
1 3

Acta Neuropathol (2017) 133:887–906
DOI 10.1007/s00401-017-1687-9

ORIGINAL PAPER

Motor neuron intrinsic and extrinsic mechanisms contribute 
to the pathogenesis of FUS‑associated amyotrophic lateral 
sclerosis

Jelena Scekic‑Zahirovic1,2 · Hajer El Oussini1,2 · Sina Mersmann3,4 · Kevin Drenner5 · Marina Wagner3,4 · 
Ying Sun5 · Kira Allmeroth3,4 · Stéphane Dieterlé1,2 · Jérôme Sinniger1,2 · Sylvie Dirrig‑Grosch1,2 · 
Frédérique René1,2 · Dorothee Dormann6,7 · Christian Haass7,8,9 · Albert C. Ludolph10 · 
Clotilde Lagier‑Tourenne5,11,12 · Erik Storkebaum3,4 · Luc Dupuis1,2 

Received: 15 December 2016 / Revised: 8 February 2017 / Accepted: 16 February 2017 / Published online: 28 February 2017 
© The Author(s) 2017. This article is published with open access at Springerlink.com

multiple myelin-related genes, and increased numbers of 
oligodendrocytes in the spinal cord supporting their contri-
bution to behavioral deficits. In all, we show that mutant 
FUS triggers toxic events in both motor neurons and neigh-
boring cells to elicit motor neuron disease.

Keywords Amyotrophic lateral sclerosis · Fronto-
temporal dementia · Mouse models · Non-cell autonomous 
mechanisms · RNA-binding proteins

Introduction

Amyotrophic lateral sclerosis (ALS) is an incurable neuro-
degenerative disease clinically characterized by a preferen-
tial loss of upper and lower motor neurons, resulting in pro-
gressive weakness of skeletal muscles, atrophy, paralysis 
and death due to respiratory failure [42]. Recent advances 

Abstract Motor neuron-extrinsic mechanisms have been 
shown to participate in the pathogenesis of ALS-SOD1, 
one familial form of amyotrophic lateral sclerosis (ALS). 
It remains unclear whether such mechanisms contribute to 
other familial forms, such as TDP-43 and FUS-associated 
ALS. Here, we characterize a single-copy mouse model of 
ALS-FUS that conditionally expresses a disease-relevant 
truncating FUS mutant from the endogenous murine Fus 
gene. We show that these mice, but not mice heterozy-
gous for a Fus null allele, develop similar pathology as 
ALS-FUS patients and a mild motor neuron phenotype. 
Most importantly, CRE-mediated rescue of the Fus muta-
tion within motor neurons prevented degeneration of 
motor neuron cell bodies, but only delayed appearance of 
motor symptoms. Indeed, we observed downregulation of 
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in human genetics identified mutations in almost 40 genes 
associated with ALS, and these familial cases together 
account for about 10% of ALS cases [62, 79].

Heterozygous mutations in the FUS (Fused in sar-
coma) gene, encoding the RNA-binding protein FUS, are 
the major cause of juvenile forms of ALS [14, 34, 45, 84]. 
In ALS-FUS patients, the FUS protein accumulates in the 
cytoplasm in a dimethylated form [19, 75]. FUS is func-
tionally related to TDP-43 (TAR DNA-binding protein 43), 
the major protein found in ubiquitin-positive inclusions of 
ALS patients [59], and, like TDP-43, FUS is a nuclear pro-
tein involved in multiple steps of gene expression, includ-
ing mRNA transcription, splicing, transport and translation 
[49, 56]. In neurons, FUS is found in axons [69], den-
drites and at excitatory synapses [24] as well as in RNA 
transporting granules [4, 10]. Several recent studies dem-
onstrated that the complete loss of FUS protein, either in 
adult mice or perinatally, was not sufficient to trigger motor 
neuron degeneration [44, 68, 72, 82]. Contrasting with this, 
overexpression of FUS, either wild type or mutant, is able 
to trigger motor neuron degeneration, suggesting that the 
mutant protein gains a toxic function leading to aggres-
sive neurodegeneration [55, 64, 71–73]. Importantly, the 
majority of FUS mutations are missense changes clustered 
in the C-terminal nuclear localization sequence (NLS) or 
frameshift and stop mutations that truncate the NLS [16]. 
This impairs the binding of FUS to the nuclear import 
receptor Transportin, and thus interferes with import of 
FUS in the nucleus, resulting in the cytoplasmic accumula-
tion of FUS [20]. Consistent with a critical role of nuclear 
import of FUS, the mutations leading to the most severe 
forms of ALS are truncating or frameshift mutations in 
FUS causing the complete deletion of the NLS [3, 11, 16, 
87, 88, 96]. These aggressive FUS mutations lead to exten-
sive FUS redistribution to the cytoplasm and age of onset 
was correlated with the degree of cytosolic mislocalization 
of FUS [20]. Together, these findings strongly suggest that 
neurodegeneration is directly related to the altered subcel-
lular localization of FUS.

To study the mechanisms of ALS-FUS in a physiologi-
cally relevant manner, we recently generated a conditional 
knock-in mouse model (FusΔNLS mice) in which the NLS 
of FUS is deleted [68]. We have shown that FUS is com-
pletely mislocalized to the cytoplasm in mice homozygous 
for the FusΔNLS mutation [68], leading to motor neuron 
degeneration in neonates. However, homozygous knock-
in mice were lethal at birth, thus precluding the analysis 
of aging mice homozygous for the Fus mutation. Here, we 
studied heterozygous FusΔNLS/+ mice, as a mouse model 
carrying a genetic defect that mimics the genetic situa-
tion in human ALS-FUS patients. Analysis of these mutant 
mice revealed progressive motor neuron degeneration and 
neuropathological changes that faithfully model several 

key aspects of ALS-FUS, including ubiquitin pathology 
and cytoplasmic accumulation of dimethylated FUS. Motor 
neuron death appeared cell autonomous, yet the motor 
phenotype of these mice was only delayed when the muta-
tion was rescued solely within motor neurons, and axonal 
defects were still present. Further, we identified alterations 
in genes involved in myelin structure and function, and 
showed altered abundance of oligodendrocytes in the spinal 
cord supporting the contribution of these cells to the dis-
ruption of axonal integrity and the motor phenotype. Thus, 
while expression of mutant FUS within motor neurons is 
necessary for cell death, motor symptoms are caused by the 
concerted action of mutant FUS in motor neurons and other 
cell types, including oligodendrocytes.

Materials and methods

Animal housing and genotyping

Wild type and heterozygous Fus∆NLS/+ mice and heterozy-
gous Chat-CRE mice, generated as described previously 
[68], were bred and housed in the central animal facility of 
the Faculty of Medicine of Strasbourg, with a regular 12-h 
light and dark cycle (light on at 7:00 am) under constant 
conditions (21 ± 1 °C; 60% humidity). Standard laboratory 
rodent food and water were available ad libitum throughout 
all experiments. Wild type and heterozygous Fus+/− mice, 
generated as described previously [68], were bred and 
housed in the animal facility of the Max Planck Institute 
for Molecular Biomedicine, with a regular 12-h light and 
dark cycle. Mice were genotyped by PCR of genomic DNA 
from tail biopsies as described previously [68].

