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Abstract
Colloidal hard-sphere suspensions are convenient experimental models to understand soft matter, and also by analogy the
structural-relaxation behavior of atomic or small-molecular fluids. We discuss this analogy for the flow and deformation
behavior close to the glass transition. Based on a mapping of temperature to effective hard-sphere packing, the stress–
strain curves of typical bulk metallic glass formers can be quantitatively compared with those of hard-sphere suspensions.
Experiments on colloids give access to the microscopic structure under deformation on a single-particle level, providing
insight into the yielding mechanisms that are likely also relevant for metallic glasses. We discuss the influence of higher-
order angular signals in connection with non-affine particle rearrangements close to yielding. The results are qualitatively
explained on the basis of the mode-coupling theory. We further illustrate the analogy of pre-strain dependence of the
linear-elastic moduli using data on PS-PNiPAM suspensions.
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Introduction

Well-characterized Brownian colloidal dispersions with
deliberately tuned interactions serve as invaluable model
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systems on two accounts: they are models of more complex
suspensions that are of application interest in their own right
and at the foundation of the field of soft-matter physics. On
the other hand, the large size of the colloids (in the range
of 10 nm to about 1 μm) implies that the relevant length
and time scales match those accessible in visible-light
spectroscopy and microscopy as well as those of human
observers. Hence, colloidal suspensions serve as model
systems of atomic and small-molecular systems, where
the link between microscopic processes and macroscopic
material behavior is much harder to study experimentally.

This “colloids as big atoms” paradigm [1, 2] is rooted in
the observation that for a classical many-particle system, the
kinetic degrees of freedom can be integrated out separately
in the calculation of thermodynamic averages. Further
integration over the solvent degrees of freedom provides
effective colloid–colloid interactions, and if these match
those of an atomic system, the equilibrium phase behavior
is the same [3, 4].

This equivalence need not hold for the description
of time-dependent features, or when the systems are
driven far from equilibrium. However, the long-time
dynamics close to the glass transition provides a notable
exception: here, although the theoretical description of the
microscopic dynamics of the systems differs (Newtonian
for metallic melts, Brownian for colloidal particles), the
near-equilibrium structural relaxation is equivalent due to
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the dominance of slow relaxation processes that are driven
by local density fluctuations [5, 6]. This equivalence is
widely accepted and well tested [6–10]; it arises because the
structural relaxation time τ of the system is well-separated
from the much shorter time scale τ0 that characterizes the
(vibrational or diffusive) short-time motion of the particles.
The mode-coupling theory of the glass transition (MCT)
makes this observation rigorous [5, 11] and predicts a
critical temperature Tc (or, for colloidal suspensions of
hard spheres, a critical packing fraction ϕc) that separates
the high-temperature (low-density) liquid-like relaxation
behavior from a regime of low-temperature (high-density)
solid-like relaxation. Yet, while MCT implies that the
glass-transition point itself is unchanged by the kinetic
parameters of a system, the dynamics in its vicinity might
show different dependence on, for example, mobility ratios
in mixtures depending on whether one is on the liquid
side or the glass side of the MCT transition [12]. It
is worth stressing here that, since the glass transition
is a kinetic phenomenon, the equivalence of dynamical
features is not trivial. As a counter-example, consider the
Lorentz model of a single tracer moving in a random
heterogeneous medium. Based on the different mechanism
by which Newtonian and Brownian particles probe the
narrow channels between obstacles, different dynamical
critical exponents are predicted, in agreement with recent
simulations [13].

An analogy between yielding in colloidal glasses and
metallic glasses has often been invoked, but remained
rather qualitative. The unique mechanical properties of
bulk metallic glasses (BMG) make this a technologically
promising route to study, even though the deformation-
behavior map of such glasses has different regimes where
different analogies may be fruitful [14]. A key point to note
here is that metallic, as most small-molecular, glasses are
usually studied close to the empirical calorimetric glass-
transition temperature Tg , significantly below the mode-
coupling transition temperature Tc. At Tg , the viscosity of
the system is usually some ten orders of magnitude more
separated from the high-temperature one, when compared
with the viscosity around Tc. Even though some aspects of
the non-equilibrium nonlinear rheology appear similar [15,
16], and both in metallic glasses and in deeply quenched
colloidal glasses, similar local shear-transformation zones
(STZ) could be identified as microscopic signatures of
yielding [17–19], there are important differences. Colloidal
dispersions typically deform plastically over a broad range
of strains; metallic alloys deform plastically on the atomic
scale, which determines their casting properties, but they
typically fail as brittle solids by shear banding [20].

