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Introduction

To develop new therapeutic approaches towards curing 
any given disease, it is necessary to gain an understand-
ing of the mechanisms that cause the illness, contribute 
to its progression and prevent its treatment. For multiple 
sclerosis (MS), an incurable neurological disorder mainly 
affecting young adults, medical science is still struggling 
to grasp the underlying pathological processes. The inflam-
matory component of the disease is obvious, and this is 
further supported by the recently identified risk genes that 
play a role in both adaptive and innate immunity [89, 107]. 
Though the neurodegenerative component of the disease 
had already been described in the 19th century—even in 
the original descriptions by Charcot [24]—there is a recent 
revival of research interest in the CNS tissue component of 
the disease. Several observations suggested that neurode-
generation plays a central role in disease development and 
progression. EM studies have shown that myelin degen-
eration starts at the inner myelin sheaths, instead of on 
the outside as would be expected if caused by an external 
immune response [123]. Also, there are strong indications 
that disturbed axoglial support can feed neurodegenerative 
processes [144]. Already at the time of the first attack in 
children, axoglial proteins appear abundant in CSF [134]. 
As shown in non-human primates, such markers of CNS 
tissue damage can induce further autoimmune neurological 
disease [55].

Furthermore, there are indications that once neurodegen-
erative damage occurs, this progresses in an autonomous 
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mode, irrespective of adaptive immune reactions [43]. This 
may account for the observation that immune modulating 
drugs, though quite effective in suppressing inflammatory 
attacks, fail to halt progression, especially when started 
in later phases when demyelinating damage has already 
occurred [56]. A better understanding of the mechanisms 
involved in the neurodegenerative component of MS could 
potentially lead to new treatments, aimed at slowing down 
or preventing the disability caused by neuronal loss.

The cellular processes enabling neurons to generate and 
transmit signals demand high amounts of energy in the 
form of ATP. At the same time the central nervous system 
contains very little energy reserves [4]. This combination 
makes neurons highly vulnerable to energy deficits, which 
are considered to play a crucial role in neurodegeneration. 
As in other cell types, the main energy source of the neu-
ron is ATP production by the mitochondria, with defects in 
mitochondrial function being highly associated with neuro-
degeneration (reviewed in [90]). During the course of MS, 
neurons become even more vulnerable to energy deficits 
when they lose their myelin sheaths, increasing the energy 
needed to propagate a signal along the axon and to main-
tain the action potential [19, 145].

Not only do neurons have a high energy demand, this 
demand is also distributed unevenly throughout the cell and 
shifts over time, depending on the activity of the cell and 
its neighbors. To facilitate the need for ATP, mitochondria 
are transported by motor proteins along the cytoskeleton to 
areas with high cellular activity, where they are anchored to 
the microtubule [13, 18, 129, 149]. Defects in this transport 
system are found in a large variety of neurodegenerative 
disorders including Alzheimer’s disease [122], amyotrophic 
lateral sclerosis (ALS, [11]) and Huntington’s disease [87], 
and are now recognized to be one of the main underlying 
mechanisms of neurodegeneration [31, 103, 106].

For the transport system to function with high efficiency 
required to maintain neuronal integrity, at least three con-
ditions should be met. First of all, the infrastructure along 
which transport takes place, consisting of microtubules 
[152] and actin networks [25], must be intact for a cargo 
to reach its destination. However, infrastructure is useless 
without transporters to use it. Therefore, the motors and 
their adaptor proteins must be present in sufficient num-
bers and fully functional [59, 127]. Finally, for any com-
plex transport system to work efficiently, control and guid-
ance mechanisms should be in place [99, 150]. For axonal 
transport, regulation takes place through various mecha-
nisms including chemical modification of the microtubules 
[52, 68], calcium sensor proteins [18, 98] and anchoring 
proteins docking cargo at the desired destination [17, 73]. 
Defects in any part of this system reduce its effectiveness 
and put the neuron at risk for degeneration.

A role for axonal transport in neurodegeneration has 
been shown to exist in a large number of different neuro-
logical disorders. In this review, we explore the current 
evidence pointing at axonal transport deficits in MS and 
discuss several mechanisms that can explain its role. Based 
on the increased understanding of these mechanisms, we 
will propose several scientific and therapeutic approaches 
which might be of interest to the MS research field in the 
coming decade.

