g)
diverge. The latter relies on an energetic calculation that takes into account thermal
and kinetic energy, while the former uses a power law to describe energetic output;
see Sect. 3.5.

3.3 Sec. 2–3 transcription

2. According to Chapman and Jouguet, the stationary detonation is characterized by
that value of p, which renders D a minimum. By (4) this occurs when

p = 2(γ − 1)e0
v0

.

Affixing an index s to all quantities referring to this state, we now have:

ps = 2(γ − 1)e0
v0

, (6)

vs = γ

γ + 1
v0, (7)

Ds =
√
2(γ 2 − 1)e0, (8)

Vs =
√
2(γ − 1)e0

γ + 1
. (9)
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3. In what follows we shall study detonation processes, in which p and D are higher
than the Chapman-Jouguet (stationary) value. We put therefore

p = w
2(γ − 1)e0

v0
= wps, w > 1. (10)

Then (3), (4), (5) give

v = γ + w−1 − 1

γ + 1
v0 = γ + w−1 − 1

γ
vs, (11)

D = w√
2w − 1

√
2(γ 2 − 1)e0 = w√

2w − 1
Ds, (12)

V = √
2w − 1

√
2(γ − 1)e0

γ + 1
= √

2w − 1Vs . (13)

3.4 Sec. 2–3 discussion

The RH Eqs. (1) and (2) are underdetermined. Von Neumann uses the CJ hypothesis
to find the value of pressure ps corresponding to the minimum detonation velocity Ds

necessary to prevent deflagration (collapse) of the detonation. The solutions for ps

and Ds appear in (6) and (8). Given these solutions, he further solves for the values of
vs and Vs , given in (7) and (9). Finally, von Neumann introduces w > 1, defined by
(10). Here, w is a convenience of notation meant to convey that the wave propagates
faster than the CJ value. Eqs. (10–13) restate the values of ps , Ds , vs , and Vs using
this new notation.

3.5 Sec. 4–7 transcription

4. Consider now an explosive of variable composition. Using the point at which the
detonation begins as origin, and denoting the distance from it by x , we assume that
the power of the explosive decreases as x increases.

The purpose of this model is to describe the mechanism of a booster. Indeed, a
charge with booster consists of two zones: The inner one, x < x0, being occupied
by a more powerful explosive than the outer one, x > x0. (These two explosives are
the “booster” and the “main charge.”) We replace these two zones by a continuous
decrease, mainly for the sake of mathematical convenience: It will appear, that for a
certain power-law of decrease the differential equations of the problem are amenable
to numerical treatment.

In order to avoid complications which are unconnected with our main problem, we
assume that the density of the explosive is the same everywhere. We assume further
that the gas resulting from the explosion is always ideal and has the same adiabatic
exponent γ everywhere.
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Thus the only quantity which can be used to express the power of the explosive is
the energy of the explosion e0. Therefore e0 must be a monotone decreasing function
of x . As mentioned above, we assume a power-law:

e0 = e0(x) = ax−2n, n > 0. (14)

5. We can treat this problem in q = 1, 2, 3 dimensions, corresponding to plane, cylin-
drical, spherical detonation waves, respectively. Our considerations are best carried
out without specializing this q.
6. When an explosive of this nature detonates, it is to be expected that the detonation
will be more powerful at any particular place x , than would correspond to a homo-
geneous explosive, having everywhere the composition that exists at x . This must be
so, since the explosive at x is backed, and hence “boosted”, by the more powerful
explosive at x ′ < x . Hence we assume

p = wps, w > 1. (15)

Owing to the similitude within the entire arrangement, we may expect that

w is independent of x . (16)

Accordingly we make this assumption.
7. In the subsequent paragraphs, we will determine the stationary detonation process
which is compatible with these assumptions. It will appear that for a suitable concept
of stationarity, precisely one such process exists, if v0, γ , a, and n are given. This
determines w.