10- to 22-month-old male littermates of each genotype 
(Fus+/+, FusΔNLS/+ and Fus+/−) on a pure genetic back-
ground (C57/Bl6) were subjected to behavioral tests and 
molecular analyses. Behavioral test were done during the 
light phase of their light/dark cycle.

Compliance with ethical standards

These protocols were approved by the local ethical commit-
tees (Cremeas in Strasbourg, LANUV NRW in Muenster), 
under reference number AL/27/34/02/13; 84-02.04.2011.
A100 and 84-02.04.2016.A166.

Subcellular fractionation and western blotting

Nuclear and cytoplasmic fractions were prepared from 
fresh spinal cord tissue using the NE-PER® Nuclear and 
Cytoplasmic Extraction reagents (Thermo Scientific) 
according to the manufacturer. Protein concentration was 
quantitated using the BCA protein assay kit (Pierce). Equal 
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amounts of protein (10 µg for nuclear and 30 µg for cyto-
plasmic fraction) were loaded in each well of a gradient 
4–20% SDS-PAGE gel, separated and transferred onto a 
0.45 µm nitrocellulose membrane (BioRad) using a semi-
dry Transblot Turbo transfer system (BioRad). Membranes 
were saturated with 10% non-fat milk in PBS and were then 
probed with the following primary antibodies: goat anti-
FUS against the N-terminal part of protein (ProteinTech 
11570; 1:1000), rabbit anti-FUS against the C-terminal 
part of protein (Bethyl A300-294A, 1:10000) and rat anti-
di-methylated FUS (ADMA, 1:1000) [19, 75] all diluted in 
3% non-fat milk in PBS. Blots were incubated with horse-
radish peroxidase (HRP)-labeled secondary antibodies 
anti-goat (Sigma A5420), anti-rabbit (P.A.R.I.S. BI2407), 
anti-sheep (Chemicon AP147) and anti-rat (Rockland 612-
1102), all secondary antibodies were diluted 1:5000 in 
PBS. Antibodies rabbit anti-HDAC1 (Bethyl A300-713A, 
1:1000) was used as loading control for nuclear fraction 
and mouse anti sheep SOD1 (Merk 574597, 1:1000) was 
used as loading control for cytoplasmic fraction. Blots were 
analyzed with chemiluminescence (ECL; Luminata Forte 
Kit, Millipore WBLUF0500) using the Molecular Imager 
Chemidoc XRS (Biorad) as detection system and total pro-
tein as loading controls.

For western blot on protein extracts from spinal cord of 
Fus+/− and Fus+/+ mice, rabbit anti-FUS (Bethyl A300-
294A) was used as a primary antibody in a 1:800 dilution. 
A mouse monoclonal anti-beta-tubulin antibody (clone 
E7, DSHB, 1:2000) was used as a loading control. As sec-
ondary antibodies, HRP-conjugated anti-rabbit (Promega 
W4011) and anti-mouse (Promega W4021) antibodies were 
used in a 1:2500 dilution.

Spinal cord histology

Animals were anesthetized with ketamine (Imalgene 
80 mg/kg; Merial, Lyon, France) and xylazine (Rompun 
20 mg/kg; Bayer, Lyon, France) and perfused transcardi-
ally with 4% paraformaldehyde (PFA) in 0.1 M phosphate 
buffer (PB), pH 7.4. Spinal cord were dissected and fixed 
by immersion in 4% paraformaldehyde in 0.1 M phos-
phate buffer pH 7.4 overnight. The lumbar part of spinal 
cords (L1–L5) was cryoprotected in 30% sucrose, snap 
frozen in melting isopentane, and embedded in TissueTek 
(O.C.T.Compound, SAKURA#4583). Cryosections (Leica 
CM 3050S) of 16 µm were obtained for histological analy-
sis (10 sections per animal).

Spinal cord sections were stained using rabbit anti-FUS 
antibody against the FUS N-terminal part (ProteinTech 
11570, 1:100), goat anti-ChAT (Millipore AB144-P, diluted 
1:50), and Hoechst (Sigma 33342, 1:1000) followed by flu-
orescently labeled secondary antibodies donkey anti-rabbit 
Alexa 488 (Jackson A21206), goat anti-rabbit Alexa 488 

(Invitrogen A11008), goat anti-mouse Alexa 594 (Invitro-
gen A11005) and donkey anti-goat Alexa 594 (Molecular 
Probes A11058) diluted 1:500.

Other antibodies used for spinal cord staining included 
rat anti-di-methylated FUS (ADMA, 1:100), rabbit anti 
UBIQUITIN (Abcam ab179434, 1:100), mouse anti-ubiq-
uitin (Millipore MAB1510, 1:100), guinea pig anti-P62 
(Progen GP-62C, 1:100), rabbit anti-FUS (Bethyl A300-
302A, 1:150), mouse anti-NeuN (clone A60, Millipore 
MAB377, 1:500), mouse anti-CNPase (Sigma C-5922, 
1:100) and rabbit anti-carbonic anhydrase II (kind gift of 
Dr S. Ghandour, 1:200 for IF and 1:1000 for DAB staining) 
[13, 35, 74].

Imaging

Single-layer images were acquired using a laser-scanning 
microscope (confocal Leica SP5 Leica Microsystems CMS 
GmbH) equipped with ×63 oil objective (NA1.4). Excita-
tion rays are sequential: Hoechst 33342 was excited using 
diode 405 nm, Alexa 488 by the argon laser 488 nm, Alexa 
594 by diode 561 nm and Alexa 647 by the Helium Neon 
laser 633 nm. Emission bandwidths were 410–470 nm for 
Hoechst 33342, 520–550 nm for Alexa 488, 570–620 nm 
for Alexa 594, and 650–690 nm for Alexa 647. Intensity of 
FUS fluorescent staining was measured using the software 
Nis Elements version 4.0.

Motor coordination and muscle strength analysis

Mice were followed weekly for general health, neuro-
logical symptoms, body weight, grip test and accelerating 
rotarod performances starting from weaning (4 weeks of 
age) until 22 months of age as described previously [39]. 
Briefly, mouse motor performance was assessed using 
rotarod (Ugobasile model 7650). Each session consisted of 
three tests of 300 s with an acceleration period (4–20 rpm 
during 150 s) followed by 150 s at constant speed. To eval-
uate muscle strength, we used a grip strength meter test 
(Bioseb, ALG01; France). The muscle force (in Newton) 
was measured three times per mouse. Results are presented 
as one measurement point per month.

Inverted grid test

The four limbs hang test uses a wire grid system to non-
invasively measure the ability of mice to use sustained 
limb tension to oppose their gravitational force. The pro-
cedure measures 4 limbs hang time in seconds as well as 
the minimal holding impulse. Each mouse was placed at 
the simple cage grid and was allowed to accommodate to 
this environment for 3–5 s before the grid was inverted and 
held approximately 35 cm over a mouse cage containing 
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5–6 cm of bedding (wood chips). Each of these hold-
ing periods began with all four paws of the mouse grasp-
ing the grid. The wire grid hanging time (or “hang time”) 
was defined as the amount of time that it takes the mouse 
to fall down from the inverted grid and was measured 
visually with a stop watch. In each session, the proce-
dure was repeated three times with approximately 10 min 
between each assessment of holding time. The mouse body 
weight was obtained shortly before the test. The physi-
cal impulse (holding impulse) is the hanging time multi-
plied by the gravitational force of the mouse [body mass 
(g) × 0.00980665 N/g × hanging time (s)]. This param-
eter represents the minimal total sustained force that was 
exerted to oppose the gravitational force [12].