Axonal transport in multiple sclerosis

To understand the molecular basis of neuronal dysfunc-
tion in disease, much depends on the selection of a proper 
model. Experimental autoimmune encephalomyelitis 
(EAE) is a commonly used model for MS [8]. Many vari-
ants exists, with the common characteristic that through 
injection of a myelin component, combined with an immu-
nogenic adjuvant, an immune response is triggered against 
the CNS myelin [48]. Although the resulting disease exhib-
its more characteristics of an inflammatory neuropathy 
than a true demyelinating disease of the central nervous 
system, it remains the closest animal model available for 
MS [7, 119]. Interestingly, deficits in axonal transport are 
one of the earliest pathological findings in EAE, preceding 
structural abnormalities and other signs of axonal degen-
eration. Even before demyelination took place, both antero-
grade and retrograde transport of mitochondria was drasti-
cally reduced and remained down-regulated for weeks in a 
chronic EAE model [136]. This is in line with earlier find-
ings in the optical nerve of EAE animals, where a reduced 
transport of radioactive markers [51] and manganese ions 
[91] were shown. These EAE findings suggest that altera-
tions in axonal transport form one of the first steps towards 
loss of the axon in multiple sclerosis models [32].

Many different factors contribute to MS susceptibility, 
including gender, environment, exposure of the immune 
system to pathogens and genetics (reviewed in [10, 27]). 
For decades, the only genetic risk factors known for MS 
were variations in the genes encoding human leukocyte 
antigens (HLAs, [69]). However, in recent years more than 
110 genetic variants outside of the histocompatibility com-
plexes have been found that each contribute to suscepti-
bility to MS (reviewed in [126]). The vast majority of the 
proteins encoded by these genes either have a function in 
the immune system, primarily as part of a signaling path-
way. Interestingly, several of the genes that do not fall in 
this category are involved in axonal transport. This includes 
three kinesin family member proteins (KIFs), the molecu-
lar motors responsible for anterograde transport along 
microtubules.
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One of the KIFs that have been studied in the context 
of MS is Kif1b, a motor protein with at least two iso-
forms transporting mitochondria and synaptic vesicles 
[28, 104]. An effect of a SNP in Kif1b on MS suscepti-
bility was first identified in a genetically isolated Dutch 
population. It was replicated in the same study in a sec-
ond Dutch, a Swedish and a Canadian cohort [6]. Previ-
ous studies had already implicated this specific kinesin 
in the pathogenesis of Charcot-Marie-Tooth disease type 
2A (CMT2A, [161]), a disorder of the peripheral nervous 
system showing myelin degeneration and associated with 
axonal transport impairments [44], suggesting that this 
mechanism was shared by both disorders. A more recent 
study showed that in zebrafish, Kif1b is essential for 
development of myelinated axons [96]. However, several 
attempts to replicate the genetic association, including 
a large multicenter study [16], failed to show a similar 
effect. Although this difference could be a consequence 
of the specific characteristics of this Dutch population, in 
which the control allele frequency of the gene was signif-
icantly lower than in the general population [58], it does 
appear that this gene does not contribute to MS suscepti-
bility worldwide [50].

A second KIF was implicated when a large interna-
tional consortium found an association between Kif21b 
and MS susceptibility [66], later replicated in an inde-
pendent Belgian cohort [49]. In neurons, Kif21b is 
enriched in the dendrites and involved in the transport 
of vesicles containing GABA receptor subunits [83]. 
It is similar in structure to Kif21a, a kinesin associated 
with congenital fibrosis of the extra-ocular muscles type 
1 (CFEOM1, [157]). Interestingly, rather than perform-
ing a transport function, Kif21a acts as a regulator of the 
cytoskeleton, inhibiting microtubule growth at the cell 
cortex [148]. A recent study shows that kif21b can act as 
both a transporter and a microtubule regulator, depend-
ing on the level of neuronal activity [46]. Kif21b has also 
been found associated with an increased susceptibility to 
other autoimmune disorders such as rheumatoid arthritis 
[88].

A third association was found in a Spanish study, which 
identified a SNP in Kif5a as a risk factor for MS [3]. Kif5a 
is involved in the transport of neurofilament and mito-
chondria along microtubules [156] and forms a dimer with 
either Kif5b or Kif5c to transport mitochondria in axons 
[128]. In zebrafish, cooperation between Kif5a and Kif1b 
is essential for maintaining axon integrity, with Kif5a tak-
ing over part of the tasks of Kif1b when this protein is 
lost and vice versa [21]. Kif5a has been implicated in sev-
eral axonopathies, including CMT2 [93]. These findings 
strongly suggest that variations in Kif5a can contribute to 
neurodegeneration in MS, especially in combination with 
similar variations in Kif1b and/or Kif21b.

