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siblings). We assessed 75 single nucleotide polymorphisms 
(SNPs) in 465 parent–child trios; 117 additional SNPs in 
211 trios; and 4 additional SNPs in 254 trios. We performed 
SNP and gene-based transmission disequilibrium tests and 
compared nominally significant SNP results with those 
from a large independent case–control cohort. After qual-
ity control 71 SNPs were available in 371 trios; 112 SNPs 
in 179 trios; and 3 SNPs in 192 trios. 17 were candidate 
SNPs implicated in TS and 2 were implicated in obses-
sive–compulsive disorder (OCD) or autism spectrum disor-
der (ASD); 142 were tagging SNPs from eight monoamine 
neurotransmitter-related genes (including dopamine and 
serotonin); 10 were top SNPs from TS GWAS; and 13 top 

Abstract Genetic studies in Tourette syndrome (TS) are 
characterized by scattered and poorly replicated findings. 
We aimed to replicate findings from candidate gene and 
genome-wide association studies (GWAS). Our cohort 
included 465 probands with chronic tic disorder (93% TS) 
and both parents from 412 families (some probands were 
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SNPs from attention-deficit/hyperactivity disorder, OCD, 
or ASD GWAS. None of the SNPs or genes reached sig-
nificance after adjustment for multiple testing. We observed 
nominal significance for the candidate SNPs rs3744161 
(TBCD) and rs4565946 (TPH2) and for five tagging SNPs; 
none of these showed significance in the independent 
cohort. Also, SLC1A1 in our gene-based analysis and two 
TS GWAS SNPs showed nominal significance, rs11603305 
(intergenic) and rs621942 (PICALM). We found no con-
vincing support for previously implicated genetic polymor-
phisms. Targeted re-sequencing should fully appreciate the 
relevance of candidate genes.

Keywords Attention-deficit/hyperactivity disorder · 
Candidate gene study · Obsessive–compulsive disorder · 
Tourette syndrome · Transmission Disequilibrium Test

Introduction

Both family and twin studies have consistently suggested 
a genetic etiology of Tourette syndrome (TS), a common 
childhood-onset tic disorder [1]. The strong heritability has 
led to a wide range of gene finding efforts, which initially, 
prior to the initiation of genome-wide association studies 
(GWAS) focused on family-based linkage and candidate-
gene-based case–control studies [1, 2]. These candidate 

genes have typically been selected based on prevailing 
theories of the etiology of TS. There has now been a con-
siderable number of candidate genes studies which have 
attempted to confirm theories on neurotransmitter involve-
ment in TS [2]. However, the field of candidate gene studies 
is characterized by poorly replicated findings using mostly 
small sample sizes [1, 2]. For example, while the dopamine 
receptor D2 (DRD2) gene was implicated by Comings 
et al. [3] this finding could not be replicated in a subsequent 
study led by Díaz-Anzaldúa et al. [4]. Currently, we lack 
a comprehensive and independent synthesis of the various 
putative genetic loci identified from candidate gene studies.

Neurotransmitter-related candidate gene studies in TS 
have been based on post-mortem brain findings [5], thera-
peutic responses to antipsychotics [5], pathophysiologi-
cal studies [5], or genetic linkage studies [2]; and have 
included genes related to the neurotransmitter pathways 
dopamine, glutamate, histamine, and serotonin [2, 5]. The 
classical principle guiding the investigation of candidate 
genes in these pathways has been the thought that certain 
single nucleotide polymorphisms (SNPs) within these 
genes might impact protein functions required for normal 
neurotransmission.

The one published GWAS study of TS to date [6] did not 
result in findings with genome-wide significance, possibly 
due to lack of power to detect common variants of small 
effects. A subsequent study [7] looking into the top SNPs 
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was only able to find significance for a SNP (rs2060546) in 
the Netrin 4 gene (NTN4), following correction for multiple 
statistical comparisons. However, this study [7] and others 
[8] have not replicated the original top TS GWAS signal 
(rs7868992) [6] in the Collagen Type XXVII Alpha 1 gene 
(COL27A1).

