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Abstract
Introduction Curettage with cement augmentation is a technique used in the treatment of bone tumours. Thermal energy 
released during the cement polymerisation process can damage surrounding tissues. This study aims to record temperature 
changes at various sites on and around bone during the cementing process. We hypothesised that adjacent structures, such 
as the radial nerve, may be threatened by this process in the clinical setting.
Materials and methods Using 18 porcine femurs as a model of the human humerus, we used thermocouples and a thermal 
imaging camera to measure changes in temperature during the cementing process. Fractures were created in nine samples 
to establish whether a discontinuity of the cortex had an effect on thermal conduction.
Results Significantly higher temperatures were recorded in samples with a fracture compared to those without a fracture. The 
site overlying the centre of the cement bolus (hypothetical site of the radial nerve) demonstrated higher temperatures than 
all other sites on the same cortex. When considering the radial nerve site, over half the samples demonstrated temperatures 
exceeding 47 °C for over a minute. When a threshold of 50 °C for more than 30 s was considered, three samples without a 
fracture exceeded this value compared to two with a fracture.
Conclusion The temperatures recorded were sufficient to cause damage to neural tissue. Limiting thermal exposure to soft 
tissues is recommended. Increased attention is required when using larger cement boluses, or where bone quality is poor or 
a fracture, iatrogenic or preexisting, is present.
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Introduction

Curettage and polymethylmethacrylate (PMMA) bone 
cement implantation can be used in the surgical manage-
ment of lytic lesions of long bones [1]. Thermal energy is 

released during the exothermic polymerisation process of 
cement curing. Thermal energy has the beneficial effect of 
killing any remaining tumourous cells and reducing the inci-
dence of recurrence [2–4]; however, increases in temperature 
can lead to bone necrosis [4, 5], chondrocyte damage [6], 
and even skin damage [7].

PMMA cement used in vertebroplasty has been linked 
with damage to surrounding soft tissue, including the adja-
cent nerve roots [8]. Thermal damage to nerve tissue is 
dose and time dependent in rat models at temperatures of 
43–45 °C [9] and in porcine nerve tissue, temperatures of 
60–70 °C for 5 min have demonstrated severe neural degen-
eration [10].

We hypothesised that treatment of lytic bone lesions 
at the level of the spiral groove treated with curettage and 
cementing may expose the radial nerve to elevated temper-
atures. Cases of radial nerve palsy have been seen when 
cement is used in surgical procedures involving the humerus, 
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in particular revision arthroplasty [11]. We sought to find the 
maximum temperatures generated during the cement poly-
merisation process.

In this study, we used porcine femurs as a model due to 
their morphological similarity in the diaphysis to the human 
humerus. 15–20% of patients presenting with a giant cell 
tumour have a fracture [3]. We further hypothesised that a 
fracture, or a breach in the cortex, could lead to increased 
thermal exposure of the overlying nerve that may be suffi-
cient to increase the risk of neurological damage.

Methods

Procedure

18 porcine femurs were obtained from a local abattoir. To 
prepare the lytic defects, for each specimen, square windows 
(12 mm sides) were cut into the dorsal cortex just proximal 
to the femoral condyles using a 2.5-mm drill and osteotomes 
(see Fig. 1). Via this window, bone and marrow were curet-
ted out until the cavity could accommodate 15 ml of water 
(15 cm3, with water level flush with the outer cortex). 9 of 
the 18 bones were prepared to simulate a fracture at the 
cavity site. The fractures were produced by cutting into the 
bone using a fine saw blade to produce a discontinuity in the 
cortex. Fracture lines were of full cortical thickness. To be 
reproducible, all fracture lines extended from the mid-point 
of the window on the dorsal aspect of the bone circumfer-
entially to the mid-point of the bone on the anterior cortex 
perpendicular to the longitudinal axis (Fig. 2).

The bone was stabilised to the work surface using two 
bench clamps. A system of eight thermocouples was then 
used to measure temperatures at the following sites: anterior 
aspect, cement surface, cement–bone interface, 5 mm from 

cement–bone interface, 10 mm from cement–bone interface. 
Thermocouples were then placed on the dorsal cortex (oppo-
site side to the window) at the following sites: mid-point of 
cement bolus (worst case scenario position of radial nerve), 
proximal edge of cement bolus, 5 mm from proximal edge 
of cement bolus, and 10 mm from proximal edge of cement 
bolus (Fig. 3). Data from the thermocouples were processed 
by an 8-port Thermocouple Datalogger (PICO technology 
TC-08; St Neots, England). Data were recorded in an Excel 
spreadsheet (Microsoft Corporation, Redmond, Washington, 
USA).