Transport deficits in MS neuropathology

A histopathological hallmark of a defective axonal trans-
port system is the accumulation of organelles and proteins, 
resulting in detectable aggregates and axonal swelling. A 
commonly used marker for disrupted axonal transport is 
the amyloid precursor protein (APP). In healthy neurons, 
this protein is transported through the axon to its final loca-
tion in the synapse [118]. If the transport system works at 
suboptimal efficiency, APP will accumulate in the axon. 
Several studies have reported that such accumulations can 
indeed be observed in post-mortem investigations of the 
brains of MS patients [41], in some cases independent of 
demyelination [12]. APP accumulation occurs already 
during the early phases of the disease, with the num-
ber of APP-positive axons showing a positive correlation 
with disease duration [82]. A detailed study using both 
APP and the synaptic vesicle protein SPY as markers for 
axonal transport, found that accumulation of these proteins 
occurs not only in active demyelinating lesions, but also 
in normal appearing white matter. Also, the motor protein 
KIF5A, as well as its associated cargo is found reduced in 
MS white matter [54], suggesting a reduced activity of the 
axonal transport system. Since the intracellular transport 
system is essential in developing and maintaining dendritic 
spines [147], a reduced efficiency of this system might also 
explain the recent observation that the number of spines is 
significantly reduced in the cortex of MS patients [71].

A special challenge for intracellular transport is to match 
the distribution of mitochondria to the local ATP consump-
tion. Although mitochondria are essential for ATP produc-
tion, aging mitochondria become a source of radical oxy-
gen species (ROS) contributing to neurodegeneration [20, 
40]. The axonal transport system is able to distinguish 
decaying mitochondria based on their membrane potential, 
moving active mitochondria with a high membrane poten-
tial to the sites where ATP is required. In contrast orga-
nelles with a low membrane potential will be transported 
back to the cell body for autophagy [40]. This means that 
both a reduced number of mitochondria as well as a per-
sistence of aging mitochondria at the cell periphery pose a 
threat to axonal integrity. A number of post-mortem stud-
ies have shown that both situations can exist in the brains 
of MS patients. Several components of the mitochondrial 
respiratory chain were found reduced in activity, including 
complex I [94], III [34] and IV [101]. Demyelinated axons 
in the brains of MS patients were found to have a greater 
mitochondrial mass compared to myelinated axons and a 
higher expression of the docking protein syntaphilin [101]. 
This might initially be a protective mechanism. A larger 
number of mitochondria is transported to meet the higher 
ATP demand and is actively anchored to the microtubule 
network, prolonging the period the neuron can survive 
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without myelin [111]. The mitochondrial density slightly 
decreases when axons are remyelinated, but remains high 
compared to myelinated axons. This higher density is 
entirely due to a larger number of stationary mitochondria, 
with the number of mobile mitochondria actually decreas-
ing upon demyelination [159]. Taken together, these studies 
suggest that transport of mitochondria plays an important 
role in the neuronal response to the energy deficit faced in 
MS lesions.

Transport deficits aggravate neurodegeneration

The previous paragraphs have shown that there is clear evi-
dence for transport deficits in MS. It is not so clear, how-
ever, how these deficits lead to axonal loss. One straight-
forward explanation would be that a reduced transport of 
active mitochondria leads to reduced ATP production in the 
axon. In demyelinated axons of MS patients, sodium chan-
nels normally restricted to the nodes of Ranvier are now 
expressed along large regions of the axon [29]. A similar 
ectopic distribution is reported for calcium channels [80]. 
This will put additional strain on the neuron, since to main-
tain its membrane potential and prevent calcium toxicity 
both sodium and calcium have to be transported out of the 
cell using ATP-consuming transporters. Once ATP supplies 
are depleted, calcium in the axoplasm will rise to toxic lev-
els, initiating a cascade resulting in axonal loss (reviewed 
in [138, 145]). Initially, the neuron will respond to the 
increased energy need by stimulating the transport of mito-
chondria, as observed in vitro [79] and in MS tissue [111], 
leading to an increased density of mitochondria in dysmy-
elinated axons of MS patients [19, 100, 154]. Although the 
cell is able to maintain its axon for a short period in this 
‘overload mode’, if the situation persists for too long, local 
ATP supplies will fall and axon integrity will be lost. This 
hypothesis is supported by the observation that reduced 
mitochondrial mobility alone, without accompanying stress 
to the neuron, is sufficient to cause neurodegeneration 
[110].

As mentioned before, demyelinated axons show an 
increased expression of syntaphilin, a protein thought to 
anchor mitochondria to the microtubules, prohibiting their 
transport and providing a stable local source of ATP [101]. 
The shiverer mouse, which shows severe dysmyelination 
of the CNS, is considered a model for progressive MS due 
to the metabolic challenges its axons face as a result of 
chronic myelin loss. As in MS patients, a highly significant 
upregulation of syntaphilin was observed in axons of this 
mouse, associated with an increase in non-motile mitochon-
dria. Interestingly, reducing the expression of syntaphilin 
by crossing the shiverer mouse with a syntaphilin knock-
out line enhanced the transport of mitochondria from the 

axon back to the soma. Moreover, syntaphilin deletion also 
proved protective against both gray and white matter dam-
age in the mouse, although it did not influence the outcome 
of EAE [70]. This indicates that a drug interfering with the 
binding between syntaphilin and either mitochondria or 
microtubule might theoretically reduce neurodegeneration 
in progressive multiple sclerosis by improving mitochon-
dria mobility.

