Skip to main content

Advertisement

Log in

Gene expression analysis of frontotemporal lobar degeneration of the motor neuron disease type with ubiquitinated inclusions

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders share a process of aggregation of insoluble protein. Frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) is characterized by the presence of ubiquitin and TDP-43 positive aggregates which are likely related to specific gene expression profiles. We carried out gene expression microarray analysis on post-mortem brain tissue from FTLD-U, FTLD-MND, and controls. Using total RNA from carefully dissected frontal cortical layer II, we obtained gene expression profiles showing that FTLD-U and controls differ in over 100 networks, including those involved in synapse formation, the ubiquitin-proteasome system, endosomal sorting, and apoptosis. We performed qRT-PCR validation for three genes, representative of three different networks. Dynein axonemal light intermediate chain 1 (DNALI1) (microtubule/cytoskeleton network associated) expression was 3-fold higher and myeloid differentiation primary response gene 88 (MYD88) (signal transduction network) was 3.3 times higher in FTLD-U than FTLD-MND and controls; annexin A2 (ANXA2) (endosomal sorting) expression was 11.3-fold higher in FTLD-U than FTLD-MND and 2.3-fold higher than controls. The identification of progranulin (PGRN) gene mutations and TDP-43 as the major protein component of the ubiquitinated inclusions, are two recent landmark discoveries in the field of FTLD-U. We found 1.5-fold increase in TDP-43 in both FTLD-MND and FTLD-U while progranulin showed no gene expression differences between controls and FTLD-MND. However, one of the FTLD-U cases tested by Affymetrix microarray showed “absence call” of this transcript, suggesting absent or decreased gene expression. Our findings point to specific gene-linked-pathways which may be influenced by neurodegenerative disease process and may be targeted for further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alter O, Brown PO, Botstein D (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA 97:10101–10106

    Article  PubMed  CAS  Google Scholar 

  2. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    Article  PubMed  CAS  Google Scholar 

  3. Ayala YM, Pantano S, Ambrogio AD, Buratti E, Brindisi A, Marchetti C, Romano M, Baralle FE (2005) Human, Drosophila, and C. elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol 348:575–588

    Article  PubMed  CAS  Google Scholar 

  4. Baker M, Mackenzie IRA, Pickering-Brown S, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J, Sadovnick AD, Rollison S, Cannon A, Dwosh E, Neary D, Melquist S, Richardson A, Dickson D, Berger Z, Eriksen J, Robinson T, Zehr C, Dickey CA, Crook R, McGowan E, Mann D, Boeve B, Feldman H, Hutton M (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919

    Article  PubMed  CAS  Google Scholar 

  5. Behrens MI, Mukherjee O, Tu PH, Liscic RM, Grinberg LT, Carter D, Paulsmeyer K, Taylor-Reinwald L, Gritcho M, Norton JB, Chakraverty S, Goate AM, Morris JC, Cairns NJ (2007) Neuropathologic heterogeneity in HDDD1: A familial frontotemporal lobar degeneration with ubiquitin-positive inclusions and progranulin mutation. Alz Dis Assoc Disord (in press)

  6. Benussi L, Binetti G, Sina E, Gigola L, Bettecken T, Meitinger T, Ghidoni R (2006) A novel deletion in progranulin gene is associated with FTDP-17 and CBS. Neurobiol Aging. doi 10.1016/j.neurobiolaging.2006.10.028

  7. Bigio EH, Johnson NA, Rademaker AW, Fung BB, Mesulam MM, Siddique N, Dellafave L, Caliendo J, Freeman S, Siddique T (2004) Neuronal ubiquitinated intranuclear inclusions in familial and non-familial frontotemporal dementia of the motor neuron disease type associated with amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 63:801–811