More specifically: We shall obtain a functional relation between n and w, which
can be written as

w = w(n) or n = n(w). (17)

3.6 Sec. 4–7 discussion

Von Neumann introduces the physical description of a booster, explaining that it com-
poses the inner layer of a two-layer explosive. For “mathematical convenience,” von
Neumann describes the energy difference between the booster and main charge of the
explosive as a monotonically decreasing function and assumes uniform density of the
explosive rather than incorporating a jump discontinuity in the velocity of evolved
material as the shock wave progresses between the two materials. Perhaps von Neu-
mann never returned to this subject in his published works because this simplification
compromised the usefulness of the model.

He proposes that the model describes an explosive of any dimension given that
the system is constant across all angular dimensions. The generalization to several
dimensions in this subsection poses some issues for the model based on previous
assumptions, particularly the CJ hypothesis. Later expansions on the CJ hypothesis
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by Taylor and Zel’dovich showed that the hypothesis was not applicable to spheres
due to an infinite gradient in the solution behind the detonation front (Bach and Lee
1972).

Here, von Neumann also expands on the difference between a boostered and stan-
dard detonation, and he explicitly states his goal, namely, to “determine the stationary
detonation process which is compatible with these assumptions.” Restated, von Neu-
mann hopes to use the more easily experimentally determined quantities vo (specific
volume of solid), γ (adiabatic exponent of gas), a, and n to derive w (see Table 2),
which in turn would allow him to compute the ratio of booster to charge necessary
for a successful explosive, as he does later in the manuscript. Through the rest of the
manuscript, von Neumann solves a Lagrangian partial differential equation for w.

3.7 Sec. 8–9 transcription

8. Before we undertake these computations, let us consider the interpretation of our
procedure somewhat more closely.

Consider the detonation at the moment when it has progressed as far as x . The total
energy liberated up to that moment is (Sq is the area of the surface of the unit sphere
in q-dimensional space)

∫ x

0
e(x ′) · Sq x ′q−1dx ′

= Sqa
∫ x

o
x ′q−2n−1dx ′.

In order that this expression be finite, we must require q − 2n > 0, n <
q
2 . In order to

have the outward decrease of e(x), mentioned in 4., we must require n > 0. Hence

0 < n <
q

2
. (18)

Now the above integral becomes

Sqa

q − 2n
xq−2n .

This energy is liberated in the volume

∫ x

0
Sq x ′q−1dx ′ = Sq

q
xq .

Hence the average energy concentration per unit mass is

ea(x) = q

q − 2n
ax−2n,
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and this exceeds the concentration e(x) at x by a factor

b = ea(x)

e(x)
= q

q − 2n
. (19)

This factor b represents in our model the ratio total (i.e., booster plus charge) : charge.
Hence

booster : charge = b − 1 = 2n

q − 2n
. (20a)

9. The formulae of 7. can now be used in this way:
An explosive may be considered “sluggish,” if its detonation is not self-supporting.

This means that the stationary detonation wave of this substance is not sufficient to
initiate in it the explosive reaction in an adjacent layer. That is, the pressure ps or
the mass velocity Vs—whichever may be the significant quantity—is not sufficient to
produce that result. Denote the values which are actually needed to that end by p and
V . Express these quantities by (10) or (13), thus introducing the quantity w > 1. This
w > 1 gives then a quantitative measure of the “sluggishness” of the explosive.

Now (17), (20a) show how w determines the relative amount of booster, which is
required to detonate a given quantity of this explosive.

These formulae express that a given quantity of booster will only detonate a definite
amount of the explosive, and nomore. And this amountwill also depend on the value of
q = 1, 2, 3, i.e., on the character of the detonation wave: Plane, cylindrical, spherical.

3.8 Sec. 8–9 discussion

Using his assumed power-law e0 = ax−2n , von Neumann computes the amount of
energy liberated in the volume of the explosion e0 up to a point x . This exceeds the
energy liberated at point x by a factor b, which is the total amount of material (booster
and charge) divided by the amount of charge. If the energetic output of the explosive
materials and the desired dimension of the explosive, q, are known, then one can find
b, the minimum necessary amount of booster material, by rearranging (19) to obtain
(20a).