Mitochondria are just one of the cargoes transported 
along microtubules. Vesicles containing a large variety of 
proteins, mRNA and membrane lipids are ferried through 
the cell. In the oligodendrocyte, the transport of mRNA by 
kinesins along microtubules is essential for the proper pro-
duction of myelin [9, 22, 96]. However, production alone 
is not enough to myelinate an axon. A complex interplay 
is required between oligodendrocyte and axon, commu-
nicating through cell–cell adhesion molecules (reviewed 
in [130, 133]). These adhesion molecules are organized 
in sharply demarcated membrane domains through inter-
action of the adapter protein 4.1B with the underlying 
actin cytoskeleton [37, 61]. Formation of these domains, 
the so-called paranodal junctions, is highly dependent on 
contactin-associated protein (Caspr [38]). Interestingly, 
the shm mouse in which the axonal transport of Caspr has 
been disrupted shows a distortion of myelin sheaths in the 
central nervous system, resulting in a reduced conduction 
velocity and a neurological disorder characterized by ataxia 
and hind limb paresis [141]. Downregulation of Caspr has 
also been observed in MS lesions, where it is considered an 
early sign of impending myelin loss [155]. This suggests 
a different route through which disruption of axonal trans-
port can contribute to neurodegeneration, by cutting off 
the supply of adhesion molecules required to maintain the 
neuron-oligodendrocyte.

Even though an axon denuded of its myelin is at high 
risk of degeneration, if it is able to survive, remyelina-
tion might occur [42]. As is the case in the initial myeli-
nation of the axon, remyelination depends on a number 
of signaling pathways activated through axon-glia cel-
lular adhesion molecules (reviewed in [142]). At least 
one of these adhesion molecules, Neuregulin 1, has been 
shown to depend on vesicle trafficking for its expres-
sion in the proper location on the membrane [108]. One 
pathway promoting oligodendrocyte proliferation and 
(re-)myelination is by activation of the Notch-pathway 
by F3/Contactin [63]. Upregulation of F3/Contactin in 
denuded axons as observed in MS lesions [109] is con-
sidered essential for successful remyelination [117]. F3/
Contactin travels to the plasma membrane via a route 
that bypasses the Golgi apparatus [14, 15]. Although 
this means that delivery of the protein to the membrane 
can be facilitated in a microtubule-independent man-
ner, the polarized trafficking of membranes to specific 
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compartments still requires delivery through endosomes 
via the cytoskeleton [74, 85]. A less efficient transport 
would lead to a slower initiation of remyelination, pro-
longing the period of demyelination stress and thereby 
increasing the risk of axonal loss.

Local inflammation and neurodegeneration 
aggravates transport deficits

As described in the previous paragraphs, there are vari-
ous ways in which axonal transport deficits influence 
neurodegeneration. However, the opposite is also true, 
with the biochemical environment existing during inflam-
mation and neurodegeneration affecting the transport 
system. This is valid for mechanisms seen in a variety of 
neurodegenerative disorders, such as glutamate toxicity 
and mitochondrial decay, as well as for events more spe-
cific to MS, such as inflammation and demyelination.

Demyelination leads to dysregulation of axonal 
transport

Although axonal transport functions properly in indi-
vidual neurons in culture, several studies have shown 
that myelination plays an important role in its regulation. 
In co-cultures of neurons and oligodendrocytes, myeli-
nation is often incomplete, with only parts of the axon 
covered with a myelin sheath. These myelinated sections 
show a local slowing of axonal transport, resulting in a 
locally increased axon diameter [105]. Oligodendrocyte-
axon interactions lead to specialization of segments of 
the axons around the nodes of Ranvier. These paran-
odal regions show a significantly larger mitochondrial 
content and increased speed of mitochondrial transport. 
In a myelin deficient mouse, mitochondria are local-
ized throughout the axon and transported with a uniform 
speed [112]. Furthermore, in mice with a null mutation of 
the myelin Plp gene, a model system for hereditary spas-
tic paraplegia type 2, an impairment of both anterograde 
and retrograde transport in axons was observed [36]. A 
recent study of this model showed microtubule pathol-
ogy, mitochondrial degeneration and reduced ATP in the 
axon [158]. One could argue that this impairment is due 
to the energy deficit and calcium influx associated with 
demyelination. However, a similar phenotype is observed 
in the CNP knockout mouse, in which myelin assembly 
is normal but only the signaling between oligodendrocyte 
and axon is disrupted [84]. One possible explanation for 
the disruption of transport could be a local drop in ATP, 
since the mitochondria in the axon partially depend on 
lactate supplied by oligodendrocytes [86, 125].

