Skip to main content
Log in

Aquaporin-4 is increased in the sclerotic hippocampus in human temporal lobe epilepsy

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The hippocampus of patients with mesial temporal lobe epilepsy is often hardened and shrunken, a condition known as sclerosis. Magnetic resonance imaging reveals an increase in the T2-weighted signal, while diffusion weighted imaging shows a higher apparent diffusion coefficient in sclerotic hippocampi, indicating increased water content. As water transport appears to be coupled to K+ clearance and neuronal excitability [4], the molecular basis of the perturbed water homeostasis in the sclerotic hippocampus was explored. The expression of aquaporin-4 (AQP-4), the predominant water channel in the brain, was studied with quantitative real time PCR analysis, light microscopic immunohistochemistry and high-resolution immunogold labeling. A significant increase in AQP-4 was observed in sclerotic, but not in non-sclerotic, hippocampi obtained from patients with medically intractable temporal lobe epilepsy. This increase was positively correlated with an increase in the astrocyte marker glial fibrillary acidic protein. AQP-4 was localized to the plasma membranes of astrocytes including the perivascular end-feet. Gene expression associated with increased AQP-4 was evaluated by high throughput gene expression analysis using Affymetrix GeneChip U133A and related gene networks were investigated with Ingenuity Pathways Analysis. AQP-4 expression was associated with a decrease in expression of the dystrophin gene, a protein implicated in the anchoring of AQP-4 in perivascular endfeet. The decreased expression of dystrophin may indicate a loss of polarity in the distribution of AQP-4 in astrocytes. We conclude that the perturbed expression of AQP-4 and dystrophin may be one factor underlying the loss of ion and water homeostasis in the sclerotic hippocampus and hypothesize that the reported changes may contribute to the epileptogenic properties of the sclerotic tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 A, B
Fig. 2 A, B
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen M (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  CAS  PubMed  Google Scholar 

  2. Amiry-Moghaddam M, Ottersen OP (2003) The molecular basis of water transport in the brain. Nat Rev Neurosci 4:991–1001

    Google Scholar 

  3. Amiry-Moghaddam M, Otsuka H, Hurn PD, Traystman RJ, Haug F-M, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP, Bhardwaj A (2003) An α-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA 100:2106–2111

    Article  CAS  PubMed  Google Scholar 

  4. Amiry-Moghaddam M, Williamson A, Palomba M, Eid T, Lanerolle NC de, Nagelhus EA, Froehner SC, Agre P, Ottersen OP (2003) Dealyed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of α-syntrophin-null mice. Proc Natl Acad Sci USA 100:13615–13620

    Article  CAS  PubMed  Google Scholar 

  5. Amiry-Moghaddam M, Xue R, Haug F-M, Neeley SP, Bhardwaj A, Agre P, Adams ME, Froehner SC, Mori S, Ottersen OP (2004) Alpha syntrophin deletion removes the perivascular but not the endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J express article 10.1096/fj.03–0869fje

  6. Andrew DA (1991) Seizure and acute osmotic change: clinical and neurophysiological aspects. J Neurol Sci 101:7–18

    Article  CAS  PubMed  Google Scholar 

  7. Aoki K, Uchihara T, Tsuchiya K, Nakamura A, Ikeda K, Wakayama Y (2003) Enhanced expression of aquaporin 4 in human brain with infarction. Acta Neuropathol. 106:121–124

    Google Scholar 

  8. Badaut J, Nehlig A, Verbavatz J-M, Stoeckel M-E, Freund-Mercier M-J, Lasbennes F (2000) Hypervascularization in the magnocellular nuclei of the rat hypothalamus: relationship with the distribution of aquaporin-4 and markers of energy metabolism. J Neuroendocrinol 12:960–969

    Article  CAS  PubMed  Google Scholar 

  9. Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22:367–378

    Article  CAS  PubMed  Google Scholar 

  10. Benjamini Y, Hochberg Y (1955) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  11. Blake DJ, Hawkes R, Benson MA, Beesley PW (1999) Different dystrophin-like complexes are expressed in neurons and glia. J Cell Biol 147:645–657

    Article  CAS  PubMed  Google Scholar 

  12. Bordey A, Sontheimer H (1998) Properties of human glial cells associated with epileptic tissue. Epilepsy res. 32:286–303

    Google Scholar 

  13. Bratz E (1899) Ammonshornbefunde bei Epileptikern. Arch Psychiatr Nervenkr 32:820–835

    Google Scholar 

  14. Bronen RA, Cheung G, Charles JT, Kim JH, Spencer DD, Spencer SS, Sze G, McCarthy G (1991) Imaging findings in hippocampal sclerosis: correlation with pathology. AJNR 12:933–940

    CAS  Google Scholar 

  15. De Lanerolle NC, Kim JH, Robbins RJ, Spencer DD (1989) Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 495:387–395