A thermal imaging camera (FLIR systems, West Mall-
ing, England) was placed 1 m from the anterior cortex and 
centred over the position of the cement bolus. Images were 
taken every 20 s. The emissivity value was set to 0.99 [12] 
(Fig. 4).

Palacos (Heraeus, Wehreim, Germany) bone cement with 
gentamicin was vacuum mixed following the manufacturer’s 
instructions. Cement was injected into the cavity and finger 
pressurisation was used to ensure the cavity was filled and 
a 15 cm3 bolus was achieved. The surface of the bolus was 
left flush with the cortex as far as possible to leave minimal 
cement outside the bone. Cement did not extrude from the 
fracture lines (Fig. 5).

Data collection was commenced at 300 s after the initia-
tion of cement mixing and continued for 600 s (10 min). 
Data were collected at 10-s intervals.

Statistical methods

A power calculation was performed on data from a previous 
pilot study performed by our group. (Results presented at the 
British Orthopaedic Oncology Society meeting, Dartmouth-
Hitchcock Medical Centre, Oxford, 2015). In this study, 12 Fig. 1  Porcine femur showing 12-mm/12-mm window

Fig. 2  Porcine femur demonstrating ‘fracture line’ extending to ante-
rior cortex
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samples were prepared with a curetted lesion and uninten-
tional fractures occurred in 2 of the specimens at the site 
of the curetted lesion. The mean temperature recorded on 
the dorsal cortex in the no-fracture specimens was 31.2 °C 
(standard deviation 2.5) and the mean in the fracture speci-
mens was 42.1 °C giving an effect size of 5.87. For a two-
tailed non-parametric test with equal allocation ratio, an 
alpha value of 0.05 and a power of 0.99 a minimum total 
sample size of 8 would be required. We decided to use twice 
this number to insure against data loss during recording or 
problems with sample preparation.

The D’Agostino and Pearson test was applied to the data 
to determine whether the data were normally distributed. 
Correlation between the data recorded by the thermal cam-
era and the thermocouples for each sample was tested with 
a Spearman rank correlation test. Correlation was ranked as 
very weak if r = 0–0.19, weak if r = 0.2–0.39, moderate if 
r = 0.4–0.59, strong if r = 0.6–0.79 and very strong if 0.8–1.

Group data were compared with a Mann–Whitney test 
with two-tailed p values. When comparison was made 
for paired data (e.g. individual thermocouple readings), a 
Friedman test was used with Dunn’s correction for multiple 
comparisons.

Categorical data between groups were analysed with a 
chi-square test and results for relative risk (RR) with 95% 
confidence intervals (95% CI) are presented.

Results

For the samples with no fracture, the correlation between 
the temperatures recorded by the thermal camera and 
the thermocouples on the near cortex (thermocouples 
1–4) was very strong (r > 0.8) in all but two thermocou-
ple recordings (r = 0.61 and r = 0.53). The correlation 

Fig. 3  Demonstrates experimental set-up, with and without fracture

Fig. 4  Showing thermocouple set-up at proposed site of radial nerve

Fig. 5  Porcine femur showing cavity filled with cement
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between the readings for samples with a fracture was 
strong or very strong (r = 0.61–0.99). For thermocouples 
placed on the far cortex at the site of the radial nerve, the 
correlation was very strong (r > 0.8) in all but one record-
ing (r = 0.73), for thermocouples elsewhere on the far cor-
tex, the correlation was less strong and as the distance 
from the centre of the cement bolus increased, became 
negative in the majority of cases (Table 1).

When the data between the samples with no fracture 
were compared to the data for samples with a fracture, 
as recorded by the thermal camera, significantly higher 
temperatures were recorded in the fracture group (median 
35 °C (IQR 24–44) c.f. 26 °C (IQR 23–44), p = 0.028; 
Table 2).

When the data for the individual thermocouples were 
compared between samples with a fracture or no frac-
ture, there was no significant difference for thermocouple 
1 (cement surface temperature; p = 0.24). There was a 
statistically significant difference for all other thermo-
couples with the samples with a fracture showing higher 
temperatures than samples without a fracture (p ≤ 0.005; 
Table 2).