Gait analysis

Gait parameters of freely moving mice were measured 
using the CatWalk gait analysis system (Noldus Informa-
tion Technology, The Netherlands). The CatWalk instru-
ment consists of a hardware system of a long, enclosed 
glass walkway plate, illuminated with green light, a high-
speed video camera, and a software package for quantita-
tive assessment of animal footprints. A green light emitted 
by a fluorescent lamp positioned underneath the glass plate 
is reflected within the glass plate except at points where the 
mouse paws made contact with the glass plate. It scatters 
and illuminates the contact area. The intensity of the area 
of illumination, which is proportional to the exerted pres-
sure, is digitally captured by the video camera connected to 
a computer that runs the CatWalk software 7.1.

The recordings were carried out when the room was 
completely dark, except for computer screen. Each mouse 
was placed individually in the CatWalk walkway and 
allowed to walk freely, in an unforced manner and trav-
erse from side to side the walkway glass plate. Mouse 
tracks that were straight without any interruption or hesi-
tation were treated as successful runs. Runs with any wall 
climbing, grooming, and staying on the walkway were 
not analyzed. An average number of 3 replicate crossings 
made by each mouse were recorded. The CatWalk software 
was used to analyze crossings that had at least five cycles 
of complete steps. The software automatically labeled all 
areas containing pixels above the set threshold. These areas 
were identified and assigned to the respective paws. Analy-
sis of the recording generated a wide range of parameters 
from which the following gait and coordination parameters 
were analyzed: Stride length (distance between two con-
secutive paw placements of the same paw in pixel), swing 
speed (distance between two consecutive paw placements 
of the same paw per second), body speed (distance that the 
animal walks per second) and body speed variation (regu-
larity of body speed, in %) [2, 54, 89].

Electromyography

Electromyography was performed as previously 
described [21, 22]. Mice at 10 and 22 month of age 
were anesthetized with a solution of ketamine/xyla-
zine (100 mg/kg; 5 mg/kg) and electrical activity was 
recorded using a monopolar needle electrode (diam-
eter 0.3 mm; 9013R0312; Medtronic, Minneapolis, 
MN, USA) inserted into the tail of the mouse (ground-
ing electrode). Recordings were made with a concen-
tric needle electrode (diameter 0.3 mm; 9013S0011; 
Medtronic). Electrical activity was monitored in both 
GA and TA on both legs for at least 2 min. Spontane-
ous activity was differentiated from voluntary activity 
by visual inspection. Results were scored as described 
previously [21, 22].

Compound muscle action potentials (CMAP) were 
recorded in gastrocnemius muscle as described previ-
ously [61]. Briefly, CMAPs were elicited by supramaxi-
mal square pulses, of 0.2 ms duration, delivered with a 
monopolar needle electrode to the sciatic nerve at the sci-
atic notch level. CMAPs were measured by a monopolar 
needle electrode inserted in the gastrocnemius, and the 
system was grounded by subcutaneously inserted monop-
olar needle electrodes in the back and the tail of the ani-
mal. Amplitudes (mV) from the left and right muscle-
evoked responses were measured and averaged, resulting 
in one average CMAP amplitude per animal, which was 
used for statistical analysis. The latency was measured as 
the time from the given electrical stimulus to the appear-
ance of a muscle response—the initial CMAP deflection 
from the baseline.

Spinal cord motor neurons quantifications

To quantify lower motor neurons, spinal cord cryostat 
sections of 16 µm were stained with 0.1% Cresyl vio-
let acetate (Certistain®, MERK#5235) and anti-ChAT 
(Millipore, AB144-P; diluted 1:50) followed by bioti-
nylated donkey anti-goat IgG (Jackson, 705-066-
147; 1:250) as secondary antibody. The staining was 
revealed using the ABC kit (Vektor, PK7200; 1:4000), 
by the avidin–biotin complex immunoperoxidase 
technique.

Counting of motor neurons was performed in L1–L3 
ventral horn in every tenth section for ten sections in total 
per animal. Total number of motor neurons was counted 
using ImageJ freeware (http://rsbweb.nih.gov/ij/) after 
image acquisition at ×20 magnification under the same 
exposition parameters with a digital camera (Nikon Digi-
tal Sight DS-U3). The observer was blinded to the geno-
type of studied mice.

http://rsbweb.nih.gov/ij/
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RNAseq

Total RNA from spinal cords (including dorsal and ventral 
roots) of FusΔNLS/+ (n = 4) and their control littermates 
(n = 4) were extracted with TRIzol (Invitrogen). RNA qual-
ity was measured using the Agilent Bioanalyzer system or 
RNA screen Tape (Agilent technologies) according to the 
manufacturer’s recommendations, and processed using the 
Illumina TruSeq Stranded mRNA Sample Preparation Kit 
according to the manufacturer’s protocol. Generated cDNA 
libraries were sequenced using an Illumina HiSeq 2000 
sequencer with 4 biological replicates sequenced per condi-
tion using single read, 50 cycle runs. Quality of sequencing 
reads was assessed using FastQC (Babraham Bioinformat-
ics) and then aligned to a mouse reference genome (mm9, 
UCSC Genome Browser) using TopHat (version v2.0.10). 
Sequencing yielded, on average, 39 million non-redundant 
reads per sample with a 55–65% mapping rate. Cufflinks 
(version v2.1.1) was used to generate transcript abundance 
for each annotated protein-coding gene as Fragments Per 
Kilobase of transcript per Million mapped reads (FPKM), 
and statistical analysis and comparison of FPKM values 
was calculated using Cuffdiff (version v2.1.1).

RT‑PCR analysis

Spinal cord were harvested, rapidly frozen in liquid nitro-
gen and stored at −80 °C until analysis. For RT-qPCR, fro-
zen tissues were placed into tubes containing a 5-mm stain-
less steel bead (Qiagen, Courtaboeuf, France) and 1 ml of 
Trizol reagent (Invitrogen, Paisley, UK) and homogenized 
using a Tissue Lyser (Qiagen). RNA was prepared from 
tissue homogenates following the Trizol manufacturer’s 
instructions. RNA reverse transcription and SYBR Green 
real-time PCR assays were performed using the Bio-Rad 
(Biorad, Marnes la Coquette, France) iCycler kits and pro-
tocols. PCR conditions were 3 min at 94 °C, followed by 
40 cycles of 45 s at 94 °C and 10 s at 60 °C. Three standard 
genes: 18S (18S Ribosomal RNA), Pol2 (Polr2 polymerase 
RNA 2 DNA directed polypeptide A) and Tbp (TATA-box 
binding protein) were used to compute a normalization fac-
tor using Genorm software v3.5 [85]. Primer sequences are 
provided in Supplementary Table 1.

Toluidine blue staining

The L4 ventral root sections were stained with toluidine 
blue to investigate the axon diameter, the degree of demy-
elination and the myelin pathology among the different 
groups of animals. Five animals per genotype were ana-
lyzed. The ventral roots at the level of L4 were removed, 
treated with 1% osmium tetroxide, and embedded in 
Araldite Epon mixture. Semi-thin sections (1.5 µm) were 

cut, placed on the slides, and oven dried. The slides were 
stained with 1% toluidine blue solution for 1 min, rinsed 
with water, dehydrated and mounted. Internal diameter of 
myelinated axons was measured, and divided by the exter-
nal diameter to calculate g-ratios. The following abnor-
malities in myelin were quantified: onion bulbs (as a sign 
of demyelination and remyelination), demyelinated axons, 
and abnormal myelin structures including complex or 
abnormal myelin outfoldings [1, 32]. These quantifications 
were performed by an observer blinded to the genotype.