3.9 Sec. 10–13 transcription

10. We now pass to the computations.
Denote the time by t , and the position of the detonation front at that time by

x̄ = x̄(t).
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Then by (12), (14)

dx̄

dt
= D = w√

2w − 1

√
2(γ 2 − 1)e0

= w√
2w − 1

√
2(γ 2 − 1)a · x̄−n .

Hence

x̄n d x̄

dt
= w√

2w − 1

√
2(γ 2 − 1)a

and (assuming x̄(0) = 0, i.e., that the detonation began at t = 0),

⎧⎪⎪⎨
⎪⎪⎩

t = α x̄n+1 or x̄ = α− 1
n+1 t

1
n+1

with

α =
√
2w−1
w

1
(n+1)

√
2(γ 2−1)a

.

(20b)

Further (14) and (10), (11), (13) give

p = w
2(γ − 1)a

v0
x̄−2n, (21)

v = γ + w−1 − 1

γ + 1
v0, (22)

V = √
2w − 1

√
2(γ − 1)a

γ + 1
x̄−n . (23)

(21), (22) determine the adiabatic coefficient, with which the gas originates at this
point of the detonation wave:

k = pvγ = w · 2(γ − 1)a · (
γ + w−1 − 1

γ + 1
)γ · v

γ−1
0 · x̄−2n . (24)

11. The gas behind the detonation wave, i.e., in the interval

0 < x < x̄ = α− 1
n+1 t

1
n+1 , (25)

is governed by the Lagrangian differential equation

Xt tXx = −vpx . (26)

Here

X = X(x, t) (27)
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is the position at the time t of that gas particle which was at x at the moment t = 0.
v, p obtain from the formulae

v = v0x−(q−1)Xq−1Xx , (28)

p = kv−γ , (29)

where k = k(x̄) obtains from (24), since the motion of the gas is adiabatic throughout
the zone (25) behind the detonation wave.

Hence (26) becomes

Xt t = −w · 2(γ − 1)a · (
γ + w−1 − 1

γ + 1
)γ ·

·x−(q−1)Xq−1 · (x−2n+γ (q−1)X−γ (q−1)X−γ
x )x ,

i.e., using (20),

⎧⎪⎨
⎪⎩
Xt t = −A · x−(q−1)Xq−1(((n + 1)αxn)−2xγ (q−1)X−γ (q−1)X−γ

x )x

with

A = 2w−1
w

1
γ+1 (

γ+w−1−1
γ+1 )γ .

(30)

To the differential Eq. (30), we must add the boundary conditions. They correspond
to the two ends

x = 0 and x = x̄ = α− 1
n+1 t

1
n+1

of (25). We have at

x = 0 : X = 0, (31)

and at

{
x = x̄ = α− 1

n+1 t
1

n+1 : X = x,Xx = B

with B = γ+w−1−1
γ+1 .

(32)

Note that (31) and the first equation of (32) express the fit with respect to position at
the two ends of (25), while the second equation of (32) expresses the fit with respect to
specific volume at the free end of (25). The last obtains from (22), (28), remembering
the X = x at that place. The fit with respect to mass velocity at the same place could
also be expressed, from (23) with V = Xt . But this condition must be (and is) a
consequence of the corresponding one for specific volume, since the conservation of
matter has been safeguarded throughout our procedure.