The aim of the present study was to independently repli-
cate findings of candidate SNPs and candidate genes previ-
ously implicated in TS or related disorders that are often 
comorbid with TS, i.e., obsessive–compulsive disorder 
(OCD), attention-deficit/hyperactivity disorder (ADHD), 
and autism spectrum disorder (ASD) [9], given a potential 
shared genetic susceptibility [2]. We investigated a total of 
196 SNPs that included the following: individual candidate 
SNPs; tagging SNPs (tSNPs) covering neurotransmitter-
related candidate genes; top SNPs from TS GWAS; and top 
SNPs from GWAS of related disorders. Analyses were per-
formed as part of the Tourette International Collaborative 
Genetics (TIC Genetics, [10]) study, and consisted of 465 
children with a chronic tic disorder and both parents. The 
selected genetic loci were investigated in relation to the 
presence of a chronic tic disorder in SNP and gene based 
transmission disequilibrium tests (TDT) analyses. The 
use of the TDT is a major advantage above a case–control 
design as it ensures proper control for population stratifica-
tion with no need for a separate control group [11].

Methods

Study subjects

This study included 465 parent–child trios from 412 fami-
lies (some parents formed trios with more than one affected 
child), with probands affected with a chronic tic disorder, 
of whom 93% had TS and 7% a chronic motor or vocal 
tic disorder. Probands (77.8% males; mean age = 13.9, 
SD = 6.42, range 4–52 years) and their biological parents 
were from the Tourette International Collaborative Genet-
ics (TIC Genetics, [10]) study, recruited between 2011 
and 2014 across 24 sites in the USA, Europe, and South 
Korea (360 parent–child trios); the New Jersey Center for 
Tourette Syndrome (NJCTS) [12] between 2006 and 2010 
(102 parent–child trios); or the Yale Child Study Center in 
2007 (three parent–child trios). The TIC Genetics study 
was established as a comprehensive gene discovery effort 
for TS, with a focus on multiply-affected family pedigrees 
and cases without a family history of tics. Inclusion criteria 
of cases were presence of a chronic tic disorder according 
to the Diagnostic and Statistical Manual of Mental Disor-
ders Fourth edition, Text Revision (DSM-IV-TR, [13]) and 
donation of DNA by the proband and both biological par-
ents. Before enrolling in the study, all adult participants 
and parents of children provided written informed consent 
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along with written or oral assent of their participating child. 
The Institutional Review Board of each participating site 
had approved the study.

Clinical measures

Experienced clinicians assigned a clinical diagnosis of a 
tic disorder and assessed the possible presence of comor-
bid OCD and/or ADHD based on DSM-IV-TR criteria, as 
described elsewhere in more detail [10].

Selection of single nucleotide polymorphisms

Selection of TS candidate SNPs and genes was based on 
review articles [1, 2] and PubMed searches using the terms 
“Tourette”, “tics”, and “TS” in combination with the terms 
“candidate gene” or “association study”, of literature pub-
lished until October 2014. We selected 196 SNPs, includ-
ing: (a) 17 individual candidate SNPs previously reported 
to be at least nominally significantly (P value <0.05) asso-
ciated with TS; (b) 2 individual candidate SNPs previously 
associated with OCD and ASD, respectively; (c) 148 tSNPs 
covering seven neurotransmitter-related candidate genes 
of which at least one polymorphism had previously been 
reported to be at least nominally significantly (P value 
<0.05) associated with either TS (DRD2, HDC, MAO-A, 

SLC6A3/DAT1, and TPH2, reviewed in [2]) or a related dis-
order (SLC1A1 and GABRA2, associated with, respectively, 
OCD and ASD [14, 15]), in addition to HRH3 (which has 
never been investigated in relation to TS, but was included 
based on the possible involvement of genes related to his-
tamine [16, 17]); tSNP selection was restricted to common 
SNPs (minor allele frequency >0.05) and were selected 
using the HapMap CEU population as a reference and the 
Tagger algorithm implemented in Haploview [18, 19]. The 
 R2 threshold for the tSNP selection was set at 0.8. To cap-
ture possible regulatory variants, we also included tSNPs 
10 kb upstream and downstream of each gene (see supple-
mentary Table S1). (d) 12 TS GWAS-based top SNPs, i.e., 
the top 5 LD-independent SNPs from the first GWAS of TS 
[6], 4 top SNPs from the Gilles de la Tourette Syndrome 
Genome-Wide Association Study Replication Initiative [7], 
and the top 3 SNPs from the first cross-disorder GWAS of 
TS and OCD [20]; and (e) 17 top SNPs from GWAS studies 
of OCD [21], ADHD [22, 23], and ASD [24, 25]. We did 
not include the previously implicated TS SNPs rs1894236 
(HDC), rs1056534 (TBCD), rs25531 (SLC6A4), rs25532 
(SLC6A4), nor tSNPs covering the possible TS candidate 
genes DRD4, Arylacetamide Deacetylase (AADAC) [26, 
27], and Glial Cell Derived Neurotrophic Factor (GDNF) 
[27], nor 19 SNPs recently implicated in a meta-analysis of 
TS and ADHD [28].
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Genotyping