Statistical analysis

For the animal experiments with two groups, the values 
from each animal were averaged for each genotype group 
and analyzed by unpaired Student’s t test, two-tailed. Com-
parison of three or four groups was performed using one-
way ANOVA and Tukey post hoc test. Data were analyzed 
by using the Graphics Prism Program (Graph Pad Software, 
San Diego, CA) and expressed as mean ± SEM (standard 
error of the mean) and differences were considered signifi-
cant when p ≤ 0.05.

Results

Partial cytoplasmic mislocalization of FUS in FusΔNLS/+ 
mice

FusΔNLS/+ mice represent the first animal model with a het-
erozygous mutation in the endogenous Fus gene, a simi-
lar genetic situation as in ALS-FUS patients. Fus mRNA 
levels were modestly increased in spinal cord of FusΔNLS/+ 
mice suggesting disruption of the normal autoregulatory 
loop controlling FUS levels (Supplementary Fig. 1a, b), 
while expression of Taf15 and Ewsr1, the two other FET 
family members, as well as that of Tardbp (encoding TDP-
43) was not significantly changed in FusΔNLS/+ mice (Sup-
plementary Fig. 1b). Subcellular fractionation of protein 
extracts from spinal cord followed by western blotting with 
an antibody recognizing both wild type and ∆NLS FUS 
protein (N-ter 1) yielded a robust FUS signal in cytoplas-
mic fractions from FusΔNLS/+ spinal cord, but not from 
wild-type littermate spinal cord (Fig. 1a, b). Contrast-
ingly, western blotting using an antibody specific for the 
C-terminal NLS of FUS, and thus unable to recognize the 
mutant FUS protein, did not show increased cytoplasmic 
levels (Fig. 1c), demonstrating that FUS protein produced 
from the wild-type allele remains mostly nuclear. Nuclear 
FUS levels were not altered on immunoblots using either 
of the two antibodies (Fig. 1a–c). Consistently, increased 
cytoplasmic FUS staining was observed in FusΔNLS/+ motor 
neurons using double immunofluorescence with FUS and 
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Fig. 1  FUS localization in FusΔNLS/+ mice. a Immunoblot analysis of 
FUS protein subcellular localization in spinal cord of 2 Fus+/+ and 2 
FusΔNLS/+ 4-month-old mice using two different antibodies targeting 
either the N-terminal part (N-ter. 1) of FUS or the C-terminal (C-ter. 
1) NLS. Molecular weight markers are shown on the left. SOD1 and 
HDAC1 are used as loading controls for cytoplasmic and nuclear pro-
tein extracts fractions, respectively. b, c Quantification of FUS pro-
tein levels in cytoplasmic and nuclear fractions from immunoblots 
for Fus+/+ (blue bars) and FusΔNLS/+ (red bars). N = 6. *p < 0.05, 

***p < 0.01 by Student’s unpaired t test. d Double immunostaining 
for the motoneuronal marker ChAT and FUS (N-terminal part) in the 
spinal cord ventral horn at 22 months of age. Note the cytoplasmic 
redistribution of truncated FUS in FusΔNLS/+ mice. Scale bar 7.5 µm. 
e Quantification of FUS (N-terminal part) staining intensity in differ-
ent cellular compartments of motor neuron. N = 70 Fus+/+, N = 68 
FusΔNLS/+. ***p < 0.01 by Student’s unpaired t test. f Distribution 
of FUS cytoplasmic/nuclear localization in motor neurons. N = 70 
Fus+/+, N = 68 FusΔNLS/+
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choline acetyltransferase (ChAT) antibodies (Fig. 1d). 
Quantification of fluorescence signals in individual motor 
neurons showed that the cytoplasmic staining of FUS was 
substantially elevated in FusΔNLS/+ motor neurons (Fig. 1e). 
The large majority (85%) of Fus+/+ motor neurons dem-
onstrated an exclusive localization of FUS in the nucleus, 
while most (74%) FusΔNLS/+ motor neurons showed mixed 
cytoplasmic and nuclear localization. Notably, 21% of 
motor neurons showed exclusively cytoplasmic FUS accu-
mulation accompanied by complete nuclear clearance of 
FUS protein (Fig. 1f). We did not observe large cytoplasmic 
FUS aggregates associated with FUS nuclear clearance.

FusΔNLS/+ mice recapitulate pathological hallmarks 
of ALS‑FUS

In human ALS-FUS patients, FUS is asymmetrically 
dimethylated at arginine residues (ADMA), and this modi-
fied form of FUS is found in FUS-positive inclusions [19, 
75, 81]. In contrast, unmethylated FUS and monomethyl-
ated FUS, but not ADMA-FUS, accumulates in cytoplas-
mic inclusions of FTLD-FUS patients [19, 75]. ADMA-
FUS can be readily identified using an antibody specific 
to the ADMA RGG3 domain of FUS [19]. Interestingly, 
ADMA-FUS was strongly increased in both nuclear and 
cytoplasmic fractions of FusΔNLS/+ spinal cord (Fig. 2a, 
b). Furthermore, triple immunolabeling using antibodies 
against FUS, ADMA-FUS and ChAT revealed a pattern of 
ADMA-FUS subcellular distribution similar to truncated 
FUS (Fig. 2c). ALS-FUS patients also develop ubiquitin 
and p62 pathology [43]. While we did not observe p62 
inclusions (Supplementary Fig. 3), we observed cytoplas-
mic and nuclear ubiquitin pathology in motor neurons of 
FusΔNLS/+ mice (Fig. 2d). Cytoplasmic ubiquitin pathology 
was also observed using a K63 linkage-specific ubiquitin 
antibody (Supplementary Fig. 2). Ubiquitin inclusions were 
occasionally present in motor neurons with mixed nuclear/
cytoplasmic FUS localization and systematically present in 
motor neurons showing complete nuclear FUS clearance 
(Fig. 2d). Importantly, FUS and ubiquitin stainings did not 
systematically overlap, suggesting that FusΔNLS/+ motor 
neurons do not develop ubiquitin-positive FUS inclusions. 
Thus, FusΔNLS/+ mice and ALS-FUS patients develop par-
tially similar pathology, with cytoplasmic accumulation of 
methylated FUS and ubiquitin pathology but no large FUS 
aggregates.

Cytoplasmic mislocalization of FUS leads to a mild 
motor deficit in FusΔNLS/+ mice

We next investigated whether cytoplasmic accumulation 
of mutant FUS triggers ALS-like motor symptoms during 
the lifespan of heterozygous knock-in animals. To this aim, 

we longitudinally followed FusΔNLS/+ male mice and their 
Fus+/+ wild-type littermates until 2 years of age. Animals 
were weekly monitored for general health, neurological 
symptoms, body weight, grip strength and accelerating 
rotarod performance. Until 22 months of age, when mice 
were killed, expression of mutant FUS was neither associ-
ated with important weight loss nor with development of 
paralysis (Supplementary Fig. 4a–c). Although grip test and 
rotarod are among the most commonly used tests to assess 
motor function in mice [70], they often lack the sensitiv-
ity needed to detect subtle alterations in the motor system 
and should be complemented by additional tests to evaluate 
motor function in FusΔNLS/+mice.