Thus the differential Eq. (30), with boundary conditions (31), (32), describes the
motion of the gas in (25), i.e., behind the detonation wave.
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12. The similitude already referred to in (6) suggests that the connection of

x

x̄
and

X

x̄

be independent of t . This means that we assume

X = X(x, t) = α− 1
n+1 t

1
n+1 f

(
x

α− 1
n+1 t

1
n+1

)
: (33)

It is convenient to introduce

z = x

x̄
= x

α− 1
n+1 t

1
n+1

. (34)

Now the differential Eq. (30) becomes

{
z2 fzz(z) + nz fz(z) − n f (z)

= −Az−(q−1) f (z)q−1(z−2n+γ (q−1) f (z)−γ (q−1) fz(z)−γ )z .
(35)

And the boundary conditions (31), (32) become

z = 0 : f (z) = 0 (36)

z = 1 : f (z) = 1, fz(z) = B. (37)

In (30), (32) we expressed A, B in terms of w. It is now convenient to express A, w

in terms of B:

A = (1 − B) · Bγ , (38)

w = 1

(γ + 1)B − (γ − 1)
. (39)

13. Instead of making a direct attempt to integrate (35) with (36), (37), we first
study the conditions at (36) somewhat more closely.

Throughout (25), the pressure can be expressed by (29) and (24), (28). The same
computations by which the differential equation was derived in (11) give

p = A

v0
((n + 1)αxn)−2xγ (q−1)X−γ (q−1)X−γ

x ,

hence by (33), (34)

p = A

(n + 1)2v0
· α

2
n+1 t−

2n
n+1 · z−2n+γ (q−1) f (z)−γ (q−1) fz(z)

−γ . (40)

A simple discussion of (35), which will not be given here, shows that p → 0 and
p → ∞ are both impossible. Hence p is asymptotically like z0 for z → ∞. By
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(40) the same is true for z−2n+γ (q−1) f (z)−γ (q−1) fz(z)−γ . Hence f (z)q−1 fz(z) is

asymptotically like zq−1− 2n
γ . Now (36) necessitates q − 1 − 2n

γ
> −1, i.e., n <

γ q
2 ,

but this follows from (18). Further, (36) permits to infer from the above, that f (z)q is

asymptotically like zq− 2n
γ . Hence f (z) is asymptotically like z1−

2n
γ q .

So we can replace (36) by this stronger requirement (C undetermined but > 0):

f (z) = Cz1−
2n
γ q + · · · for z → ∞. (41)

3.10 Sec. 10–13 discussion

Here, von Neumann uses standard methods to solve a first-order in time nonlinear
equation for x̄(t), the position of the detonation front at time t . Pressure is bounded,
so p → 0 and p → ∞ are both physically unrealizable. By (35), this means that p
behaves asymptotically like z0 for z → ∞.

3.11 Sec. 14 transcription

14. It is convenient to put

f (z) = μg(vz). (42)

This leaves the form of (35) and (41) unaffected, except that it multiplies A and C by

μ−((γ−1)q+2)v−((γ−1)q−2n) and μ−1v
−(1− 2n

γ
)
.

Thus we can choose μ, v so as to make both these coefficients equal to 1. Since C is
undetermined, we may use v instead of C as the undetermined quantity. In this way,

μ = A
1

(γ−1)q+2 v
− (γ−1)q−2n

(γ−1)q+2 , (43)

C = A
1

(γ−1)q+2 v
2(n+1)

(γ−1)q+2− 2n
γ , (44)

ensue.
In this way, the differential Eq. (35) becomes

{
z2gzz(z) + nzgz(z) − ng(z)

= −z−(q−1)g(z)q−1(z−2n+γ (q−1)g(z)−γ (q−1)gz(z)−γ )z,
(45)

and the boundary condition (36), in its stronger form (41), becomes

g(z) = z1−
2n
γ q + · · · for z → 0. (46)
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The remaining boundary condition (37) becomes now:

⎧⎨
⎩

z = v : g(z) = A− 1
(γ−1)q+2 · v

(γ−1)q−2n
(γ−1)q+2 ,

gz(z) = A− 1
(γ−1)q+2 B · v

− 2(n+1)
(γ−1)q+2 .