Genomic DNA was extracted from peripheral blood using 
standard protocols. Genotyping was either performed with 
the Illumina GoldenGate Genotyping Assay (San Diego, 
CA, USA) on a custom-made array containing 192 SNPs 
at the Genome Analysis Facility of the University Medi-
cal Center in Groningen, Netherlands (211 of the parent–
child trios). The remaining 254 parent–child trios were 
genotyped with the Illumina HumanOmniExpressExome 
v1.2 BeadChip genotyping array at the Yale Center for 
Genomic Analysis, USA. From this array, we selected the 
same SNPs, as far as these were available, which was the 
case for 75 of the 192 SNPs; plus we selected 4 additional 
SNPs. This resulted in a total of 196 SNPs. See supple-
mentary Table S2 for the sample sizes for the different 
SNP analyses. Processing of the raw intensity data and 
calling of the genotypes was performed with the Illumina 
GenomeStudio software (V2011.1). The PLINK input 
files needed for further analysis were generated using 
the PLINK Report Plug-in (v2.1.3) in the GenomeStudio 
Software.

Quality control

Quality control of the data was performed with PLINK 
v1.07 [29] and carried out using the recommended param-
eters [30]. Individuals were excluded because of (1) dis-
cordant sex information (GoldenGate Genotyping N = 13, 
HumanOmniExpressExome N = 5); (2) low genotyping 
call rate, i.e., less than 90% (GoldenGate Genotyping 
N = 7, HumanOmniExpressExome N = 9); (3) Mendelian 
errors and samples with error rates exceeding 10% (Gold-
enGate Genotyping N = 12, HumanOmniExpressExome 
N = 8), and (4) strand issues after merging data from 
genotyping arrays (HumanOmniExpressExome N = 19). 
Note that removal of one parent with several affected chil-
dren led to the loss of several trios, bringing the total of 
excluded parent–child trios after quality control check to 
N = 94.

Furthermore, six SNPs not conforming to Hardy–Wein-
berg equilibrium or with genotyping call rate less than 
90% were excluded (GoldenGate Genotyping N = 5, 
HumanOmniExpressExome N = 1). Finally, after merg-
ing the SNPs from both arrays, the quality of the SNPs 
was assessed again and four more SNPs did not conform 
to Hardy–Weinberg equilibrium, reducing the number of 
SNPs to 186. Considering that all members of each trio 
were genotyped using the same platform, no further cor-
rections were necessary to control for possible batch 
effects between the two genotyped subsets.

Family‑based association analysis

Family-based association analysis was carried out with the 
Parent-TDT option in PLINK that utilizes both the standard 
TDT and the parental discordance test to look for association 
with chronic tic disorders. Empirical significance levels were 
generated with PLINK using max(T) permutation methods 
with 10,000 permutations. Pointwise significance threshold 
was set at α = 0.05. To avoid type I errors, for the SNP-based 
tests, correction for multiple testing was conducted using the 
false discovery rate (FDR). For the gene-based analyses, all 
tSNPs belonging to the same gene were grouped together 
and were analyzed using the set-based tests in conjunction 
with the TDT option in PLINK. In an attempt to replicate 
findings of Mössner et al. [31], we also conducted a follow-
up analysis of the TPH2 haplotype (rs4570625-rs4565946) 
using the haplotype-based TDT option in PLINK. Empirical 
P values were calculated for each gene and correction for 
multiple testing was again done using the FDR method. Post 
hoc power analyses for our TDT approach were carried out 
with the snpPower function in the R-package Haplin v6.0.1.