Indeed, despite normal performance on rotarod and grip 
strength, FusΔNLS/+ mice displayed a significantly shorter 
hanging time in an inverted grid test (Fig. 3a), both at 10 
and 22 months of age. Holding impulse, which represents 
the total sustained force exerted by the mouse to oppose the 
gravitational force [12], was also significantly decreased 
in FusΔNLS/+ mice (Fig. 3b). The evaluation of gait perfor-
mance by CatWalk analysis further confirmed this motor 
defect. FusΔNLS/+ mice demonstrated an irregular walking 
pattern characterized by phases of fast walking interrupted 
with stance phases (Fig. 3c). We also observed a reduc-
tion of hind limb stride length (Fig. 3d) associated with an 
increase in body speed variation (i.e., the variation in the 
speed of the walking mouse) for both ages compared to the 
control mice (Fig. 3g). In addition, 22-month-old FusΔNLS/+ 
mice showed impaired swing and body speed (Fig. 3e–f). 
Thus, expression of mutant FUS at a physiological level is 
associated with partial cytoplasmic mislocalization of the 
protein and a mild motor deficit in mice.

Cytoplasmic mislocalization of FUS drives 
age‑dependent, progressive motor neuron degeneration

To determine whether this mild motor phenotype could 
be due to an underlying motor neuron disease, we per-
formed electromyography analysis (EMG) on Fus+/+ and 
FusΔNLS/+ mice at 10 and 22 months of age. We did not 
observe stereotypical denervation-related electrical activi-
ties in gastrocnemius (GA) or tibialis anterior (TA) mus-
cle of 10-month-old Fus+/+ and FusΔNLS/+ mice. However, 
22-month-old FusΔNLS/+ mice showed typical fibrillation 
and fasciculation potentials in both muscles (Fig. 4a). Con-
sistent with qualitative observations, a quantitative analy-
sis of the EMG recordings demonstrated a significantly 
increased frequency of abnormal potentials in 22-month-
old FusΔNLS/+ mice, but not at 10 months of age (Fig. 4b) 
and the amplitude of compound muscle action potentials 
(CMAP) was decreased in 18- to 22-month-old Fus∆NLS/+ 
mice (Fig. 4d).
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Importantly, the abnormal electrical activity in 
FusΔNLS/+ mice was accompanied by degeneration of 
motor neurons in the lumbar spinal cord of 22-month-old 

FusΔNLS/+ mice, as evaluated using either Nissl stain-
ing or immunostaining for ChAT (Fig. 4c). Quantita-
tive analysis revealed that the number of motor neurons 

Fig. 2  Subcellular redistribu-
tion of asymmetrically arginine 
dimethylated (ADMA) FUS. 
a Representative immunoblots 
on cytoplasmic and nuclear 
fractions of protein extracts 
from spinal cord of Fus+/+ 
and FusΔNLS/+ mice, using an 
antibody recognizing asym-
metrically arginine dimethyl-
ated FUS (ADMA-FUS). 
HDAC1 is used as a loading 
control for nuclear fractions 
and SOD1 for cytoplasmic 
fractions. Molecular weight 
markers are shown on the left. b 
Quantification of ADMA-FUS 
protein levels in cytoplasmic 
and nuclear fractions from 
immunoblots for Fus+/+ (blue 
bars) and FusΔNLS/+ (red bars). 
N = 6. *p < 0.05, ***p < 0.01 
by Student’s unpaired t test. c 
Triple immunostaining for the 
motoneuronal marker ChAT 
(green), for FUS (N-terminal 
part) (cyan) and for ADMA-
FUS (red) in the spinal cord 
ventral horn. Scale bar 10 µm. 
d Triple immunostaining with 
antibodies to the N terminus of 
FUS (green), ChAT (red) and 
pan-Ubiquitin (cyan), showing 
diffuse cytoplasmic and nuclear 
punctate aggregates within 
motor neurons with relocated 
FUS. Scale bar 10 μm
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was reduced by ~30% in 22-month-old FusΔNLS/+ mice 
as compared to Fus+/+ mice (Fig. 4e–f). Importantly, 
the number of lumbar spinal cord motor neurons was 
not altered at 10 months of age, indicating that the 

pathological process is progressive. Thus, partial cyto-
plasmic mislocalization of FUS triggers late-onset pro-
gressive motor neuron loss associated with a mild motor 
deficit.

Fig. 3  FusΔNLS/+ mice display a mild motor deficit. Age-depend-
ent changes in the mean hanging time (s) (a) and holding impulse 
(N s) (b) in the four-limb wire inverted grid test in Fus+/+ and 
FusΔNLS/+ mice. N = 7 for 10 months; N = 5 for 22 months. 
*p < 0.05, ***p < 0.01 as compared to Fus+/+ by Student’s unpaired 
t test. c Representative gait patterns of Fus+/+and FusΔNLS/+ mice 
at 10 months (left panels) and 22 months (right panels) of age. The 
panels show the digitized prints with colorful phase lags represent-
ing the stance phase duration of each individual paw in a single-step 
cycle. d–g Gait changes and variability in FusΔNLS/+mice. Stride 

length (d, distance between successive placements of the same paw in 
cm); swing speed (e, distance traveled by one paw per second), body 
speed (f, distance traveled by the animal per second, in cm/s), and 
body speed variation (g, regularity of body speed in %), are shown. 
N = 3 for 10 months; N = 5 for 22 months. All graphs show the over-
all sample means and standard errors at various ages (10 months; 
22 months) for Fus+/+(blue bars) and FusΔNLS/+ (red bars) mice. 
*p < 0.05, ***p < 0.01 as compared to Fus+/+ by Student’s unpaired 
t test
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Reduced levels of FUS do not lead to motor neuron 
degeneration

We next investigated whether partial loss of nuclear FUS 
function might contribute to the observed phenotypes 

of FusΔNLS/+ mice. To determine whether a mild loss of 
FUS function could be sufficient to trigger motor neuron 
degeneration, we longitudinally followed Fus+/− mice 
[68]. At the age of 23 months, Fus transcript levels were 
reduced by 25% in spinal cord of Fus+/− mice (Fig. 5a). 
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Consistently, western blot analysis revealed reduced FUS 
protein levels in the spinal cord of these mice (Fig. 5b, 
c). These reduced FUS expression levels did not alter 
the subcellular localization of FUS in the spinal cord 
(Fig. 5d). Up to the age of 23 months, the performance 
of Fus+/− mice in the inverted grid test (Fig. 5e) was 
not different from Fus+/+ control mice, as well as their 
grip strength and body weight (data not shown). Consist-
ently, Fus+/− mice did neither show denervation poten-
tials in EMG nor decreased CMAP (Fig. 5f). Finally, 
normal numbers of spinal motor neurons were found at 
23 months of age (Fig. 5g, h). Thus, Fus reduction is not 
sufficient to trigger the motor neuron defects observed in 
FusΔNLS/+ mice.