Here, we discuss aspects of the rheology of both some
exemplary metallic alloys and of prototypical colloidal
hard-sphere-like dispersions, to demonstrate regimes of

macroscopic linear and nonlinear response where the
behavior of the two system classes can be mapped
qualitatively and quantitatively. The mapping is based on
the notion that the typical scale for stresses in a material
is set by the thermal energy-density scale kBT /R3, where
R is the typical size of a constituent particle. The change
from R ∼ 1 nm typical of metallic alloys to R ∼ 1 μm
typical of colloidal matter includes a change of nine orders
of magnitude in the stresses. Although this observation
is the well-recognized core of distinguishing “hard” from
“soft” matter [1], it has remained rather qualitative so far.
In our contribution, we aim to demonstrate how far into the
quantitative this analogy can be pushed.

We combine experimental data on colloidal suspensions
and on metallic melts with molecular dynamics (MD)
and Brownian dynamics (BD) simulations, in order to
demonstrate the qualitative and quantitative aspects of
mapping hard- and soft-matter rheology also for those cases
(focusing on microscopically resolved quantities) where
metallic-alloy data is not readily available. The qualitative
features of the data are rationalized by MCT and simple
models based on it.

We combine colloidal data on different approximations
to the hard-sphere model system: one is based on core-shell
microgels where a thermosensitive crosslinked network of
poly(N-isopropylacrylamide) (PNiPAM) is affixed onto a
poly(styrene) (PS) core. These PS-PNiPAM particles were
established as excellent hard-sphere model systems for the
study of relaxation phenomena close to the colloidal glass
transition in particular by Matthias Ballauff and coworkers
[21–25]. Their thermosensitive shell makes it possible to
fine-tune the hard-sphere packing fraction by changes in
sample temperature. The other system is one of PMMA
particles representing a well-established colloidal hard-
sphere model. Experiments on this system allow resolving
the microstructure under flow, by combining developments
in standard rheometry with microscopy [18, 19, 26–28],
and with algorithms to determine with high accuracy the
positions of particles from confocal-microscopy images
[29].

Linear rheology

We begin by reviewing the most basic information on the
linear rheology of glass-forming fluids, i.e., the change in
shear viscosity as the glass transition is approached by either
lowering the temperature or increasing the packing fraction.

For a mixture of hard spheres, the total packing fraction
ϕ is defined by ϕ = (π/6)n

∑
α xαd3

α where n is the
number density of the particles and dα is the diameter of
the particles of the species labeled by α, whose number
concentration is xα . An effective packing fraction ϕ is
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often used as a proxy to estimate the slowing down of
structural relaxation in metallic melts [30], assuming that
in the liquid regime, a dominant contribution to the slow
relaxation comes from excluded volume between the atomic
constituents. One typically obtains in sluggish metallic
melts an effective packing fraction of ϕ ≈ 0.55. This
compares to the reference value ϕc ≈ 0.58 obtained
for hard-sphere colloidal suspensions [31] at their MCT
transition (and hence corresponding to Tc). Since the density
of the melt typically increases with decreasing temperature,
one indeed finds that higher packing fractions give rise to
higher viscosities. However, on this level, the hard-sphere
analogy of metallic melts is rather qualitative (and needs to
be—it is well known that different melts display different
chemical interaction effects, different “fragilities” close to
the glass transition, etc.)

For the calculation of ϕ, one needs accurate density
data, and a set of empirical atomic radii. The choice of
the latter is crucial because ϕ depends cubically on the
dα . One choice was proposed by Miracle [32], but these
radii consistently give values of ϕ ≈ 0.64, close to
the accepted random-close-packing limit of (monodisperse)
hard spheres. In other words, this choice of radii reiterates
the observation that dates back to Bernal [33], that the liquid
structure bears resemblance to the disordered close-packed
arrangement of spheres. Another common choice for the
effective atomic sizes is due to Pauling [34]. These values
are related to the positions of the first maximum in the
radial distribution function and hence already absorb some
chemical-environment effects mediated through electronic
degrees of freedom. We will adopt this choice in the
following.