To reduce the risk of type II errors, we attempted repli-
cation of our nominally significant (P value <0.05) SNPs 
against nominal significance of the case–control com-
parisons stemming from the TS GWAS performed by the 
Tourette Syndrome Association International Consortium 
for Genetics (TSAICG) including 1285 cases and 4964 
ancestry-matched controls [6]. Given the large number of 
markers tested in a GWAS and accompanying stringent 
correction for multiple testing, GWAS studies contain a 
large number of SNPs with nominal significance that do 
not survive correction for multiple comparisons of which, 
however, true involvement cannot be ruled out. We argued 
that only SNPs that would be nominally significant in both 
cohorts would unequivocally point towards involvement in 
chronic tic disorder and then would suggest that correction 
for multiple testing had been too stringent. Study subjects 
did not overlap between TSAICG and TIC Genetics.

Results

Sample description

Of the original 465 parent–child trios (from 412 fami-
lies) and 196 SNPs, a maximum of 371 parent–child trios 
(from 328 families; 92% European Caucasian, 6% Asian, 
and 2% Black/African American or American Indian) 
and 186 SNPs remained eligible for analysis following 
our quality control, as described earlier. Note that not 
all of the 186 SNPs were available for all of the families 
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(see Table S2); 71 SNPs were available for all 371 par-
ent–child trios, 112 additional SNPs in 179 trios, and 
3 additional SNPs in 192 trios. For an overview of the 
investigated SNPs and details from reference studies, see 
Tables 1, 2, 3 and supplementary Tables S1–2. The final 
set of probands with a chronic tic disorder consisted of 
291 males and 80 females between 4 and 45 years of age 
(mean age = 13.6, SD = 5.80). In addition to TS, 60% of 
the patients had OCD and 43% had ADHD.

Transmission disequilibrium tests

Candidate SNPs previously implicated in TS

None of the SNPs’ p values passed the FDR threshold tak-
ing multiple testing into account. However, at nominal sig-
nificance (P value < 0.05), the TDT revealed over-trans-
mission of the minor alleles of rs3744161 and rs4565946 
located in the TBCD and TPH2 gene, respectively 
(Table 4). A follow-up analysis on the TPH2 haplotype 
(rs4570625-rs4565946) showed no significant association 
with chronic tic disorders (Table S4). For the majority of 
the investigated SNPs, we did not find any indication for 
involvement at the level of nominal significance (Table 
S5). We did not replicate the previously implicated SLI-
TRK1 SNPs rs9593835 and rs9531520 [38].

Candidate genes previously implicated in TS or related 
disorders

Similarly, for our gene-based analyses, none of our 
findings met the threshold for statistical significance, 
adjusted for multiple testing. We only found a nominally 
significant association for the glutamate transporter 
gene SLC1A1 with chronic tic disorder (P value = 0.02, 
Table S6). In addition, a number of individual tSNPs 
from the candidate genes reached nominal significance 
(Table 4). SNPs previously implicated in GWAS of 
TS and related disorders. None of these met the FDR 
threshold (Table S7). We found nominal significance for 
two top TS GWAS SNPs (Table 4), i.e., one intergenic 
SNP variant (rs11603305) and rs621942 of the PICALM 
gene [6, 7].

Comparison of nominally significant SNPs 
with independent cohort

None of our nominally significant SNPs, including the 
previously implicated candidate SNPs and the individual 
tSNPs from the candidate genes, showed a nominally sig-
nificant odds ratio in the TSAICG cohort [6] (Table 4). 
Note that we did not compare our two nominally significant 
TS GWAS SNPs (rs11603305 and rs621942) as they were 
derived from the TSAICG cohort.