Cre‑dependent reversal of the Fus mutation in motor 
neurons largely prevents FUS mislocalization

We then sought to determine whether motor neuron degen-
eration in FusΔNLS/+ mice was dependent on the mislocali-
zation of FUS in motor neurons themselves. To this aim, we 
took advantage of the presence of loxP sites on the ∆NLS 
allele, allowing us to restore a normal protein in specific 
cell types upon CRE recombination [68]. FusΔNLS/+ mice 
were bred with mice expressing the CRE recombinase from 
the endogenous Chat locus, which leads to CRE recombi-
nase activity in virtually all cholinergic neurons [65, 67]. 
In double transgenic FusΔNLS/+/Chat-CRE mice, the cyto-
plasmic accumulation of FUS was rescued, although not 
completely (Supplementary Fig. 5a), and the proportion of 
motor neurons with complete nuclear FUS clearance was 
reduced to similar levels as in Fus+/+ mice (Supplementary 
Fig. 5b–d). Consistently, immunoreactivity for ADMA-
FUS was barely detectable in the cytoplasm of motor 

neurons of FusΔNLS/+/Chat-CRE mice (Supplementary 
Fig. 6). Thus, motor neuron-selective reversal of the Fus 
mutation rescues FUS mislocalization in motor neurons of 
FusΔNLS/+ mice.

Reversal of the Fus mutation in motor neurons 
prevents motor neuron degeneration and delays motor 
deficits

The presence of a Chat-CRE allele in FusΔNLS/+ mice 
was sufficient to fully restore motor neuron counts to 
similar numbers as in Fus+/+ mice at 22 months of age 
(Fig. 6a–c). Consistently, FusΔNLS/+/Chat-CRE mice 
did not develop the EMG abnormalities found in their 
FusΔNLS/+ littermates and their EMG score did not sig-
nificantly differ from Fus+/+ mice (Fig. 6d–e). While lit-
termate FusΔNLS/+ mice displayed a significantly shorter 
hanging time and shorter holding impulse than Fus+/+ 
mice in the inverted grid test at both 10 and 22 months 
of age (Figs. 3a, b, 6f, g), FusΔNLS/+/Chat-CRE mice 
displayed motor performance similar to Fus+/+ mice at 
10 months of age (Fig. 6f, g). At 22 months of age, how-
ever, FusΔNLS/+/Chat-CRE mice displayed significantly 
impaired motor performance as compared to Fus+/+ 
mice, leading to a similar motor deficit as FusΔNLS/+ mice. 
Thus, the selective reversal of the Fus mutation in motor 
neurons is sufficient to fully rescue motor neuron degen-
eration, even at older ages, while the motor deficits are 
delayed but not prevented.

Oligodendrocytic alterations in FusΔNLS/+ spinal cord

To evaluate the molecular mechanisms underlying the phe-
notypes in FusΔNLS/+ mice, we performed RNAseq on spi-
nal cord RNA extracts from 22-month-old FusΔNLS/+ and 
control littermates. Among the genes showing differential 
expression, several of them encoded for proteins related to 
myelination (Fig. 7a). Indeed, mRNA levels of myocilin, 
Ncmap, Pmp2, Pmp22, Cldn19 and Prx, were all downreg-
ulated in RNAseq from FusΔNLS/+ mice (Fig. 7a), and this 
was confirmed using RT-qPCR on samples obtained from an 
independent cohort of mice (Fig. 7b). For instance, Myoci-
lin is required for peripheral myelination [46], as is Pmp2 
[94] and Prx [25]. Pmp22 [33] and Prx [15] are involved 
in the morphology of myelinating Schwann cells. Interest-
ingly, we did not observe altered expression of other major 
myelin genes such as Mbp, Plp1 or Abca1 (Supplementary 
Fig. 7). Increased cytoplasmic FUS staining was observed 
in FusΔNLS/+ oligodendrocytes using double immunofluo-
rescence for FUS and oligodendrocyte specific markers 
CNPase and carbonic anhydrase II (Fig. 7c; supplemen-
tary Fig. 8). Oligodendrocytes were more numerous in 
ventral horn white matter of FusΔNLS/+ mice as compared 

Fig. 4  Muscle denervation and progressive degeneration of spi-
nal motor neurons in FusΔNLS/+ mice. a Representative electro-
myograms of FusΔNLS/+ mice in gastrocnemius and tibialis ante-
rior muscles. Note the presence of typical spontaneous denervation 
activities (fibrillation potentials) in FusΔNLS/+ mice. Scale bars 50 ms 
and 50 µV. b Graph showing EMG scores for Fus+/+ (blue bars) 
and FusΔNLS/+ (red bars) mice. Note that a significant difference 
was only detected for 22-month-old animals. ***p < 0.01 as com-
pared to Fus+/+; N = 7 for 10 months; N = 9 for 22 months; Stu-
dent’s unpaired t test. c Representative images of Nissl and ChAT 
staining of spinal cord ventral horn of 10-month-old (left panels) 
and 22-month-old (right panels) Fus+/+ and FusΔNLS/+ animals. In 
the 22-month-old FusΔNLS/+ mice degenerative changes (shrinking, 
chromatolysis) and loss of motor neurons occur. Scale bars 35 μm. 
d Compound muscle action potential (CMAP) amplitude. *p < 0.05 
as compared to Fus+/+; N = 10 Fus+/+, N = 9 FusΔNLS/+. Student’s 
unpaired t test. Bar graphs showing means and standard errors of 
Nissl+ (e) and ChAT+ (f) motor neuron number in the ventral horn 
of the spinal cord at 10 months and 22 months for Fus+/+ (blue bars) 
and FusΔNLS/+ (red bars) mice. ***p < 0.01 as compared to Fus+/+; 
N = 3 for 10 months; N = 6 for 22 months; Student’s unpaired t test

◂
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Fig. 5  Lack of motor neuron disease in Fus+/− mice. a Expression 
levels of Fus mRNA in spinal cord. Fus mRNA levels were signifi-
cantly reduced in Fus+/− mice as revealed by quantitative real-time 
PCR analysis. N = 7 Fus+/+, N = 9 Fus+/−. *p < 0.05 by Student’s 
unpaired t test. b Quantification of FUS protein levels from immuno-
blots showed a lower amount of FUS in spinal cord of Fus+/− mice. 
N = 7 Fus+/+, N = 8 Fus+/−. *p < 0.05 by Student’s unpaired t test. 
c Representative immunoblot for FUS on protein extracts from spinal 
cord of 100-week-old mice. TUBULIN was used as loading control. 
d Immunostaining for the neuronal marker NeuN and FUS on the 
spinal cord ventral horn of 100-week-old Fus+/+ and Fus+/− mice. 
Note preserved nuclear localization of FUS in Fus+/− mice. e Mean 