Metallic melts where both accurate viscosity data (span-
ning a large viscosity range) and density data are available,
are not abundant in the literature. We focus here on Zr-
based melts; experimental data are available for the binary
Zr64Ni36 [35] and the five-component bulk-metallic glass
former Vitreloy Vit106a (Zr58.5Cu15.6Ni12.8Al10.3Nb2.8

[37]), measured using electrostatic and electromagnetic lev-
itation techniques. We complement these data by those from
molecular-dynamics simulations of Zr-Ni-Al melts whose
MD interaction potentials have been carefully matched with
structural and dynamical experimental data [36].

The data span just above one to three decades in slowing
down in viscosity for experiment and simulation. They
concur with a similar increase in the structural relaxation
time τ . In this range, the effective packing fractions
obtained using Pauling’s empirical radii range between
ϕ ≈ 0.53 and ϕ ≈ 0.57 (inset of Fig. 1); the packing-
fraction-dependent viscosity data of three of the systems
almost collapse, while the system with the highest Al
content deviates significantly. It has been discussed in the
literature that the addition of Al to metallic melts causes
strong chemical interaction effects that become particularly
pronounced above a certain Al concentration (see, e.g.,
Refs. [39–42]), so that this deviation can be rationalized.

On the other hand, the quantitative agreement with the
hard-sphere model is not convincing. To see this, we include
in the analysis data collected from various colloidal hard-
sphere models (collected by Russel, Wagner, and Mewis
[38], see there for original references). This data shows
that at a nominal packing fraction above ϕ = 0.5, the
viscosity is already at least two orders of magnitude slower
than the low-density reference, and that it increases by

Fig. 1 Viscosity of selected
metallic melts (filled symbols as
labeled; Zr64Ni36 from
experiment [35]; Zr75−xNi25Alx
from molecular dynamics
simulations [36]; Vit106a,
Zr58.5Cu15.6Ni12.8Al10.3Nb2.8
from experiment [37]) as a
function of empirical packing
fraction ϕ, compared with the
viscosity obtained from various
hard-sphere-like colloidal
suspensions (collected in and
taken from Ref. [38]; assuming
a solvent viscosity of 1 mPa s).
Main panel: using empirical
diameters deff,α = dα(T /T0)

−n,
with n = 0.2 and T0 = 950 K
and dα from Pauling [34]; inset:
using dα without temperature
correction
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three orders of magnitude in a window of packing fractions
of width Δϕ ≈ 0.15. On the contrary, the effective
mapping of metallic-alloy data suggests the same increase in
viscosity to occur in the much more narrow window of
Δϕ ≈ 0.02.

One ad hoc way to account for this difference is provided
by admitting the effective diameter of the spheres to vary as
a power law in temperature, deff,α = dα(T /T0)

−n, as would
be expected for effectively soft-sphere interactions. Such
softness in the interatomic repulsion has a strong impact on
the fragility of supercooled metallic melts and through the
shear modulus also on the viscosity [43]. Empirically, the
exponent n quantifies the softness of interactions and T0 is a
reference temperature for the choice of dα . One thus obtains
a corrected effective packing fraction (main panel of Fig. 1).
Without wanting to emphasize the “correct” choice of T0

and n, the comparison of this rescaled data with the colloidal
reference shows much better agreement.

Already in the hard-sphere model, one expects the value
of ϕ where a sharp increase in viscosity is observed
(attributed as being due to a close-by glass transition)
to vary with composition and size ratio of a mixture. In
colloidal suspensions and soft-matter systems, most studies
focus on the regime of very size-disparate mixtures (see,
e.g., Refs. [44–54] for studies of glassy dynamics and
Refs. [55–57] for the linear and nonlinear rheology). The
size polydispersity inherent in colloidal suspensions also
shifts ϕc, but less dramatically so. For typical metallic-
alloy atoms, the relevant size ratios are in the range of 0.8
to 1.0, and for binary mixtures of such size ratios, MCT
calculations predict that the glass-transition point shifts to
slightly lower packing fraction [52]. This effect has been
found in molecular-dynamics simulations [58] and is not
in disagreement with the trend observed in Fig. 1 for the
metallic-alloy data.