    Article  PubMed  Google Scholar 

  16. De Lanerolle NC, Eid T, Campe G von, Kovacs I, Spencer DD, Brines ML (1998) Glutamate receptor subunits GluR1 and GluR2/3 distribution shows reorganization in the human epileptogenic hippocampus. Eur J Neurosci 10:1687–1703

    Article  PubMed  Google Scholar 

  17. De Lanerolle NC, Kim JH, Williamson A, Spencer SS, Zaveri HP, Eid T, Spencer DD (2003) A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia 44:677–687

    Article  PubMed  Google Scholar 

  18. De la Rosa A, Zhang P, Naray-Fejes- Toth A, Fejes-Toth G, Canessa CM (1999) The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem 274:37824–37839

    Google Scholar 

  19. Ehmsen J, Poon E, Davies K (2002) The dystrophin-associated protein complex. J Cell Sci 115:2801–2803

    CAS  PubMed  Google Scholar 

  20. Eid T, Brines M, Cerami A, Spencer DD, Kim JH, Schweitzer JS, Ottersen OP, Lanerolle NC de (2004) Increased expression of erythropoietin receptor on blood vessels in the human epileptogenic hippocampus with sclerosis. J Neuropathol Exp Neurol (in press)

  21. Eid T, Thomas MJ, Spencer DD, Rundén-Pran E, Lai JCK, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, Lanerolle NC de (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial-temporal lobe epilepsy. Lancet (in press)

    Google Scholar 

  22. Farman N, Boulkroun S, Courtois-Coutry N (2002) Sgk: an old enzyme revisited. J Clin Invest 110:1233–1234

    Article  CAS  PubMed  Google Scholar 

  23. Frigeri A, Nicchia GP, Nico B, Quondamatteo F, Herken R, Roncali L, Svelto M (2001) Aquoporin-4 deficiency in skeletal muscle and brain of dystrophic mdx mice. FASEB J 15:90–98

    Article  CAS  PubMed  Google Scholar 

  24. Grotzer MA, Patti R, Geoerger B, Eggert A, Chou TT, Phillips PC (2000) Biological stability of RNA isolated from RNAlater- treated brain tumor and neuroblastoma xenografts. Med Pediatr Oncol 34:438–442

    Article  CAS  PubMed  Google Scholar 

  25. Hintkerkeuser S, Schroder W, Hager G, Seifert G, Blumcke I, Elger CE, Schramm J, Steinhauser C (2000) Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci 12:2087–2096

    Article  PubMed  Google Scholar 

  26. Hjelle OP, Chaudhry FA, Ottersen OP (1994) Antisera to glutathione: characterization and immunocytochemical application to the rat cerebellum. Eur J Neurosci 6:794–804

    Google Scholar 

  27. Hsu S, Raine L, Fanger H (1981) The use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    CAS  PubMed  Google Scholar 

  28. Hugg JW, Butterworth EJ, Kuzniecky RI (1999) Diffusion mapping applied to mesial temporal lobe epilepsy. Neurology 53:173–176

    Article  CAS  PubMed  Google Scholar 

  29. Kim JH, Guimaraes PO, Shen M-Y, Masukawa LM, Spencer DD (1990) Hippocampal neuronal density in temporal lobe epilepsy with and without gliomas. Acta Neuropathol 80:41–45

    CAS  PubMed  Google Scholar 

  30. Kuhurana TS, Watkins SC, Kunkel LM (1992) The subcellular distribution of chromosome 6-encoded dystrophin-related protein in the brain. J Cell Biol 119:357–366

    Article  PubMed  Google Scholar 

  31. Laake JH, Takumi Y, Eidet J, Torgner IA, Roberg B, Kvamme E, Ottersen OP (1999) Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience 88:1137–1151

    Article  CAS  PubMed  Google Scholar 

  32. Li JZ, Vawter MP, Walsh DM, Tomita H, Evans SJ, Choudary PV, Lopez JF, Avelar A, Shokoohi V, Chung T, Mesarwi O, Jones EG, Watson SJ, Bunney WE, Meyers RM (2004) Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Human Molecular Genetics published online:doi: 10.1093/hmg/ddh1065

  33. Lie AA, Schroder R, Blumcke I, Magin TW, Wiestler OD, Elger CE (1998) Plectin in the human central nervous system: predominant expression at pia/glia and endothelia/glia interfaces. Acta Neuropathol 96:215–221

    Article  CAS  PubMed  Google Scholar 

  34. Mizuno Y, Thompson TG, Guyon JR, Lodov HGW, Brosius M, Imamura M, Ozawa E, Watkins SC, Kunkel LM (2001) Desmuslin, an intermediate filament protein that interacts with α-dystrobrevin and desmin. Proc Natl Acad Sci USA 98:6156–6161