hanging time in the four-limb wire inverted grid test of Fus+/+ and 
Fus+/− mice. N = 4 Fus+/+, N = 3 Fus+/−. p = not significant (NS) 
by Student’s unpaired t test. f Bar graphs showing means and stand-
ard errors for compound muscle action potential (CMAP) amplitude. 
No difference was observed between groups. N = 6 Fus+/+, N = 5 
Fus+/−. p = NS by Student’s unpaired t test. g Representative images 
of ChAT immunostaining on spinal cord ventral horn. Scale bar 
35 μm. h Quantification of the number of motor neurons per spinal 
cord ventral horn in Fus+/+ and Fus+/− mice. The number of ChAT+ 
motor neurons was not altered in Fus+/− mice. N = 6 Fus+/+, N = 5 
Fus+/−. p = NS by Student’s unpaired t test
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to Fus+/+ mice (Fig. 7d, e), and this was not reverted in 
FusΔNLS/+/Chat-CRE mice. Together with RNAseq results, 
these data suggest that FUS mislocalization leads to defec-
tive oligodendrocyte physiology, independently of motor 
neuron involvement. To understand whether these defects 
could translate into abnormal myelination of motor axons, 
we studied the morphology of the ventral roots that collect 
all motor axons exiting from the spinal cord at 22 months 
of age. Consistent with a defect in myelination, g-ratio of 
ventral root axons were modestly decreased for the smaller 
axonal calibers (Supplementary Fig. 9a). Furthermore, 
motor axons of FusΔNLS/+ mice showed a distribution 
shifted towards smaller caliber (Supplementary Fig. 9b), 
and this axonal defect was not rescued in FusΔNLS/+/Chat-
CRE mice (Supplementary Fig. 9b, c). Moreover, there were 
fewer axons showing normal myelination in ventral roots of 
both FusΔNLS/+ and FusΔNLS/+/Chat-CRE mice as compared 
to control littermates (Supplementary Fig. 9d), and thus a 
higher frequency of typical features of myelination defects 
in both FusΔNLS/+ groups. Last, consistent with a myelin 
defect, the latency of CMAP was increased in FusΔNLS/+ 
muscles (Supplementary Fig. 9e). These results indicate that 
the function of myelinating cells, both in spinal cord and in 
the periphery, is altered in FusΔNLS/+ mice, what may con-
tribute to the observed motor deficits in aged mice.

Discussion

In this study we show that a heterozygous mutation in the 
endogenous murine Fus gene, that is similar to the most 
severe mutations in juvenile ALS, partially recapitulates 
ALS-FUS pathology and triggers mild progressive ALS-
like symptoms. We demonstrate that this Fus mutation is 
associated with motor neuron degeneration through FUS 
mislocalization in motor neurons, while axonal damage and 
demyelination occur independent of mutant FUS expres-
sion in motor neurons.

The generation of faithful animal models of neurode-
generative diseases is a long-standing aim of the scientific 
community. Recently, heterozygous knock-in mouse mod-
els of Alzheimer’s disease were shown to display mild but 
significant behavioral abnormalities, overcoming most of 
the artificial phenotypes observed in classical transgenic 
AD mouse models [66]. Similar artificial phenotypes are 
also confounding analysis in most currently used trans-
genic mouse models of ALS [5, 23, 30]. Indeed, the vast 
majority of described ALS mice expressing either mutant 
SOD1 [29], mutant TDP-43 [90] or mutant FUS [64, 73], 
are multi-copy transgenic lines, with poorly documented 
sites of transgene insertion. Moreover, overexpression of 
the wild type forms of SOD1 [26], TDP-43 [78, 91, 92] 

or FUS [55] generally leads to similar, if not exacerbated, 
symptoms as compared to expression of the ALS-linked 
mutations, casting doubts on their relevance as faithful ani-
mal models of the disease. Recently, Sharma and collabora-
tors generated mice with targeted expression of wild type 
or mutant FUS from the Tau locus [72]. These mice express 
physiological levels of FUS, yet under the control of the 
Tau promoter which is more active in neurons than in other 
cell types of the CNS. In FusΔNLS/+ mice, the endogenous 
murine Fus gene carries the mutation on a single allele 
thus providing the unique opportunity to study the effects 
of an ALS-like mutation in an authentic genetic context. 
The genetic construct used here features a poly-adenylation 
cassette that precludes the inclusion of regulatory elements 
present in the endogenous 3′UTR of the Fus mRNA. Since 
the 3′UTR of Fus mRNA has been found important for 
FUS autoregulation [17], this could in principle result in 
altered autoregulation of FUS. However, exon 7 and adja-
cent introns that are primarily involved in Fus autoregula-
tion are conserved in this model [95].

FusΔNLS/+ mice replicated a number of the pathological 
hallmarks observed in ALS-FUS patients. Similar to ALS-
FUS patients or iPSC-derived cells of these patients, the 
FUS protein was partially mislocalized to the cytoplasm 
[36, 38, 45, 48, 51] in a dimethylated form [19, 75]. Con-
sistent with the heterogeneity observed in human cases, 
FusΔNLS/+ motor neurons displayed various stages of FUS 
mislocalization [51, 52], and a subset of them showed com-
plete nuclear FUS clearance. Importantly, not all pathologi-
cal features of ALS-FUS were reproduced, suggesting that 
FusΔNLS/+ mice recapitulate early stages of disease. For 
instance, we did not observe neuronal or glial large cyto-
plasmic inclusions of FUS [43, 51], even in cells showing 
complete nuclear clearance of FUS. This is similar to mice 
expressing mutant FUS from the TAU locus [72]. Although 
FUS does not spontaneously form large pathological aggre-
gates, we cannot exclude that the biochemical properties of 
FUS could be altered in these mice. For instance, a propor-
tion of the FUS protein could become insoluble and/or its 
repertoire of binding partners could be modified [6, 86]. 
Further work in FusΔNLS/+ mice should clarify the biochem-
ical consequences of FUS truncation and mislocalization.

There was significant ubiquitin pathology but no p62 
pathology. Such an early pathological stage is consist-
ent with the observed slowly progressive motor neuron 
loss, mild motor symptoms, and a presumably unaltered 
mouse lifespan at least until 22 months of age. Several fac-
tors could explain why FusΔNLS/+ mice did not progress 
to the full-blown pathological and behavioral features of 
ALS-FUS. First, the genetic background of mice influ-
ences ALS-related disease course [31, 53]. Second, it can-
not be excluded that additional hits, either environmental 
or genetic, are necessary for the progression of ALS-FUS, 
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as previously postulated [18]. Third, the life span of mice 
might simply be too short to develop full-blown ALS, as 
in humans the disease becomes symptomatic after several 
decades.

Both ALS-FUS patients and FusΔNLS/+ mice carry one 
mutant copy of the FUS gene, and comparing FusΔNLS/+ 
mice with Fus+/− mice allowed us to provide definitive evi-
dence that gain of function is required to cause ALS-FUS. 

Indeed, Fus +/− mice did not show motor neuron loss or 
motor symptoms in contrast to FusΔNLS/+ mice. This is con-
sistent with the absence of motor phenotypes in Fus knock-
out mice, showing that even the complete absence of the 
FUS protein is not sufficient to trigger motor neuron degen-
eration [44, 68, 72]. Our results are consistent with recently 
published studies documenting that cytoplasmic FUS accu-
mulation is the only necessary toxic event to trigger motor 
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neuron loss [72, 73] and provide evidence that endogenous 
levels of mutant FUS protein are sufficient in animal mod-
els carrying identical gene dosage as in ALS-FUS patients.