Table 2  Overview of investigated candidate genes previously implicated in TS, OCD, or ASD

TS, Tourette syndrome; OCD, obsessive–compulsive disorder; ASD, autism spectrum disorder; tSNPs, tagging SNPs; QC, quality check; CHR, 
chromosome; DRD2, dopamine receptor D2; HDC, l-histidine decarboxylase; MAO-A, monoamine oxidase-A; SLC6A3/DAT1, solute carrier 
family 6/dopamine transporter; TPH2, tryptophan hydroxylase 2; GABRA2, GABA-A receptor, alpha 2; SLC1A1, solute carrier family 1 member 
1, glutamate transporter; HRH3, histamine receptor H3
a SNPs were excluded following standard quality control checks in PLINK V1.07 using the recommended parameters published in [29, 30]

Gene # of tSNPs # of tSNPs excluded 
following  QCa

CHR Neurotransmitter 
pathway

Function Sample size refer-
ence study

References

TS neurotransmitter-related candidate genes

 DRD2 14 11 Dopamine Dopamine receptor 147 TS/314 controls [3]

 HDC 11 15 Histamine Histamine synthesis 520 TS families [17]

 MAO-A 9 1 X Serotonin (5-HT), 
dopamine

Degradation of 
dopamine and 
5-HT

110 TS parent–child 
trios

[4]

 SLC6A3/DAT1 21 3 5 Dopamine Dopamine trans-
porter

266 cases/236 
controls

[37]

 TPH2 19 12 Serotonin (5-HT) 5-HT synthesis 149 TS/125 controls [42]

Candidate genes implicated in related disorders

 GABRA2 14 4 GABA GABA receptor 470 autism families [14]

 SLC1A1 52 9 Glutamate Glutamate trans-
porter

377 OCD families [15]

Newly investigated candidate gene

 HRH3 8 2 20 Histamine Histamine receptor
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Table 3  Overview of investigated top SNPs implicated in GWAS of TS, OCD, ADHD, or ASD

SNP MAF Gene name CHR Function Sample size reference 
study

No. of parent–child trios 
after quality control in 
present study

References

TS GWAS SNPs

 rs7868992 0.28 COL27A1 9 Calcification of cartilage 
and the transition of 
cartilage to bone

1285 cases/4964 controls 371 [6]

 rs621942 0.24 PICALM 11 Endocytosis 1894 cases/5574 controls 192 [7]

 rs6539267 0.27 POLR3B 12 DNA-dependent RNA 
polymerase

1285 cases/4964 controls 371 [6]

 rs4988462 0.44 POU1F1 3 Transcription factor 2723 cases/5667 controls 179 [20]

 rs7123010 0.27 ME3 11 Malate metabolism 1894 cases/5574 controls [7]

 rs2060546a 0.01 12 1894 cases/5574 controls [7]

 rs13063502 0.18 3 1285 cases/4964 controls 371 [6]

 rs769111 0.37 7 1285 cases/4964 controls 179 [6]

 rs7336083 0.33 13 1285 cases/4964 controls 371 [6]

 rs11603305 0.32 11 1894 cases/5574 controls 192 [7]

 rs11149058 0.22 13 2723 cases/5667 controls 179 [20]

 rs4271390a 0.22 11 2723 cases/5667 controls [20]

OCD GWAS SNPs

 rs11081062 0.19 DLGAP1 18 Scaffold protein 1465 cases/5557 con-
trols/400 parent–child 
trios

371 [21]

 rs9499708 0.42 6 1465 cases/5557 con-
trols/400 parent–child 
trios

179 [21]

 rs9652236 0.15 13 1465 cases/5557 con-
trols/400 parent–child 
trios

371 [21]

 rs6131295 0.23 20 1465 cases/5557 con-
trols/400 parent–child 
trios

371 [21]

 rs297941a 0.44 12 1465 cases/5557 con-
trols/400 parent–child 
trios

[21]

ADHD GWAS SNPs

 rs2556378 0.18 BCL11A 2 Myeloid and B-cell proto-
oncogene

495 cases/1300 controls 179 [22]

 rs12575642 0.15 FERMT3 11 Cell adhesion 465 trios 371 [23]

 rs5016282 0.15 GRM5 11 Glutamate receptor 495 cases/1300 controls 179 [22]

 rs12037173 0.07 LRRC7 1 Cell adhesion, dendritic 
branching, and neuronal 
excitability

465 parent–child trios 179 [23]

 rs11607165 0.15 STIP1 11 Response to stress 465 parent–child trios 371 [23]