(47)

Since v is arbitrary, we can formulate (37) like this: There must exist a z for which

g(z) = A− 1
(γ−1)q+2 · z

(γ−1)q−2n
(γ−1)q+2 , (48)

gz(z) = A− 1
(γ−1)q+2 B · z− 2(n+1)

(γ−1)q+2 . (49)

This z then determines v by

v = z. (50)

We formulate (48), (49):

B = zgz(z)

g(z)
, (51)

A = z(γ−1)q−2n · g(z)−((γ−1)q+2). (52)

As we saw at the end of (12), B is an undetermined quantity, too. So we can interpret
(51) as defining B, and eliminate A, B from (51), (52) by means of (38). In this way,
the condition

{
z−(γ−1)(q−1)+(2n+1) · g(z)(γ−1)(q−1) · gz(z)γ ·

·(g(z) − zgz(z)) = 1
(53)

obtains.
We can also substitute (51) in (39). This gives

w = g(z)

(γ + 1)zgz(z) − (γ − 1)g(z)
. (54)

3.12 Sec. 14 discussion

The manuscript’s multipliers of A and C appear to contain a minor error. When we
substitute μg(vz) into (35), we obtain

z2μv2gzz(vz) + nzμgz(vz) − nμg(vz)

= −Az−(q−1)μq−1g(vz)q−1(z−2n+γ (q−1)μ−γ (q−1)g(vz)μ−γ v−γ gz(vz)−γ )z
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Substituting in z
v
for z, we obtain

z

v

2
μv2gzz(z) + n

z

v
μgz(z) − nμg(z) =

−A
z

v

−(q−1)
μq−1g(z)q−1(

z

v

−2n+γ (q−1)
μ−γ (q−1)g(z)μ−γ v−γ gz(z)

−γ ) z
v

Pulling u and v terms out does then yield the multiplier of A given in the manuscript,
leaving the form of (35) unaffected.

However, when we substitute μg(vz) into (41), we obtain

μg(vz) = Cz1−
2n
γ q

g(vz) = μ−1Cz1−
2n
γ q .

Again, substitute in z
v
for z; then

g(z) = μ−1C
z

v

1− 2n
γ q

g(z) = μ−1v
−(1− 2n

γ q )Cz1−
2n
γ q .

The multiplier given by von Neumann lacks the q in the power of v; the q is again
missing in (44). However, the boundary condition given in (46) is unaffected by this
minor error. The rest of the section follows as stated by von Neumann.

3.13 Sec. 15–17 transcription

15. Summing up:
After γ , q and n are chosen, the differential Eq. (45) must be integrated, beginning

at z = 0 with (46). The solution must be continued up to the point z where (53) holds.
This z then determines w by (54). This is the process by which (17) is obtained.

16. The process of integrating (45) can be simplified by putting

z = es (55)

g(z) = ePsμ(s) (56)

where

P = (γ − 1)q − 2n

(γ − 1)q + 2
. (57)

Then (45) becomes

{
( d

ds + (P − 1))( d
ds + P)μ(s) + n( d

ds + P)μ(s) − nμ(s)

= −μ(s)q−1( d
ds + Q)(μ(s)−γ (q−1)(( d

ds + P)μ(s))−γ ),
(58)
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where

Q = −2n + γ q(1 − P) = 2
(γ + n)q − 2n

(γ − 1)q + 2
. (59)

Now put

w(s) = (
d

ds
+ P)μ(s), (60)

so that

gz(z) = e(P−1)sw(s). (61)

Then

d

ds
= dμ

ds

d

dμ
= (w − Pμ)

d

dμ
, (62)

and so (58) becomes

((w − Pμ)
d

dμ
+ (P − 1))w + nw − nμ

= −μq−1((w − Pμ)
d

dμ
+ Q)(μ−γ (q−1)w−γ ),

i.e.,

{
dw
dμ

= 1
w−Pμ

[(1−P−n)w+nμ]+[γ (q−1)w−(γ (q−1)P+Q)μ]μ−((γ−1)(q−1)+1)w−γ

1−γμ−((γ−1)(q−1)+1)w−(γ+1) .
(63)