When the data from the thermocouples on the far cor-
tex, which are representative of the potential thermal 
exposure of a nerve overlying said cortex, were consid-
ered for samples with no fracture, a significant difference 
was observed between the thermocouples according to 
their distance from the centre of the bolus (Friedman test, 
p < 0.0001). The temperature recorded by the thermocou-
ple overlying the centre of the bolus was significantly 
higher than all of the other thermocouples on the far cor-
tex (Dunn’s multiple comparison test; p ≤ 0.0001). When 
the same comparison was performed for samples with a 
fracture, the same pattern was repeated (Dunn’s multiple 
comparison test; p ≤ 0.003).

Given the small absolute differences in the observed 
temperatures, attention was then turned to the time spent 
in excess of temperatures that may result in nerve dam-
age. Due to strong correlation between the two measure-
ment modalities, we have opted to use only the thermal 
camera data to present this. For the data recorded by 
the thermal camera, five out of nine samples without a 
fracture with complete data recorded a temperature in 
excess of 47 °C for more than 1 min compared to four 
out of nine samples with a fracture [p = 1.00; RR = 1.25 
(0.49–3.12)]. When a threshold of 50 °C for more than 
30 s was considered, three samples without a fracture 
exceeded this value compared to two with a fracture 
[p = 1.00; RR = 1.50 (0.32–6.95)] (see Fig. 6 in Appen-
dix 1 and Fig. 7 in Appendix 2). No samples in either 
group exceeded a threshold of 55 °C. When the far cortex 
thermocouple data were considered (thermocouples 5–8), 
no samples exceeded 47 °C.

Discussion

The results demonstrate the elevated temperatures that 
surrounding tissues are subjected to during the cementing 
process. Temperatures achieved at the site of the overlying 
radial nerve were well above body temperature. In five out of 
nine samples without a fracture and four out of nine samples 
with a fracture the thermal camera recorded temperatures 
exceeding 47 °C for over 1 min. The maximum temperatures 
demonstrated by thermocouple 5, the hypothetical position 
of the radial nerve, were reassuring overall.

The samples with fractures demonstrated significantly 
higher average temperatures in all thermocouples and the 
thermal camera data, suggesting that the fractures lead 
to increased conduction of thermal energy, but interest-
ingly the no-fracture group was shown to maintain thermal 
energy for longer. We speculate that discontinuity in the 
cortex leads to faster dissipation of thermal energy.

Multiple studies have demonstrated tissue damage to bone 
and cartilage as a result of thermal energy from bone cement 
[2–4]. Whilst neural tissue damage has been postulated in 
the use of cement in vertebroplasty [8], the possible effects 
of cementation on local peripheral nerves is unclear.

Damage to nerve tissue has been demonstrated at tem-
perature of 43–45 °C [9]; however, this was shown to be time 
dependent. The temperatures reached in both the fracture 
and no-fracture group were reassuring relative to this regard-
ing thermocouple 5. The thermal camera did demonstrate 
higher temperatures exceeding 47 °C. However, despite this 
we do not believe this would lead to an increased risk of 
radial nerve damage due to the limited time over which the 
radial nerve would be exposed to excessive temperatures. In 
addition, thermal camera data depicting maximum tempera-
ture would only have been representative of a small area of 
bone and would likely not have affected a significant pro-
portion of the traversing radial nerve. A discontinuity on 
the cortex of the bone may subject the nerve to further rises 
in temperature. But again we would suggest that the risk of 
damage to the nerve, whilst possible, would be low seeing 
as the fractured bones appeared to dissipate thermal energy 
more quickly than the non-fractured bones.

There are limitations of this study that must be considered 
when interpreting the results. The bones used were from dif-
fering porcine subjects and, therefore, there may have been a 
variation in general dimensions and cortical thickness. This 
made creating completely equal fracture sizes difficult, whilst 
we were certain of cement bolus size, controlling the distri-
bution of the cement bolus was more challenging. The study 
could be repeated with imaging of each subject to assess the 
distribution of each cement bolus. The cement bolus size 
used was small at 15 cm3. In theory, larger cement boluses 
may be used in the clinical setting. Larger boluses are likely 
to produce more thermal energy. In addition, we have no data 
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on the quality of the bone used or histological analysis of 
the specimens after experimentation. Whilst we considered 
the porcine femur to be a close representation of the human 
humerus in size, we have to bear in mind that it is a weight-
bearing bone and may have very different qualities in terms 
of cortical thickness and bone mineral density. Conversely, 
whilst efforts were made to limit heterogeneity between test 
subjects during this project, patients presenting with tumours 
of the humerus will have a broad range of characteristics.