Note that to emphasize the analogy between atomistic
and colloidal rheology, one should further express the
viscosity in scaled units. The typical time scale that is
needed in order to non-dimensionalize a viscosity can be
expressed in terms of the short-time Brownian diffusion
scale for a colloidal system, τ0 = R2/D0 = 6πηsR

3/kBT

with the solvent viscosity ηs, or the thermal-velocity time
scale for an atomistic system, τ0 = R/

√
kBT /m. Hence,

a typical viscosity scale is set by the solvent viscosity for
a colloidal system, and by

√
kBT m/R2 for a molecular

system. We have not included this conversion in Fig. 1
because the choice of τ0 for the metallic mixtures is not
evident; also the conversion would need to account for
hydrodynamic-interaction effects in the colloidal system.
Note that for Zr atoms, which make up the majority of
atoms in the metallic alloys in our comparison, using mZr =
91.224 u where u ≈ 1.66×10−27 kg is the atomic mass unit,
and RZr ≈ 1.45 Å, one gets

√
kBT m/R2 = O(10−3Pa s),

so that mPa s is indeed the natural viscosity scale for both
system types.

Startup flow

An important rheological characterization of materials are
the stress–strain relations. In the corresponding “start-up”
experiment, one applies, starting at time t = 0, and a
deformation at a fixed rate γ̇ , and records the resulting
macroscopic stress σ as a function of accumulated strain
γ = γ̇ t .

Startup curves for glasses typically display three regimes
as a function of strain γ (see Fig. 2): a linear increase
σ � Geffγ indicating the initially nearly elastic response of
the material at low strains with an effective shear modulus
Geff, and a strain-independent plateau of the stress at large
γ (corresponding to large times), where σ is a function
of γ̇ rather than γ and signals that the material responds
as a viscous fluid. At intermediate strains, the σ -versus-
γ curves obtained for large enough strain rate display a
characteristic maximum, termed the stress overshoot. This
stress overshoot usually occurs at strains around γ ≈ 0.1,
which can be termed a yield strain. Its numerical value is
often attributed to the Lindemann criterion of melting [61],
and it provides a unified view on temperature-induced and
strain-driven transitions in metallic glasses [62]. One can
interpret the stress overshoot as the breaking of cages due
to deformation forces. This process sets in when the yield
stress of the material is reached, but the initial breaking
of cages requires a stress that is somewhat larger than that
sustained once the microscopic structure of the materials
adjusts to flow. Cages hence can be said to store some
amount of elastic energy [63, 64].

Based on the hard-sphere analogy, it is suggestive to
compare the stress–strain curves of colloidal hard-sphere
dispersions, and of bulk metallic glasses. Some caveats
are in order when doing so: first, colloidal particles are
embedded in a solvent, and thus the typical deformation
works at constant volume, while it is performed at
constant pressure in metallic systems. Furthermore, while
for colloidal suspensions it is convenient to apply simple
shear stress, experiments on metallic glasses usually work
in tension or compression. In principle, the deformation
and in particular the yielding behavior will depend on
the geometry of the stresses and strains. The question of
which deformation modes are most effective in yielding
an amorphous material leads to various empirical yield
criteria. Calculations within the mode-coupling theory of
colloidal rheology [65] recover, up to small deviations that
are understood as arising from normal-stress differences, the
so-called von Mises’ criterion which asserts that yielding is
predominantly driven by the total elastic energy deposited
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Fig. 2 Stress σ versus strain γ

for different deformation rates
given as Péclet numbers Pe0.
Left: for a bulk metallic glass
(Vitreloy 1,
Zr41.2Be22.5Ti13.8Cu12.5Ni10,
T = 613 K, from Ref. [59];
strain rate rescaled by

√
3 to

account for the deformation
geometry, see text). Right: for
colloidal hard spheres
(PS-PNiPAM, φ ≈ 0.60, from
Ref. [60]). Lines are fits using a
sheared-hard-sphere model of
MCT in isotropic approximation
(see text for details), rescaled by
0.75 and 0.32 for the BMG and
the colloidal sample,
respectively, and using strain-
scale parameters of γc = 0.3
and γ ′

c = 0.12 (BMG; left), and
γc = 0.3, 0.2, 0.2, 0.2, 0.1 and
γ ′
c = 0.18, 0.16, 0.14, 0.14, 0.14

(colloid for increasing Pe0;
right), see Appendix A for
details

in the material (in either deformation geometry). Under this
assumption, it is plausible to compare stress–strain curves
obtained under different deformation geometries, once one
relates the effective strain rates by a geometrical factor.