ASD GWAS SNPs

 rs1718101 0.07 CNTNAP2 7 Cell adhesion 2705 families 179 [24]

 rs4675502 0.37 PARD3B 2 Cell division and cell 
polarization

2705 families 179 [24]

 rs4150167a 0.04 TAF1C 16 Transcription factor 2705 families [24]

 rs4307059 0.37 5 780 families/1204 
cases/6491 cases

179 [25]

 rs13176113b 0.28 5 780 families/1204 
cases/6491 cases

179 [25]
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Post hoc power analyses

For those 75 SNP analyses for which we had our maximum 
available sample size of 371 parent–child trios, our study 
was sufficiently powered (power ≥80%) to detect an odds 
ratio of 1.8 for rare SNPs (MAF = 0.05) and an odds ratio 
of 1.4 for more common SNPs (MAF ≥ 0.20; see further 
Table 1 and Table S3), while for those SNP analyses that 
were only genotyped in a subset of the trios (for most of the 
SNPs, N = 179) our study was sufficiently powered (power 
≥80%) to detect common SNPs (MAF ≥ 0.20) with an 
odds ratio of 1.6 or more (Table S3), and an α = 0.05. For 
all of the previously implicated candidate SNPs we did 
obtain the desired power of 80% except for rs12141243 
(DLGAP3) and rs9531520 (SLITRK1) (Table 1).

Discussion

The goal of this study was to provide a synthesis of previ-
ously implicated candidate SNPs, candidate genes, and top 
SNPs from recent GWAS of TS and related disorders. Fol-
lowing correction for multiple testing, we did not find evi-
dence for involvement for the previously implicated neuro-
transmitter-related candidate genes (DRD2, HDC, MAO-A, 
SLC6A3/DAT1, TPH2, COMT, GABRA2, SLC1A1, and 
HRH3), SNPs previously implicated in candidate genes 
(BTBD9, CNTNAP2, DLGAP3, SLITRK1, and TBCD), and 
top SNPs from GWAS of TS and related disorders. We also 
did not find evidence for the top five LD-independent SNPs 
from the first GWAS of TS [6] and the SLITRK1 candidate 
gene [38]. This non-replication of candidate genes is in line 
with findings in other neuropsychiatric disorders [43, 44].

Both pharmacological evidence and neuroimaging stud-
ies have pointed towards involvement of the dopamine 

pathway, and based on these findings several groups have 
investigated genes within this pathway, mostly with incon-
sistent results [2]. Included in our study are the dopa-
mine receptor D2 (DRD2) and the dopamine transporter 
(SLC6A3/DAT1) gene that were both implicated in TS by 
others [3, 34, 37] and the catechol-O-methyltransferase 
(COMT) gene that was implicated in OCD [45], a related 
disorder. Our findings for the DRD2 gene are in contrast 
with the findings of Herzberg et al. and Comings et al. 
[3, 34] as both our investigation of previously implicated 
SNPs (rs1800497, rs6279, rs1079597, and rs4648318) 
and our analysis of the entire gene yielded no significant 
association. The differences in findings could be due to our 
increased sample size, as both previous studies included 
less than 150 cases [3, 34]. Similarly, we did not find evi-
dence for SLC6A3, as both our analysis of a previously 
implicated SNP (rs6347) [37] and our analysis of the entire 
gene showed no association with chronic tic disorder. This 
discrepancy might be explained by the use of different ana-
lytical approaches, as Yoon et al. employed a case–control 
analysis. Finally, we found no evidence for the COMT SNP 
rs4680; however, this gene has never been associated with 
chronic tic disorders before but is strongly implicated in 
OCD [45].

Serotonin is another well-studied neurotransmitter path-
way. Studies have shown a reduced concentration of sero-
tonin and its metabolite in the brain and cerebrospinal fluid 
of TS patients [5]. Included in our study were SNPs in 
genes belonging to the serotonin receptor HTR2C, mono-
amine oxidase-A (MAO-A), and the tryptophan hydroxy-
lase 2 (TPH2) gene, of which the latter is responsible for 
the synthesis of serotonin in the brain [31]. In contrast to 
the findings of Dehning et al. [36], we found no evidence 
for the HTR2C SNPs rs3813929 and rs518147. With regard 
to THP2, both previously implicated SNPs (rs4565946 and 