Whilst the results of this experimental study are reassuring 
with regard to the possibility of radial nerve damage due to 
thermal injury during curettage and cementing of lytic lesions 
of the humerus, we would advise that caution is taken when 
large boluses are used or the nerve directly overlies the site.

In cases with added variables, for example, larger cement 
boluses, osteoporotic bone with thin cortices, increased bone 
loss or extensive fracture patterns; the potential of risk of 

thermal injury to adjacent structures to the bone should be 
considered.
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Table 1  Spearman rank 
correlations between thermal 
camera and thermocouple data 
for each sample (samples 17 
and 19 were excluded due to 
incomplete data)

Sample Therm 1 Therm 2 Therm 3 Therm 4 Therm 5 Therm 6 Therm 7 Therm 8

1 (no#) 0.94 0.99 0.83 0.61 0.99 0.93 0.61 0.49
2 (no#) 0.98 0.91 0.87 0.85 0.98 0.77 0.46 0.10
3 (no#) 0.95 0.95 0.93 0.89 0.98 0.89 0.86 0.07
4 (no#) 0.99 0.98 0.92 0.92 0.99 0.72 0.47 0.41
5 (no#) 0.95 0.96 0.93 0.93 0.97 0.94 0.89 0.85
6 (no#) 0.87 0.89 0.87 0.87 0.90 0.90 0.90 0.89
7 (no#) 0.98 0.85 0.82 0.53 0.96 0.78 0.69 0.20
15 (no#) 0.96 0.95 0.95 0.94 0.73 0.56 0.25 − 0.58
16 (no#) 0.89 0.93 0.94 0.92 0.97 0.79 0.52 0.13
8 (#) 0.97 0.93 0.90 0.90 0.96 0.65 0.51 − 0.06
9 (#) 0.93 0.91 0.72 0.65 0.91 0.94 0.88 0.78
10 (#) 0.91 0.95 0.76 0.61 0.88 0.82 0.79 0.60
11 (#) 0.96 0.79 0.74 0.73 0.96 0.81 0.75 0.53
12 (#) 0.99 0.75 0.71 0.69 0.91 0.58 − 0.02 − 0.83
13 (#) 0.98 0.97 0.89 0.67 0.99 0.85 0.43 − 0.67
14 (#) 0.90 0.90 0.88 0.84 0.89 0.31 − 0.08 − 0.79
18 (#) 0.92 0.90 0.87 0.87 0.91 0.88 0.80 0.60
20 (#) 0.95 0.93 0.84 0.82 0.91 0.84 0.84 0.83

Table 2  Mann–Whitney two-
tailed p value test for difference 
between samples with and 
without a fracture by thermal 
camera or thermocouple

Median (IQR) temperature (°C) 
of samples with no fracture

Median (IQR) temperature (°C) 
of samples with a fracture

p value for 
Mann–Whitney 
test

Thermal camera 25.9 (22.8–44.4) 34.6 (24.4–43.7) 0.028
Thermocouple 1 26.2 (21.3–44.2) 35.7 (23.2–42.7) 0.24
Thermocouple 2 21.2 (20.2–29.6) 25.0 (21.7–30.1) 0.0005
Thermocouple 3 20.3 (19.6–25.1) 22.7 (21.2–27.8) < 0.0001
Thermocouple 4 19.3 (19.0–21.4) 22.7 (21.2–27.8) < 0.0001
Thermocouple 5 21.6 (20.4–30.2) 25.1 (21.4–30.3) 0.0047
Thermocouple 6 20.3 (20.1–23.3) 21.8 (21.2–26.2) < 0.0001
Thermocouple 7 20.2 (20.1–21.4) 21.3 (21.1–23.7) < 0.0001
Thermocouple 8 20.0 (19.8–20.4) 21.1 (20.8–21.6) < 0.0001
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Appendix 1

See Fig. 6.

Appendix 2

See Fig. 7.
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