In particular, an arbitrary homogeneous deformation is
characterized by the strain-rate tensor κ , defined as κij =
∂j vi where i, j are the Cartesian components and v is the
homogeneous velocity field of the deformation map. Then, a
scalar local strain rate can be defined as the second invariant
of the symmetrized strain-rate tensor, D = κ + κT , via
γ̇ = IID = √

(1/2)trD · D for a deformation that is
incompressible, i.e., where trD = 0. For simple shear,
κxy = γ̇ is the only non-zero element of the strain-rate
tensor. Uniaxial deformation corresponds to κxx = γ̇uniax,
and κyy = κzz = −γ̇uniax/2, so that IID = √

3γ̇uniax (cf.
also Ref. [66]).

In Fig. 2. we compare the stress–strain curves of a bulk
metallic glass (Vitreloy 1; Zr41.2Be22.5Ti13.8Cu12.5Ni10)
obtained under uniaxial extension (left panel, from
Ref. [59]) with those of a typical PS-PNiPAM hard-sphere
suspension under simple shear [60] (right panel). Data
are shown for various deformation rates γ̇ , converted into
dimensionless Péclet numbers Pe0 = γ̇ τ0 using the time-
scale of short-time motion τ0. The strain rates for the BMG
were related to that of simple shear by a geometric factor,
γ̇ = √

3γ̇uniax, as discussed above.
An important conclusion from the comparison is that in

both systems, thermal energy sets the natural stress scale:
after rescaling the stresses with kBT /R3, where R is a

typical atomic or colloidal radius (using R = 1.58 A in
Fig. 2 based on the Pauling radius for Zr as the majority
species and corrected for temperature as above), both the
startup stresses for the metallic and the colloidal glass are
of order unity for typical flow rates, and comparable to each
other provided that the deformation rates (as expressed in
dimensionless Péclet numbers) are also comparable. The
quantitative comparability holds, even though the BMG data
is obtained at T = 613 K, close to and in fact below
the calorimetric glass transition temperature, Tg ≈ 623 K,
while the colloidal data is obtained at a packing fraction
ϕ ≈ 0.60 close to the location of the MCT transition point
in this experimental system. In essence, the comparison
thus emphasizes that for the macroscopic stress–strain
curves not too deep in the glassy state and at sufficiently
low shear rates, the Péclet number is the only relevant
dimensionless parameter that determines the shear-induced
structural relaxation. Note that for deformation deep in the
glassy state (which is particularly relevant not only for
BMG at room temperature, but also for colloids closer to
jamming), other deformation modes might become relevant;
to address the spatially heterogeneous plastic deformations
(shear bands, etc.) of the amorphous solid is beyond the
scope of this paper.

The initial, nearly linear increase of the σ -versus-γ
curves allows estimation of the Maxwell plateau modulus
of the system. Again, for both systems, the values are
comparable once expressed in appropriate thermal-energy
units: from the BMG data, G∞ ≈ 14 GPa ≈ 14 kBT /R3,
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while for the colloid data, G∞ ≈ 42 Pa ≈ 7.7 kBT /R3

(where R = 90 nm is the average radius of the colloids).
Similar results are also obtained using startup rheology
of PMMA hard-sphere-like colloidal suspensions of sizes
R = 150 nm and R = 780 nm, where after rescaling data
for comparable Péclet numbers by kBT /R3, the stationary
stresses [67] and the stress–strain curves [68] coincide.

Lines in Fig. 2 demonstrate results from MCT obtained
for the hard-sphere system (using the Percus-Yevick
approximation for the static structure factor, and an
isotropic approximation for the MCT vertices in the
integration-through transient, ITT, formalism). Details of
the calculation can be found in Appendix A. In the
calculation, state points close to the MCT glass transition
were chosen, such that the structural relaxation times
τ match the ones estimated for the experiments in
dimensionless units.