Table 3  continued

SNP MAF Gene name CHR Function Sample size reference 
study

No. of parent–child trios 
after quality control in 
present study

References

TS GWAS SNPs

 rs7834018 0.10 8 2705 families 371 [24]

 rs7711337 0.40 5 2705 families 371 [24]

TS, Tourette syndrome; GWAS, genome-wide association study; OCD, obsessive–compulsive disorder; ADHD, attention-deficit/hyperactivity 
disorder; ASD, autism spectrum disorder; MAF, minor allele frequency (based on 1000 genomes); CHR, chromosome; COL27A1, Collagen, 
Type XXVII, Alpha 1; PICALM, Phosphatidylinositol Binding Clathrin Assembly Protein; POLR3B, Polymerase (RNA) III (DNA Directed) Poly-
peptide B; POU1F1, POU Class 1 Homeobox 1; ME3, Malic Enzyme 3; DLGAP1, Discs, Large (Drosophila) Homolog-Associated Protein 1; 
BCL11A, B-Cell CLL/Lymphoma 11A; FERMT3, Fermitin Family Member 3; GRM5, Glutamate Receptor, Metabotropic 5; LRRC7, Leucine 
Rich Repeat Containing 7; STIP1, Stress-Induced Phosphoprotein 1; CNTNAP2, Contactin Associated Protein-Like 2; PARD3B, Par-3 Family 
Cell Polarity Regulator Beta; TAF1C, TATA Box Binding Protein (TBP)-Associated Factor
a SNP did not pass standard quality control checks in PLINK V1.07 using the recommended parameters published in [29, 30]
b Original GWAS reported results for rs7704909 that is in high LD (R2 = 1) with rs13176113
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rs4570625) [31, 42] showed no evidence for association, 
although rs4565946 indicated a weak nominally significant 
signal that did not pass the threshold for significance when 
corrected for multiple testing. Further investigation of the 
THP2 gene in our gene-based analysis and haplotype-based 
analysis of the haplotype rs4570625-rs4565946 showed 
no evidence for association. MAO-A is a well-known neu-
rotransmitter gene that is responsible for both the degrada-
tion of serotonin and dopamine [2] and while the MAO-A 
promoter variable number of tandem repeats polymorphism 
was previously implicated in TS by Díaz-Anzaldúa et al. 
[4], MAO-A SNPs were not implicated in our study.

Following the finding of Ercan-Sencicek et al. of a rare 
mutation in the Histidine Decarboxylase (HDC) gene in 
a TS family, the histamine pathway has garnered much 
interest [17, 35, 46]. HDC encodes for a gene necessary 
for the synthesis of histamine, that functions as a neuro-
transmitter but is also involved in gastric acid secretion, 
immune system, bronchoconstriction, and vasodilation 
[17, 35]. However, we did not find a significant associa-
tion for the HDC candidate gene or the previously impli-
cated HDC SNP rs854150; this is in contrast with several 
studies [17, 35, 46], but is consistent with the finding of 
others [6, 47, 48]. We further investigated the histamine 
pathway by investigating another pathway gene that was 
not previously investigated in relation to chronic tic dis-
orders: the histamine receptor H3 (HRH3) gene. Here, we 
also found no association between this gene and chronic 
tic disorders. Considering that the initial HDC mutation 
is extremely rare [17] and that TS is considered a hetero-
geneous disorder [2], it is therefore likely that variants in 
the HDC gene, or in a broader sense variants in the his-
tamine pathway, only cause tics in a subset of chronic tic 
cases.

Glutamate and gamma-aminobutyric acid (GABA) are 
major neurotransmitter pathways that may play a role 
in TS [5]. Glutamate and GABA play opposing roles 
as important excitatory and inhibitory neurotransmitter 
pathways in the central nervous system, respectively [2]. 
We did not find associations between chronic tic disor-
ders and the glutamate transporter (SLC1A1) gene that 
has been implicated in OCD [15], or the GABA-A recep-
tor, alpha 2 (GABRA2) gene that has been implicated in 
autism [14].