    PubMed  Google Scholar 

  8. Boeve BF, Baker M, Dickson DW, Parisi JE, Giannini C, Joesephs KA, Hutton M, Pickering-Brown SM, Rademakers R, Tang-Wai D, Jack CR Jr, Kantarci K, Shiung MM, Golde T, Smith GE, Greda YE, Knopman DS, Petersen RC (2006) Frontotemporal dementia and parkinsonism associated with the IVSI + IG→ a mutation in progranulin: a clinicopathologic study. Brain 129:3103–3114

    Article  PubMed  Google Scholar 

  9. Buesa C, Maes T, Subirada F, Barrachina M, Ferrer I (2004) DNA Chip technology in brain banks: confronting a degrading world. J Neuropathol Exp Neurol 63:1003–1014

    PubMed  CAS  Google Scholar 

  10. Butte A (2002) The use and analysis of microarray data. Nat Rev Drug Discov 1:951–960

    Article  PubMed  CAS  Google Scholar 

  11. Cairns NJ, Zhukareva V, Uryu K, Zhang B, Bigio E, Mackenzie IR, Gearing M, Duyckaerts C, Yokoo H, Nakazato Y, Jaros E, Perry RH, Lee VM, Trojanowski JQ (2004) Alpha-internexin is present in the pathological inclusions of neuronal intermediate filament inclusion disease. Am J Pathol 164:2153–2161

    PubMed  CAS  Google Scholar 

  12. Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stern D, McKhann G, Yan SD (2005) Mitochondrial A {beta}: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19:2040–2041

    PubMed  CAS  Google Scholar 

  13. Celentano JJ, Gyenes M, Gibbs TT, Farb DH (1991) Negative modulation of the γ-aminobutyric acid response by extracellular zinc. Mol Pharmacol 40:766–773

    PubMed  CAS  Google Scholar 

  14. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  15. Cooper PN, Jackson M, Lennox G, Lowe J, Mann DM (1995) Tau, ubiquitin, and alpha B-crystallin immunohistochemistry define the principal causes of degenerative frontotemporal dementia. Arch Neurol 52:1011–1015

    PubMed  CAS  Google Scholar 

  16. Cruts M, Gijselink I, Van Der Zee J, Engelbirghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R, Dermaut B, Jean-Jacques M, Van Duijn C, Peeters K, Sciot R, Santens P, Pooter TD, Mattheijssens M, Van den Broeck M, Cuijt I, Vennekens K, De Deyn PP, Singh SK, Ven Broeckhoven CV (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924

    Article  PubMed  CAS  Google Scholar 

  17. Davidson Y, Kelley T, Mackenzie IRA, Pickering-Brown S, Plessis DD, Neary D, Snowden JS, Mann DA (2007) Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol 113:521–533

    Article  PubMed  CAS  Google Scholar 

  18. Davion S, Johnson N, Weintraub S, Mesulam M-M, Engberg A, Mishra M, Baker M, Adamson J, Hutton M, Rademakers R, Bigio EH (2007) Clinicopathologic correlation in PGRN mutations. Neurology (in press)

  19. De Vrij FM, Sluijs JA, Gregori L, Fischer DF, Hermens WT, Goldgaber D, Verhaagen J, Van Leeuwan FW, Hol EM (2001) Mutant ubiquitin expressed in Alzheimer’s disease causes neuronal death. FASEB J 15:2680–2688

    Article  PubMed  Google Scholar 

  20. Dickey CA, Loring JF, Montgomery J, Gordon MN, Eastman PS, Morgan D (2003) Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. J Neurosci 23:5219–5226

    PubMed  CAS  Google Scholar 

  21. DNA chip analyzer software. Updated Oct. 2005 available at http://www.dchip.org. Accessed December 2005

  22. Ebadi M, Iversen PL, Hao R, Cerutis DR, Rojas P, Happe HK, Murrin LC, Pfeiffer RF (1995) Expression and regulation of brain metallothionein. Neurochem Int 27:1–22