Inflammation leads to cytoskeleton destabilization

In active inflammatory lesions, the activated T-cells that 
have infiltrated the CNS induce microglia to produce tumor 
necrosis factor alpha (TNF-α, [23]). Apart from its function 
in regulating the immune response, exposing cells to high 
concentrations of this cytokine also leads to destabiliza-
tion of microtubules and loss of cell integrity [115, 132]. 
As of yet, the exact mechanism through which TNF-α 
leads to microtubule destabilization remains unknown. It 
is possible this effect is mediated through glutamate toxic-
ity, as TNF-α induces secretion of glutamate while at the 
same time decreasing the glutamate uptake by glia cells 
[113]. However, TNF-α also leads directly to dissociation 
of KIF5B from the microtubule through phosphorylation of 
c-Jun N-terminal Kinase [137].

Activated microglia not only produces TNF-α and other 
cytokines, but also expresses the enzyme inducible nitric 
oxide synthase (iNOS, [30]. Nitric oxide (NO) acts as an 
almost universal signaling molecule, affecting a large vari-
ety of molecular pathways. This makes it hard to isolate its 
effect on the cytoskeleton. An extensive body of research 
exists on the action of NO on the plant cytoskeleton. In 
plants, stimulation of cells with NO leads to depolymeri-
zation of microtubules [131], leading to an overall disor-
ganization of both the actin [76] and the microtubule net-
work [92]. Although less thoroughly studied, the same 
mechanism is also present in mammalian neurons. In these 
cells, stimulation with NO leads to reconfiguration of the 
microtubule network through nitrosylation of MAP1B, 
resulting in growth cone collapse and axon retraction [139]. 
This shows that the chemical environment associated with 
neuroinflammation is in itself already capable of disrupting 
microtubule-associated axonal transport.

Mitochondrial decay inhibits axonal transport

As mentioned previously, changes in mitochondria density, 
mobility and activity are a common finding in MS neuro-
pathology [101, 153]. Although these changes initially 
are aimed at protection of the axon by providing a steady 
supply of ATP, if these mitochondria are not replaced they 
become a prime contributor to neurodegeneration [75]. One 
of the mechanisms through which decaying mitochondria 
lead to axonal loss is by disturbing the calcium homeo-
stasis [120]. As with glutamate excitotoxicity, the result-
ing increase in intracellular calcium will lead to a cascade 
of events, including transport disruption, finally resulting 
in apoptosis or necrosis. Defects in the respiratory com-
plexes can lead to excess production of radical oxygen spe-
cies (ROS). The oxidative stress caused by the reaction of 
these free radicals with proteins in the neuron contributes 
to neurodegeneration [90, 146]. One of the first effects of 
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artificially induced oxidative stress is inhibition of axonal 
transport, occurring hours before any effect is seen on other 
cellular structures [39]. The same study showed that deple-
tion of ATP, another consequence of mitochondrial degra-
dation, will also inhibit axonal transport of mitochondria 
and Golgi-derived vesicles. As mitochondria fail, axonal 
transport will become dysfunctional as well.

Effects of glutamate toxicity on the cytoskeleton

Glutamate excitotoxicity has long been recognized as a 
contributor to neurodegeneration in a variety of neuro-
logical disorders [72], including MS [45, 81, 116]. Under 
normal circumstances, glutamate can bind to channels in 
the plasma membrane, generating a small and strictly con-
trolled flow of ions. When a neuron is overstimulated with 
glutamate, the size of this ion flux is increased, resulting in 
a rising calcium concentration in the cytoplasm. This accu-
mulation in turn triggers several signaling cascades, finally 
resulting in apoptosis (reviewed in [145]). Before the levels 
initiating apoptosis are reached, this increase in intracellu-
lar calcium already has a detrimental effect on the cytoskel-
eton. The infrastructure for transport is degraded, as both 
microtubules [102] and intermediate filaments [26] are 
destabilized and lost. Since the organization of the micro-
tubule skeleton is essential for axon structure and integrity 
[78], this degradation will eventually lead to neurodegen-
eration. In cultured neurons, the influx of calcium caused 
by glutamate is indeed sufficient to slow down or inhibit 
fast axonal transport [2, 60]. This could explain why an 
estimated 50% of demyelinated axons in the brain of MS 
patients show fragmentation of the neurofilament network 
and reduced organelle content [33].