Moving away from neurotransmitter pathways, there 
is a growing body of literature [2] implicating SNPs in 
candidate genes with a more structural function such as: 
the BTB domain containing 9 (BTBD9), contactin asso-
ciated protein-like 2 (CNTNAP2), discs large homolog-
associated protein 3 (DLGAP3), SLIT and NTRK-like 
family member 1 (SLITRK1), and the tubulin folding 
cofactor D (TBCD) gene [39]. We found no evidence for 
an association between SNPs in these genes and chronic 

tic disorders. SLITRK1 is the most-studied gene and is 
functionally involved in neurite outgrowth [2]. We were 
unable to replicate the SLITRK1 SNPs rs9593835 and 
rs9531520 which is in line with most TS studies [49–53], 
but not others [38, 54, 55]. Because of the inconsistent 
results in the past, there is an ongoing discussion whether 
de novo or transmitted SLITRK1 variants contribute to TS 
[52]. Our findings do not support an association.

Further, our study was unable to demonstrate associa-
tions between chronic tic disorders and previously impli-
cated SNPs from GWAS of TS, OCD, ADHD, and ASD 
[6, 7, 20–25]. Particularly, we found no associations for 
the top five LD-independent SNPs from the first GWAS 
of TS [6], including the top signal (rs7868992). Unfortu-
nately, one of the top GWAS SNPs (rs2060546) did not 
pass standard quality controls checks, an SNP closest to 
NTN4, an axon guidance molecule expressed in develop-
ing striatum that was recently replicated by Paschou et al. 
[7].

A strength of our study is the well-characterized sam-
ple of parent–child trios. Use of TDT analysis eliminated 
population stratification bias, a major advantage over 
classical case–control studies [11]. Our post hoc power 
analyses demonstrated that, based on reported effect 
sizes, our study was sufficiently powered to detect associ-
ations for most of the previously implicated TS candidate 
SNPs. However, this was not the case for one of the can-
didate SNPs from SLITRK1 and one from DLGAP3. As 
another strength, we used the large TSAICG case–control 
study [6] as a comparison sample of our nominally sig-
nificant findings. A limitation of TDT is that only the het-
erozygous parents are informative. SNP loci that are less 
polymorphic are not optimally studied by this method. 
Importantly, it should also be noted that our study 
focused solely on SNPs rather than rare copy number var-
iations (CNVs) or repeat polymorphisms. Thus, non-sig-
nificant genes such as MAO-A and COMT may still play a 
role in TS through these other variant types [16, 56]. Our 
study also does not rule out that the investigated genes 
could still be involved in gene–gene interactions and 
gene–environment interactions or through rare mutations 
that can only be revealed through targeted re-sequencing 
[57]. For example, Alexander et al. found four deleterious 
mutations in the SLITRK1 gene and one deleterious muta-
tion in the HDC gene [57]. Finally, while we attempted 
to include as many candidate genes and SNPs available 
with promising evidence, we are aware that our selection 
does not include every single SNP implicated by previous 
studies. However, we believe that our selection is a good 
representation of the most important candidate genes and 
SNPs in the TS literature, as reviewed in [2].

In conclusion, following corrections for multiple test-
ing, our TDT study did not show statistically significant 
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associations between chronic tic disorders and previ-
ously implicated SNPs and tSNPs within neurotransmit-
ter-related candidate genes. Moreover, our nominally 
significant findings were not replicated in an independ-
ent cohort. This highlights the importance of exceptional 
caution in interpreting results from previous SNP-based 
candidate gene studies. The efforts in discovering genetic 
loci involved in TS etiology are comparable to other 
neuropsychiatric disorders where candidate gene studies 
have also shown non-replication across studies [43, 44]. 
Similar to conditions such as ASD [14], the genetic archi-
tecture of TS likely involves complex and heterogeneous 
inheritance of both common and rare variants in many 
different genes and biological pathways. Genome-wide 
studies of large cohorts that capture all of these types of 
variation and targeted re-sequencing efforts to detect rare 
mutations (also addressing candidate genes) could be bet-
ter suited for studying the complex neurobiology of TS 
and chronic tic disorders. Also the use of polygenic risk 
scores could further enhance understanding the relevance 
of common TS-related SNPs [20]. Meta-analytic studies 
are currently underway that may further clarify or rule out 
the possible involvement of the candidate genes TBCD, 
TPH2, SLC1A1, and SLC6A3, and SNPs from GWAS 
studies, i.e., the intergenic SNP variant rs11603305 and 
rs621942 of the PICALM gene which were all nominally 
significant in our study.
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