    Article  PubMed  CAS  Google Scholar 

  23. Editorial. Dementia and motoneurone disease (1990) Lancet 335:1250–1252

  24. Eisen MB, Spellman PT, Brown PO, Boltstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  25. Evans SJ, Choudary PV, Vawter MP, Li J, Meador-Woodruff JH, Lopez JF, Burke SM, Thompson RC, Myers RM, Jones EG, Bunney WE, Watson SJ, Akil H (2004) DNA microarray analysis of functionally discrete human brain regions reveals divergent transcriptional profiles. Neurobiol Dis 14:240–250

    Article  CAS  Google Scholar 

  26. Fischer DF, De Vos RA, Van Dijk R, De Vrij FM, Proper EA, Sonnemans MA, Verhage MC, Sluijs JA, Hobo B, Zouambia M, Steur EN, Kamphorst W, Hol EM, Van Leeuwan FW (2003) Disease-specific accumulation of mutant ubiquitin as a marker for proteasomal dysfunction in the brain. FASEB J 17:2014–2024

    Article  PubMed  CAS  Google Scholar 

  27. Forman MS, Trojanowski JQ, Lee VM (2004) Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 10:1055–1063

    Article  PubMed  CAS  Google Scholar 

  28. GEO datasets available at NIH website http://www.ncbi.nlm.nih.gov. Accessed Feb 2006

  29. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CO, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  PubMed  CAS  Google Scholar 

  30. Hudson AJ (1981) Amyotrophic lateral sclerosis and its association with dementia, parkinsonism and other neurological disorders: a review. Brain 104:217–247

    Article  PubMed  CAS  Google Scholar 

  31. IntAct protein interaction Database available at website http://www.ebi.ac.uk/intact/search/do/search?searchstring=Q13148. Acessed Feb 2007

  32. Iseki E, Li F, Odawara T, Hino H, Suzuki K, Kosaka K, Akiyama H, Ikeda K, Kato M (1998) Ubiquitin-immunohistochemical investigation of atypical Pick’s disease without Pick bodies. J Neurol Sci 159:194–201

    Article  PubMed  Google Scholar 

  33. Jackson M, Lowe J (1996) The new neuropathology of degenerative frontotemporal dementias. Acta Neuropathol 91:127–134

    Article  PubMed  CAS  Google Scholar 

  34. Kertesz A, Kawarai T, Rogaeva E, St George-Hyslop P, Bird TD, Munoz DG (2000) Familial frontotemporal dementia with ubiquitin-positive, tau-negative inclusions. Neurology 54:818–827

    PubMed  CAS  Google Scholar 

  35. Lam YA, Pickart CM, Alban A, Landon M, Jamieson C, Ramage R, Mayer RJ, Layfield R (2000) Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. Proc Natl Acad Sci USA 97:9902–9906

    Article  PubMed  CAS  Google Scholar 

  36. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36

    Article  PubMed  CAS  Google Scholar 

  37. Lindsten K, de Vrij FM, Verhoef LG, Fiscer DF, Van Leuuwan FW, Hol EM, Masucci MG, Dantuma NP (2002) Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteosomal degradation. J Cell Biol 157:417–427

    Article  PubMed  CAS  Google Scholar 

  38. Lockhart DJ, Barlow C (2001) Expressing what’s on your mind: DNA arrays and the brain. Nat Rev 2:63–68

    CAS  Google Scholar 

  39. Mackenzie IRA, Baborie A, Pickering-Brown SM, Plessis DD, Jaros E, Perry RH, Neary D, Snowden JS, Mann DMA (2006) Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol 112:539–549

    Article  PubMed  Google Scholar 

  40. Mackenzie IRA, Baker M, Pickering-Brown SM, Ging-Yuek R, Lindholm C, Dwosh E, Gass J, Cannon A, Rademakers R, Hutton M, Feldman HH (2006) The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 129:3081–3090