17. (62) gives further

s =
∫

dμ

w − Pμ
+ Constant , (64)

and z → 0 clearly means s → −∞ by 55. (46) becomes, by (55), (56)

μ(s) = e
Q
γ q s + · · · for s → −∞. (65)

Similarly, differentiation of (46) gives, by (55), (60)

w(s) = (1 − 2n

γ q
)e

Q
γ q s + · · · for s → ∞. (66)
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Before we discuss (65), (66) any further, let us also reformulate (53) and (54). (53)
becomes

μ(γ−1)(q−1) · wγ · (μ − w) = 1,

i.e.,

μ − w = μ−(γ−1)(q−1)w−γ . (67)

(54) becomes

w = μ

(γ + 1)w − (γ − 1)μ
. (68)

3.14 Sec. 15–17 discussion

The goal of these sections is to solve for the Lagrangian coordinate X(x, t), which
describes the position at time t of a gas particle thatwas initially at position x . VonNeu-
mann obtains the solution through a series of variable transformations, substitutions,
asymptotic arguments, and integrations.

3.15 Sec. 18–19 transcription

18. Let us now return to (65), (66).
By (18) the numerator of Q in (59) is

(γ + n)q − 2n = γ q + (q − 2)n

{
≥ γ q > 0

for q = 1, 2,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= 3γ − n ≥ 3γ − 3
2 >

> 0

for q = 3.

Consequently in any event

Q > 0. (69)

Thus (65), (66) imply that on that boundary point

u, w → 0,
w

u
→ 1 − 2n

γ q
. (70)
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Conversely: Combining (70) with (64) gives

s ∼
∫

du

(1 − 2u
γ q − P)u

=
∫

du
Q
γ q u

= γ q

Q
ln u + Constant .

We can adjust this constant so that

s ∼ γ q

Q
ln u

results, hence s → −∞, u ∼ e
Q
γ q s , and so by (70) w ∼ (1− 2n

γ q )e
Q
γ q s . Thus (65), (66)

are valid.
In other words: (65), (66) may be replaced by (70).
19. Summing up: (Cf. (15))
After γ , q and n are chosen, the differential Eq. (63) must be integrated, beginning

with (70).
The solution must be continued up to the point u, w where (67) holds. These u, w

then determine w by (68).
This is the process by which (17) is obtained.

3.16 Sec. 18–19 discussion

Although Q > 0 in (59), von Neumann’s statement in the unnumbered equation
between (68) and (69) appears incorrect. Our own analysis is as follows.

When q = 1, the numerator of Q is greatest when n → 0 and smallest when
n → q/2. In fact, Q can be less than 0 for γ < 1/2; however, the quantity γ is always
greater than 1 by definition. Recall that γ is the ratio of the heat capacity of an ideal
gas at constant pressure to the heat capacity at constant volume. This quantity can also
be expressed as 1+ 2/ f , where f is the degrees of freedom of a molecule, a positive
value. Hence γ > 1, and Q < 0 is unrealizable. When q = 2, the numerator of Q is
always γ q, and Q > 0 for all n. When q = 3, the numerator of Q is smallest when
n → 0 and greatest when n → q/2. Similarly to the case when q = 1, Q can be less
than zero for γ < 1/2.

In these final sections, von Neumann shows that the differential equation dw/dμ

found in (63) can be integrated, and by the inequalities above,

w ∼
(
1 − 2n

γ q

)
e

Q
γ q s

.

Von Neumann’s goal was to compute the functional relationship between w and n,
and he succeeds with the expression above.

123



An unpublished manuscript of John von Neumann... 105

4 Discussion and conclusions

In his publishedwork on shockwaves (vonNeumann 1963j) that ultimately led to ZND
theory, von Neumann shows “when the so-called Chapman-Jouguet hypothesis is true,
and what formulae are to be used when it is not true.” He states later in von Neumann
(1963j) that “it is hoped that this will connect the present theory with the difficult
questions of initiating a detonation of primers and boosters,” and in von Neumann
(1963k) he states that he will publish a subsequent report on boosters. We could not
locate any such work specific to boosters, and we offer two hypothesis for the apparent
absence of this publication.