The observed analogies between FusΔNLS/+ mice and 
ALS-FUS indicate that FusΔNLS/+ mice could be a model 
of choice to elucidate the cellular and molecular basis of 
ALS-FUS. In this respect, our study suggests that both cell-
autonomous and non-cell autonomous toxicity contributes 
to trigger the motor phenotype in ALS-FUS. A previous 
study by Sharma and collaborators has demonstrated that 
motoneuronal expression of a FUS mutation is sufficient to 
trigger motor symptoms [72]. However, the expression of 
mutant FUS from the mostly neuronal TAU locus did not 
allow them to rigorously test the contribution of other FUS-
expressing cell types. Here we show that loss of motor 
neuron cell bodies is completely rescued by reversal of 
the mutation in motor neurons. However, FusΔNLS/+/Chat-
CRE mice still developed motor symptoms after 10 months 
of age, and axonal damage appeared similar, independent 
of cytoplasmic FUS expression by motor neurons. In this 
knock-in Chat-CRE mouse strain, recombination occurs as 
early as E12 in motor neurons, and is extremely efficient 
[67]. Thus, both motor neuron autonomous and non-auton-
omous mechanisms contribute to motor neuron disease in 
FusΔNLS/+ mice. These results are consistent with previous 
findings obtained in mutant SOD1 mice [8, 9, 93] as well 
as with results obtained in conditional transgenic TDP-43 
mice (Da Cruz and Cleveland, personal communication). 
Hence, non-cell autonomous toxicity to motor neurons 
likely represents a ubiquitous mechanism of ALS.

Motor defects that are not rescued in FusΔNLS/+/Chat-
CRE mice could be due to defects in myelinating cells. 
Indeed, FUS was mislocalized in spinal cord oligoden-
drocytes of FusΔNLS/+ mice and this mislocalization was 
maintained in FusΔNLS/+/Chat-CRE mice. Consistent with 
a defect in oligodendrocytes, RNAseq uncovered decreased 
spinal cord expression of a number of genes that have 
been previously involved in morphology and function of 
myelin. Several of them are mutated in human demyelinat-
ing neuropathies, and loss of their function in mice leads 
to profound biochemical and morphological abnormalities 
of myelin. For instance, decreases in PMP2, whose muta-
tions can cause demyelinating Charcot–Marie–Tooth dis-
ease (CMT) [57] is sufficient to modify the lipidome of 
peripheral myelin [94], while heterozygous loss of Pmp22, 
causing human peripheral neuropathy [60], disrupts myelin 
junctions in mice [28, 33]. Furthermore, loss of periaxin, 
causing CMT4F in humans [7, 27], is sufficient to pro-
foundly alter the morphology of myelinating Schwann 
cells [15]. Importantly, we observed an increased number 
of oligodendrocytes in the ventral spinal cord white mat-
ter, consistent with altered function of this cell type, and 
this increased number was not dependent upon expres-
sion of the mutation in motor neurons as it persisted in 
FusΔNLS/+/Chat-CRE mice. These results provide further 
evidence for the involvement of oligodendrocytes in ALS, 
and are consistent with results obtained in transgenic mice 
expressing mutant SOD1. In SOD1(G93A) mice, gen-
eration of oligodendrocytes from NG2+ cells is increased 
[40], and axons are abnormally myelinated in the grey mat-
ter [41, 63]. Interestingly, however, oligodendrocyte num-
bers appear increased in FusΔNLS/+ mice, while they were 
reported to be unchanged in SOD1(G93A) mice. Such 
a difference might be due to the very different disease 
courses of both mouse strains. Oligodendrocytic expression 
of mutant SOD1 appears to play a critical role in mutant 
SOD1-ALS [41, 47, 63], and our current study provides 
suggestive, but not conclusive, evidence for a critical role 
of oligodendrocytes in ALS-FUS, and it does not identify 
pathogenic mechanisms elicited by mutant FUS in myeli-
nating cells. Further work, using relevant CRE expressing 
lines and/or cell-specific gene expression profiling [76] is 
mandatory to explore this hypothesis.

Besides oligodendrocytes, we also provide evidence of 
defects in Schwann cells of FusΔNLS/+ mice. There were 
myelin defects in ventral roots, and this was accompanied 
by increased CMAP latencies, characteristic for periph-
eral demyelination. Defects in Schwann cells have been 
recently observed in multiple models of ALS [37, 80], but 
expression of mutant SOD1 in Schwann cells appeared nei-
ther necessary [50] nor sufficient [83] for the disease trig-
gered by this specific ALS-linked mutation, and the role of 
Schwann cells in ALS remains uncertain.

Fig. 6  Motor neuron-selective reversal of the FusΔNLS allele to wild 
type delays but does not prevent FusΔNLS/+ motor phenotypes. a Rep-
resentative images of spinal cord ventral horn of Fus+/+/ChAT-CRE, 
FusΔNLS/+/− and FusΔNLS/+/ChAT-CRE mice at 22 months stained 
with Nissl (left panels) or anti-choline acetyl transferase (ChAT, 
right panels). b, c Quantification of motor neurons per spinal cord 
ventral horn. The number of Nissl+ (b) and ChAT+ (c) motor neu-
rons is rescued in FusΔNLS/+/ChAT-CRE mice while significantly 
reduced in FusΔNLS/+/− mice. N = 5 per genotype; ***p < 0.01 
versus Fus+/+/ChAT-CRE, ###p < 0.01 versus FusΔNLS/+/ChAT-
CRE; one-way ANOVA followed by Tukey post hoc test. In all 
graphs genotypes are represented as Fus+/+/ChAT-CRE (blue bars), 
FusΔNLS/+/− (red bars) and FusΔNLS/+/ChAT-CRE (green bars). d 
EMG recording traces in gastrocnemius muscle of 22-month-old ani-
mals. Note the absence of typical spontaneous denervation activities 
in FusΔNLS/+/ChAT-CRE versus FusΔNLS/+/− mice. Scale bars 50 ms 
and 50 µV. e EMG score showing significantly decreased spontane-
ous activity in FusΔNLS/+/ChAT-CRE as compared to FusΔNLS/+/− in 
22-month-old animals. N = 5 Fus+/+/ChAT-CRE, N = 7 FusΔNLS/+/− 
and N = 6 FusΔNLS/+/ChAT-CRE. ***p < 0.01 versus Fus+/+/ChAT-
CRE; #p < 0.05 versus FusΔNLS/+/ChAT-CRE; one-way ANOVA 
followed by Tukey post hoc test. Inverted grid test mean hanging 
time (f) and holding impulse (g). N = 7–8 for 10 months; N = 5–7 
for 22 months. *p < 0.05, ***p < 0.01 versus Fus+/+/ChAT-CRE; 
#p < 0.05 versus FusΔNLS/+/ChAT-CRE; one-way ANOVA followed 
by Tukey post hoc test
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To our knowledge, myelin ultrastructure has not been system-
atically studied in ALS-FUS patients, yet several studies observed 
loss of myelin in the cortico-spinal tract of ALS-FUS patients [43, 
84]. Moreover, FUS cytoplasmic aggregates have been observed 
in oligodendrocytes of ALS-FUS patients [51, 77] as well as 
in FTD patients with FUS pathology [58]. In non-FUS ALS 
patients, myelin loss has been observed in sporadic ALS patients 
and inclusions of TDP-43 are frequent in oligodendrocytes [41, 
63]. Besides glial cells, other cell types, such as skeletal muscle, 
could contribute to the neuromuscular phenotypes, and the condi-
tionality of Fus mutation in FusΔNLS/+ mice will allow to investi-
gate the role of these cells using appropriate CRE lines.

In conclusion, we characterize here a heterozygous 
knock-in mouse model of ALS and demonstrate that muta-
tions in FUS result in a toxic gain of function leading to 
motor neuron disease through cell autonomous and non-
cell autonomous mechanisms. FusΔNLS/+ mice will be 
instrumental in deciphering the molecular derailments elic-
ited by mutant FUS and could be useful for preclinical test-
ing of therapeutic strategies.
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