    Article  PubMed  Google Scholar 

  41. Masellis M, Momeni P, Meschino W, Heffner R Jr, Elder J, Sato C, Liang Y, St George-Hyslop P, Hardy J, Bilbao J, Black S, Rogaeva E (2006) Novel splicing mutation in the progranulin gene causing familial corticobasal syndrome. Brain 129:2808–2810

    Article  Google Scholar 

  42. Mayer RJ (2003) From neurodegeneration to neurohomeostasis: the roles of ubiquitin. Drug News Perspect 16:103–108

    Article  PubMed  CAS  Google Scholar 

  43. McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the work group on frontotemporal dementia and Pick’s disease. Arch Neurol 58:1803–1809

    Article  PubMed  CAS  Google Scholar 

  44. Mesulam M, Johnson N, Krefft TA, Gass JM, Ashley D, Cannon BS, Adamson J, Bigio EH, Weintraub S, Dickson DW, Hutton ML, Graff-Radford NR (2007) Progranulin mutations in primary progressive aphasia—the PPA1 and PPA3 families. Arch Neurol 64:43–47

    Article  PubMed  Google Scholar 

  45. Morita K, Kaiya H, Ikeda T, Namba M (1987) Presenile dementia combined with amyotrophy: a review of 34 Japanese cases. Arch Gerontol Geriatr 6:263–277

    Article  PubMed  CAS  Google Scholar 

  46. Mukherjee O, Pastor P, Cairns N, Chakraverty S, Kauwe JS, Shears S, Behrens MI, Budde J, Hinrichs AL, Norton J, Levitch D, Taylor-Reinwald L, Gitcho M, Tu PH, Tenenholz Grinberg L, Liscic RM, Armendariz J, Morris JC, Goate AM (2006) HDDD2 is a familial FTLD-U caused by a missense mutation in progranulin. Ann Neurol 60:314–322

    Article  PubMed  CAS  Google Scholar 

  47. Neumann M, Sampathu DM, Kwong LK, Chou TT, Traux AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BM, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  PubMed  CAS  Google Scholar 

  48. Neumann M, Mackenzie IRA, Cairns NJ, Boyer PJ, Markesbery WR, Smith CD, Taylor JP, Kretzchmar HA, Kimonis VE, Forman MS (2007) TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J Neuropathol Exp Neurol 66:152–157

    Article  PubMed  Google Scholar 

  49. Neumann M, Kwong LK, Truax AC, Vanmassenhove B, Kretzschmar HA, Van Deerlin VM, Clark CM, Grossman M, Miller BL, Trojanowski JQ, Lee VMY (2007) TDP-43-positive white matter pathology in frontotemporal lobar degeneration with ubiquitin-positive inclusions. J Neuropathol Exp Neurol 66:177–183

    PubMed  CAS  Google Scholar 

  50. Okamoto K, Hirai S, Yamazaki T, Sun XY, Nakazato Y (1991) New ubiquitin-positive intraneuronal inclusion in the extra-motor cortices in patients with amyotrophic lateral sclerosis. Neurosci Lett 129:233–236

    Article  PubMed  CAS  Google Scholar 

  51. Pickering-Brown SM, Baker M, Gass J, Boeve BF, Loy CT, Brooks WS, Mackenzie IRA, Martins RN, Kwok JBJ, Halliday GM, Kril J, Schofield PR, Mann DMA, Hutton M (2006) Mutations in progranulin explain atypical phenotypes with variants in MAPT. Brain 129:3124–3126

    Article  PubMed  Google Scholar 

  52. Rademakers R, Cruts M, Dermaut B, Sleegers K, Rosso SM, Van den Broeck M, Backhovens H, Van Swieten J, Van Duijn CM, Van Broeckhoven C (2002) Tau negative frontal lobe dementia at 17q21: significant finemapping of the candidate region to a 4.8 cm interval. Mol Psychiatry 7:1064–1074