Apart from the direct effect of glutamate toxicity on 
microtubule stability, there is also an indirect effect on 
transport through alteration of posttranslational modifica-
tions (PMTs). These modifications influence microtubule 
dynamics, but also function as traffic rules regulating bind-
ing affinity of molecules including motor proteins [65, 
67, 135]. A combination of at least two of these modifica-
tions, acetylation and detyrosination, enhances the binding 
of Kinesin-1 (Kif5) to microtubules and its motor activity 
as well as its preferential localization to the axon [53, 77, 
121]. A decrease in the level of acetylated α-tubulin in a 
mouse model induced severe axonal transport deficits. 
Clinically this resulted in neurological deficits resembling 
either Charcot-Marie-Tooth disease or distal hereditary 
motor neuropathy, depending on the exact mutation gen-
erated in the deacetylase enzyme HDAC6. Treating the 
animals with an inhibitor of HDAC6 rescued the transport 
deficits and led to disappearance of the clinical phenotype 
[35]. Microtubule modifications are not static, but can vary 
over time. For example, neuronal activity leads to a local 

increase of microtubule polyglutamylation causing a reduc-
tion of Kif5 mobility and cargo delivering [97] as well as 
an increase in acetylation of α-tubulin [114]. In contrast, 
loss of polyglutamylation leads to abnormal targeting of 
Kif1A and a decrease in density of synaptic vesicles [64]. 
Decreases in acetylation have also been suggested to play 
a role in several human neurodegenerative disorders, most 
notably Alzheimer’s disease [57, 160]. If activation of glu-
tamate receptors leads to changes in tubulin acetylation 
[114], it is very likely that glutamate excitotoxity will also 
affect the balance between the different PMTs, and there-
fore, disrupt the proper regulation of axonal transport. Fur-
ther research is required to determine if such a mechanism 
plays a role in neurodegeneration in MS.

The downward spiral

From the studies reviewed in this article, a picture emerges 
of axonal transport deficits as both cause and consequence 
of neuronal degeneration. In the healthy axon, fast intracel-
lular transport is supported by a dense network of micro-
tubules. Molecular motors transport a variety of cargoes 
using this infrastructure, including mitochondria and vesi-
cles containing cellular adhesion molecules, amongst many 
others. This continuous stream of supplies is essential in 
meeting the energy demand of the axon through local ATP 
production, as well as maintaining contact with oligoden-
drocytes through cell–cell adhesions. The membrane is 
divided into several compartments, maintained by interac-
tion of membrane proteins with the (actin) cytoskeleton. 
These domains prohibit diffusion of glutamate receptors 
outside of the nodes of Ranvier, concentrating the peak 
demand for ATP to these areas of the axon. Through post-
translational modifications of microtubules and local con-
centration of anchoring proteins, a large number of mito-
chondria are retained in these nodes, producing ATP where 
it is most needed (Fig. 1a).

Failure of axonal transport has severe consequences for 
the axon. Local peaks in energy demand can no longer be 
answered by increased transport of mitochondria. Although 
mitochondria are able to divide and fuse in the axon [5], 
defective mitochondria are usually transported back to the 
perinuclear region for mitophagy [151]. As transport fails, 
these mitochondria will remain in the axon and become a 
source of radical oxygen species (ROS) and calcium. Since 
both anterograde and retrograde transport is affected, pro-
teins will start to accumulate in the axon. When the organi-
zation of the cytoskeleton further deteriorates and transport 
of adhesion molecules to the membrane slows down, the 
boundaries between the nodes of Ranvier, the paranodal 
regions and the remainder of the membrane will become 
less clearly demarcated. This weakens the connections 
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between the axon and its myelin sheath and allows for ion 
channels to diffuse outside of the nodes of Ranvier. The 
demand for ATP rises and becomes more uniformly spread 
throughout the axon, instead of being concentrated in the 

nodes of Ranvier. At the same time, the ROS released by 
mitochondria, as well as the dropping levels of ATP fur-
ther decrease the efficiency of the axonal transport system 
(Fig. 1b).

Fig. 1   Transport defects and axonal degeneration. In the healthy 
axon (a), the membrane is organized in different compartments 
through interaction of adhesion molecules and other membrane pro-
teins with the underlying actin mesh. In the nodes of Ranvier, this 
interaction prevents the ion channels from diffusing out of the nodes. 
The ion flow through these channels has to be compensated by a sim-
ilar magnitude outflow to restore membrane potential. The main pro-
tein complex involved in this outflow is Na+/K+-ATPase, an enzyme 
that exchanges intracellular sodium for extracellular potassium, 
hydrolyzing an ATP molecule in the process. This mechanism results 
in a peak in ATP demand at the nodes of Ranvier compared to the 
rest of the axon. The axonal transport system matches this demand by 
guiding a constant flow of mitochondria into the nodes and anchor-
ing them to the microtubules where demand is highest, resulting in 
a careful balance between supply and demand (a’). In the micro-
environment created by neuroinflammation this balance is disturbed 
(a). Microglia, activated by T-lymphocytes infiltrating the CNS, pro-
duce a mixture of different compounds such as glutamate, TNF-α and 
nitric oxide, causing degradation of the actin network and fragmen-
tation of the microtubule cytoskeleton. As a result, the membrane 
compartments fall apart and ion channels start to diffuse along the 