First, it is possible that von Neumann did finish a manuscript dealing with the topic
of boosters, but that it has not been declassified. The two earliest works in Table 1, that
is, von Neumann (1963j, k), were originally restricted documents. However, both were
declassified in the early 1950s, and we did not find other von Neumann documents
that have been declassified since that time.

We offer a second, and we believe more likely, explanation for the absence of a
published report on boosters, namely, that (von Neumann unpublished) was meant
to be this work, but was eventually abandoned due to its scientific limitations. It is
difficult to place the exact time of the writing of von Neumann (unpublished). On the
one hand, we might assume that it is the paper on boosters von Neumann hinted at in
1942 and 1943 (von Neumann 1963j, k) and that he was working on it simultaneously
to or immediately following these works. On the other hand, von Neumann (1963j, k)
take into account important aspects of detonations that von Neumann does not include
in von Neumann (unpublished), perhaps suggesting that (von Neumann unpublished)
came first. For example, the 1943 publication (vonNeumann 1963k) specifically states
the differences inmodeling that must be accounted for in one, two or three dimensions;
these are not addressed in von Neumann (unpublished). Additionally, although von
Neumann states repeatedly in von Neumann (unpublished) that the CJ hypothesis is
generally true, by 1942 he had already shown when it failed as a predictive method.
He is careful to note this failure in subsequent works (von Neumann 1963b), and
yet no mention of it is made in von Neumann (unpublished). Moreover, the majority
of von Neumann’s works on the theory of shock waves following (von Neumann
1963j, k) (excluding those concerned with shock wave reflection) have the following
characteristics:

– incorporation of thermodynamic information that is absent in von Neumann
(unpublished),

– substantial usage of numerical methods rather than analytical ones,
– formulation for detonation in a particular dimension, and
– points or homogeneous spheres as the source of detonation.

In most of his shock wave papers, von Neumann emphasizes the infancy of the theory
and the difficulty in finding theories that are generalizable and physically justifiable.
The simplicity of the models in his published works perhaps suggests why von Neu-
mann never published the more ambitious manuscript we have analyzed here. While
von Neumann’s step-by-step derivations in the unpublished manuscript are mostly
accurate, several fundamental assumptions of the model cannot be justified and the
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nuance of his discussion on the topic in his published works makes clear that he
was aware of these difficulties. For example, his liberal use of the CJ hypothesis,
the simplification of the discontinuity between the booster and the main charge in
terms of energetic output to a monotonic decreasing function, the lack of specific
thermodynamic laws in the energetic output equations, the generalization to multiple
dimensions, and the exclusion of p0 without explanation are much less sophisticated
than the work done in his published papers.

Von Neumann was diagnosed with cancer in 1955 and subsequently placed under
security for fear that he would “reveal military secrets while heavily medicated,” pass-
ing away in 1957 (Macrae 2019). To date, there is no generalized theory regarding
boostered detonations like the one von Neumann hoped to create in von Neu-
mann (unpublished). In the 1960s, experimental observation made clear that the one
dimensional theories could not, in general, capture the complex structures of three
dimensional detonations. Detonations have asymmetrical dynamics specific to the
material used. Those materials and their chemical properties result in complications
that prohibit the creation of a generalizable theory. Instead, investigations typically
came to rely on experiments and numerical simulations. From that point of view, the
handwritten manuscript is not an undiscovered model that will propel forward the
modern understanding of explosive shock waves; however, it is an intriguing analysis
performed by a mathematical powerhouse. The manuscript (von Neumann unpub-
lished) sheds light on the scientific hurdles faced in the development of detonation
theory during a time of pressure to understand explosives as they were being rapidly
developed and produced during World War II.
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