    Article  PubMed  CAS  Google Scholar 

  53. Raychaudhuri S, Stuart JM, Altman RB (2000) Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 455–66

  54. Rideout HJ, Larsen KE, Sulzer D, Stefanis L (2001) Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells. J Neurochem 78:899–908

    Article  PubMed  CAS  Google Scholar 

  55. Rowan MJ, Klyubin I, Wang Q, Anwyl R (2005) Synaptic plasticity disruption by amyloid beta protein: modulation by potential Alzheimer’s disease modifying therapies. Biochem Soc Trans 33:563–567

    Article  PubMed  CAS  Google Scholar 

  56. Sampathu DM, Neumann M, Kwong LK, Chou TT, Micsenyi M, Truax A, Bruce J, Grossman M, Trojanowski JQ, Lee VMY (2006) Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol 169:1343–1352

    Article  PubMed  CAS  Google Scholar 

  57. Schroder R, Watts GD, Mehta SG, Evert BO, Broich P, Fleissbach K, Pauls K, Hans VH, Kimonis V, Thal DR (2005) Mutant valosin-containing protein causes a novel type of frontotemporal dementia. Ann Neurol 57:457–461

    Article  PubMed  CAS  Google Scholar 

  58. Snowden JS, Pichering-Brown SM, Mackenzie IRA, Richardson AMT, Verma A, Neary D, Mann DMA (2006) Progranulin gene mutations associated with frontotemporal dementia and progressive non-fluent aphasia. Brain 129:3091–3102

    Article  PubMed  CAS  Google Scholar 

  59. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  PubMed  CAS  Google Scholar 

  60. Trojanowski JQ, Dickson D (2001) Update on the neuropathological diagnosis of frontotemporal dementias. J Neuropathol Exp Neurol 60:1123–1126

    PubMed  CAS  Google Scholar 

  61. Tsuchiya K, Ikeda K, Haga C, Kobayashi T, Morimatsu Y, Nakano I, Matsushita M (2001) Atypical amyotrophic lateral sclerosis with dementia mimicking frontal Pick’s disease: a report of an autopsy case with a clinical course of 15 years. Acta Neuropathol 101:625–630

    PubMed  CAS  Google Scholar 

  62. Vincent VAM, DeVoss JJ, Ryan HS, Murphy GM (2002) Analysis of neuronal gene expression with laser capture microdissection. J Neurosci Res 69:578–586

    Article  PubMed  CAS  Google Scholar 

  63. Wightman G, Anderson VE, Martin J, Swash M, Anderton BH, Neary D, Mann D, Luthert P, Leigh PN (1992) Hippocampal and neocortical ubiquitin-immunoreactive inclusions in amyotrophic lateral sclerosis with dementia. Neurosci Lett 139:269–274

    Article  PubMed  CAS  Google Scholar 

  64. Wikstrom J, Paetau A, Palo J, Sulkava R, Haltia M (1982) Classic amyotrophic lateral sclerosis with dementia. Arch Neurol 39:681–683

    PubMed  CAS  Google Scholar 

  65. Wurmbach E, Gonzalez_Maeso J, Yuen T, Ebersole BJ, Mastaitis JW, Mobbs CV, Sealfon SC (2002) Validated genomic approach to study differentially expressed genes in complex tissues. Neurochem Res 27:1027–1033

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the patients and their families who generously donated their brains for research. This work was supported in part by NIH grants AG13854 (MM and EHB), and grants CA81375-03, CA81375-03S1 to TP and GEW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjari Mishra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2007_240_MOESM1_ESM.doc

401_2007_240_MOESM2_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, M., Paunesku, T., Woloschak, G.E. et al. Gene expression analysis of frontotemporal lobar degeneration of the motor neuron disease type with ubiquitinated inclusions. Acta Neuropathol 114, 81–94 (2007). https://doi.org/10.1007/s00401-007-0240-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-007-0240-7

Keywords

Navigation