membrane. In addition, the reduced mitochondrial transport along the 
fragmented microtubules results in aging mitochondria being stuck 
in the axon, leading to decreased mitochondrial efficiency. The dif-
fusion of sodium channels and their activation through increased glu-
tamate levels will lead to a peak in ATP consumption through Na+/
K+-ATPase, which is no longer restricted to the nodes. As mitochon-
dria can no longer be freely redistributed, the transport system is not 
able to match ATP supply to demand (b’). When the ATP levels drop 
significantly, a backup mechanism enables the neuron to maintain its 
membrane potential by exchanging intracellular sodium for extracel-
lular calcium. At this point, the damage to the axon is still reversible. 
If the inflammatory environment disappears and the transport defects 
are corrected, the situation in (a) can be restored. If intracellular cal-
cium levels keep rising, damage to the transport system accumulates 
and becomes irreversible (c). The continued exposure to high levels 
of glutamate completely disintegrates the actin mesh. Transport along 
microtubules ceases as they are depolymerized and motor proteins are 
unable to function because of low ATP levels caused by mitochon-
drial dysfunction (c’). The increase in intracellular calcium activates a 
variety of enzymes, leading to loss of membrane integrity and finally 
loss axonal degradation
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In the context of MS, the molecular environment caused 
by neuroinflammation is an additional detrimental factor 
to axonal transport. T-cells infiltrating the central nervous 
system induce the activation of microglia. Microglia in 
turn becomes a source of a cocktail of chemicals, includ-
ing TNF-α and NO. High concentrations of NO lead to 
depolymerization of the microtubule network, further 
hampering transport. TNF-α disrupts glutamate homeosta-
sis, simultaneously stimulating its release and inhibiting 
re-uptake. The axon is now exposed to high levels of glu-
tamate, which are even more harmful due to the increased 
and more diffuse concentration of sodium channels in the 
axon membrane. The resulting influx of sodium has to be 
compensated through action of the Na+/K+-ATPase, one of 
the most energy-consuming processes in the cell [62].

At this point, the neuron is reaching a critical limit. If the 
toxic effects of neuroinflammation disappear in time and 
the damage to the transport system is limited, the pathways 
leading to neurodegeneration could be reversed. Microtu-
bules will grow back into the axon, transport will resume 
and the damage can be repaired. As membrane domains are 
reformed, even remyelination becomes possible. However, 
for this to happen, all conditions must be exactly right. If 
for example genetic variations in one of the motor proteins 
lead to a less efficient transport capacity, the balance might 
tip towards neurodegeneration. If the remaining ATP sup-
plies are depleted, the intracellular sodium concentration 
raises to critical levels. This leads to a reversal of the cal-
cium current along the Na+/Ca2+ exchanger, allowing cal-
cium to flow into the neuron while pumping sodium out, 
allowing the neuron to maintain its action potential [162]. 
If this situation persists for too long, the intracellular cal-
cium concentration will be high enough to activate a num-
ber of enzyme systems, finally resulting in loss of mem-
brane integrity and apoptosis (Fig. 1c).

Since the first MS cases were neuropathologically exam-
ined, several theories have been proposed on the role of 
neurodegeneration. MS has been considered a purely auto-
immune disorder, but also as a primary degenerative dis-
order with a secondary immune response [27, 140]. Even 
in brain material from MS patients, some individuals 
show demyelinated lesions with primarily T cell mediated 
inflammation, while others show only oligodendrocyte dys-
trophy [95]. The model in Fig. 2 attempts to reconcile these 
quite distinct hypotheses. We suggest that these two pos-
sible etiological pathways eventually may lead to the same 
vicious circle towards neurodegeneration. Both inflamma-
tion and degeneration can trigger axonal transport deficien-
cies, resulting in a reduced transport of mitochondria and 
finally ATP shortages. This model could partially explain 
the clinical variability observed in MS patients. If a patient 
has a genetic background that results in reduced transport 
effectiveness, there is an increased risk of developing the 

primary progressive form of MS (PPMS). This is consist-
ing with the finding that in PPMS, involvement of the cor-
ticospinal tracts is more pronounced [1], as the relatively 
long axons forming these tracts are highly depending on 
axonal transport for survival. However, the same patient 
with a transport system working at full efficiency would be 
more likely to develop relapsing-remitting MS (RRMS), 
characterized by high inflammatory activity but relatively 
little neurodegeneration [143]. Based on this model, we 
would predict that a correlation exists between transport 
efficiency and the clinical delay between diagnosis and sec-
ondary progression.