    Article  CAS  PubMed  Google Scholar 

  35. Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nilsen S, Kurachi Y, Ottersen OP (1999) Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membane domains. Glia 26:47–54

    Article  CAS  PubMed  Google Scholar 

  36. Náray-Fejes-Tóth N (1999) Sgk: a new player (star?) in the early action of aldosterone. News Physiol Sci 14:274–275

    Google Scholar 

  37. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    CAS  PubMed  Google Scholar 

  38. O’Connor ER, Sontheimer H, Spencer DD, Lanerolle NC de (1998) Astrocytes from human hippocampal epileptogenic foci exhibit action potential-like responses. Epilepsia 39:347–354

    PubMed  Google Scholar 

  39. Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43:703–710

    Article  CAS  PubMed  Google Scholar 

  40. Poon E, Howman EV, Newey SE, Davies KE (2002) Association of syncoilin and desmin. J Biol Chem 277:3433–3430

    Article  CAS  PubMed  Google Scholar 

  41. Ramani P, Bradley NJ, Fletcher CD (1990) QBEND/10, a new monoclonal antibody to endothelium: assessment of its diagnostic utility in paraffin sections. Histopathology 17:237–242

    CAS  PubMed  Google Scholar 

  42. Rowntree LG (1926) The effects on mammals of the administration of excessive quantities of water. J Pharmacol Exp Ther 29:139–159

    Google Scholar 

  43. Seifert G, Hüttmann K, Schramm J, Steinhäuser C (2004) Enhanced relative expression of glutamate receptor 1 flip AMPA receptor subunits in hippocampal astrocytes of epilepsy patients with Ammon’s horn sclerosis. J Neurosci 24:1996–2003

    Article  CAS  PubMed  Google Scholar 

  44. Sommer W (1880) Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie. Arch Psychiatr Nervenkr 10:631–675

    Google Scholar 

  45. Spencer DD, Spencer SS, Mattson RH, Williamson PD, Novelly R (1984) Access to posterior medial temporal lobe structures in the surgical treatment of temporal lobe epilepsy. Neurosurgery 15:667–671

    CAS  PubMed  Google Scholar 

  46. Spencer SS, Katz A (1990) Arriving at the surgical options for intractable seizures. Semin Neurol 10:422–430

    CAS  PubMed  Google Scholar 

  47. Theodore W (1991) What is uncontrolled epilepsy, and who should be referred for surgery. In: Spencer SS, Spencer DD (eds) Surgery for epilepsy. Blackwell, Boston, pp 3–17

  48. Thompson TG, Chan Y-M, Hack AA, Brosius M, Rajala M, Lidov HGW, McNally EM, Watkins S, Kunkel LM (2000) Filamin 2 (FLN2): a muscle-specific sarcoglycan interacting protein. J Cell Biol 148:115–126

    Article  CAS  PubMed  Google Scholar 

  49. Vajda Z, Promeneur D, Dóczi T, Sulyok E, Frøkiaer J, Ottersen OP, Nielsen S (2000) Increased aquaporin-4 immunoreactivity in rat brain in response to systemic hyponatremia. Biochem Biophys Res Commun 270:495–503

    Article  CAS  PubMed  Google Scholar 

  50. Vajda Z, Pedersen M, Füchtbauer E-M, Wertz K, Stødkilde-Jørgensen H, Sulyok E, Dóczi T, Neely JD, Agre P, Frøkiaer J, Nielsen M (2002) Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci USA 99:13131–13136

    Article  CAS  PubMed  Google Scholar 

  51. Waldegger S, Barth P, Raber G, Lang F (1997) Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume. Proc Natl Acad Sci USA 94:4440–4445

    Article  CAS  PubMed  Google Scholar 

  52. Warth A, Kröger S, Wolburg H (2004) Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol. 107:311–318

    Google Scholar 

  53. Weishmann UC, Clark CA, Symms MR, Barker GJ, Birnie KD, Shorvon SD (1999) Water diffusion in the human hippocampus in epilepsy. Magn Reson Imaging 17:29–36

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Ilona Kovacs for excellent technical assistance with the immunohistochemistry, Dr. Aiping Lin for assistance with biostatistics, Ms. Shiela Westman for assistance with microarray analysis, and Dr. Ognen Petroff for his very helpful discussions and critiques of earlier versions of this paper. This work was supported by NS048434.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihal C. de Lanerolle.

Additional information

The first two authors contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T.S., Eid, T., Mane, S. et al. Aquaporin-4 is increased in the sclerotic hippocampus in human temporal lobe epilepsy. Acta Neuropathol 108, 493–502 (2004). https://doi.org/10.1007/s00401-004-0910-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-004-0910-7

Keywords

Navigation