In the pathogenesis of MS, deficits in axonal transport 
can contribute to neuropathology, but the reverse is also 
true. The effects of demyelination and inflammation on 
the microtubule cytoskeleton initiate and amplify a chain 
of events resulting in axonal loss (summarized in Fig. 2). 
Interrupting the spiral of neurodegeneration is the only way 
to prevent the clinical progression seen in MS patients. 
We propose that a variety of therapeutic approaches could 
prove equally effective. Microtubule stabilizing drugs could 
prevent the loss of axonal infrastructure, while medication 
targeting mitochondria preserves the local production of 
ATP and prevents the leakage of calcium and ROS. Anti-
inflammatory drugs diminish the neuronal stress caused 
by exposure to TNF-α, NO and glutamate, while NMDA-
receptor blockers and calcium chelators reduce the toxic 
effects of glutamate excitotoxicity. As of yet, there are no 
drugs present that can increase the efficiency of the axonal 
transport system, although substances such as tubastatin 
that modify post-translational modification are interesting 
candidates [35]. The damage that has already occurred can-
not be undone, but these approaches can increase the prob-
ability that an axon will survive the toxic environment of an 
active MS lesion.

Concluding remarks

The association between axonal transport and neurodegen-
eration is complex and bidirectional. Deficiencies in intra-
cellular transport can lead to a positive feedback loop, a 
loop in which reduced transport of mitochondria and other 
components leads to local ATP shortages, which further 
hamper transport (Fig. 2). If the circumstances interfering 
with transport persist for a certain amount of time, this loop 
will inevitably lead to axonal loss. There is substantial evi-
dence that such a loop could play a role in a large variety 
of neurodegenerative disorders (reviewed in [59, 103]). In 
MS, this cycle becomes even more vicious because of the 
contribution of inflammation and demyelination, further 
increasing both transport defects and ATP demand. This 
feedback loop would explain a number of puzzling findings 
in MS, since it suggests that a number of different initial 
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events will lead to the same outcome. A combination of 
deficiencies in mitochondrial activity, a hampered axonal 
transport system or a specific immune makeup will all lead 
to the same outcome, but in each patient the emphasis will 
be different. Some MS patients with a severe mitochon-
drial or transport phenotype will show a large amount of 
neurodegeneration with little inflammation, while other 
patients will be more on the inflammatory end of this spec-
trum. Such a spectrum of disease could explain the large 
variability in disease progression and therapy response 
observed in MS patients. This neurodegenerative loop also 
offers new hypothetical approaches towards MS treatment, 
since it suggests that weakening any part of the loop could 
reduce neurodegeneration, and therefore, disease progres-
sion. Therapy focused on restoring the ATP balance or 
increasing transport efficiency would weaken the loop and 
slow down neurodegeneration. Monitoring the effect of a 
therapy targeting axonal transport is a challenge in itself. 
In animals, transport can be observed directly using in vivo 

microscopy of the sciatic nerve [47], a technique not feasi-
ble in humans. However, in the near future it might become 
possible to measure transport in the neurons of the retina 
[124]. Developing these neuroprotective strategies and 
combining it with the immunomodulatory drugs already 
available to MS patients will, hopefully in the near future, 
greatly reduce the suffering caused by this debilitating 
disease.
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Fig. 2   The cycle of neurodegeneration. In MS, both inflammation 
and neurodegeneration lead to a toxic local environment composed 
of high concentrations of glutamate, nitric oxide (NO) and radical 
oxygen species (ROS). These chemicals destabilize the cytoskeleton 
and affect the function of the axonal transport system. Inflammation 
also leads to demyelination, exposing large sections of the axon to 
the hostile micro-environment and increasing the demand for ATP. 
As transport efficiency is decreased, transport of mitochondria is 
impaired, leading to a reduced supply of ATP and accumulation of 
degrading mitochondria in the axon. These mitochondria become an 

additional source of ROS, contributing to toxicity. Due to transport 
failure, the constant flow of membrane lipids and proteins dimin-
ishes, leading to the loss of membrane structure and integrity. This 
further contributes to demyelination and prevents remyelination. The 
increased demand for ATP combined with the reduced supply leads to 
ATP shortages, preventing motor protein function. Through this loop, 
axonal transport deficiencies, mitochondrial defects and inflammation 
amplify each other, creating a positive feedback system that leads to 
neurodegeneration
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