ITT-MCT captures well the overall trend of the stress–
strain curves and their dependence on Pe0. However,
the stress overshoots are systematically underestimated
in the isotropic ITT-MCT approximation. This is likely
a combination of several factors: beyond the effect of
approximations inherent in the isotropically averaged ITT-
MCT model, the theory also refers to startup flow from a
well-equilibrated sample. In the experiment, it is known that
the magnitude of the stress overshoot depends sensitively
on the sample preparation and its age (with older samples
typically displaying larger stress overshoots) [60, 69, 70].
Also, shape and strength of the stress overshoot depend
sensitively on the microscopic details of the interaction, and
here, deviations from idealized hard-sphere behavior are
most likely to be prominent [71]. In this regard, PMMA
suspensions were argued to be closer to ideal hard-sphere
behavior than the PS-PNiPAM particles; indeed, the former
display weaker overshoots [72]. For a comparison between
PMMA startup curves and MCT, see also Ref. [73].

Note that although the common terminology implies
a single maximum in the stress–strain curve, there is no
inherent reason that excludes a more general damped-
oscillatory crossover from the linear-elastic to the plastic-
flow regime. Indeed, such oscillations are seen in both the
theory and the BMG data; they have also been observed at
high Pe in colloidal suspensions [74]. BMG tend to break
after applying strains much larger than the yield strain, so
that this regime is difficult to access there. Within ITT-
MCT, the oscillations arise because of a slight mismatch
in the relaxation times of the relevant density fluctuations
and the affine decorrelation of the coupling between these
density fluctuations and the overall stresses. As detailed
in Appendix A, in the theory, this is tuned by strain-scale
factors γc and γ ′

c , whose empirical values are given in the
caption of Fig. 2; they were chosen such that the ITT-
MCT results roughly match the position and strength of

the experimentally observed stress overshoots (as far as
possible within the simplified MCT model). In principle,
the stress overshoot is thus rationalized as a competition
between reversible affine deformation (as expressed through
shear advection) and the irreversible relaxation dynamics,
i.e., the competition between elastic storage and dissipative
loss of strain energy.

There is a direct link between the anisotropy of the
microscopic structure and the macroscopic stresses in
a sheared system. We note in passing that also for
the quiescent systems, the statistical information on the
microstructure, as expressed through the static structure
factor S(q) and the related radial distribution function g(r),
emphasizes the qualitative similarities between the metallic
and the colloidal systems. This becomes clearer if one
focuses on binary metallic alloys where isotope-substitution
scattering experiments allow the determination of the partial
static structure factors that can then be compared with
predictions of the hard-sphere model. For the example of
Zr-Ni melts [75, 76], this also demonstrates the extent of
chemical short-range order effects on the dynamics.

A direct way to quantify the microstructural changes
under deformation is through the change of the radial
distribution function δg(r) = g(r; γ̇ ) − geq(r), where
g(r; γ̇ ) is the (anisotropic) stationary distribution function
under shear, and geq(r) the (isotropic) one of the quiescent
system. Simulations readily give access to this quantity.
To demonstrate the qualitative features, we have extracted
this quantity from molecular-dynamics (MD) simulations of
a model of liquid Ni and from Brownian dynamics (BD)
simulations of a 2D hard-disk system (see Appendix C for
details of the simulations). In both systems, qualitatively
similar distortion patterns are seen (Fig. 3), despite the
difference in interaction potential (soft versus hard) and
dimensionality. One notes in particular a quadrupolar
distortion that is expected on grounds of the rotational
symmetry imposed under simple shear: along a compression
axis (at θ ≈ 135◦ w.r.t. the flow direction), particles are
pushed on average closer together than in the quiescent
state, and along an extension axis (θ ≈ 45◦), they move
further apart. For the Ni system, this implies that δg(r)
is enhanced close to the nearest-neighbor peak of geq(r)

along the compression axis, and suppressed along the
extension axis. For increasing radial distance r , this pattern
of enhancement and suppression alternates and indicates
that the dominant effect indeed is a quadrupolar distortion
of the local atomic distances. The same effect is seen in the
hard-sphere simulation, although here, the signal in δg(r) is
much sharper. This is due to the fact that hard spheres can,
other than the soft Ni atoms, not be pushed closer together
than their hard-sphere interaction diameter, where geq(r)

already has a very pronounced maximum. (Also, in the hard-
sphere simulation, a binary mixture was considered in order
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Fig. 3 Distortion of the radial distribution function, δg(r) = g(r; γ̇ )−
geq(r), under shear flow of rate γ̇ , displayed in the shear–shear-
gradient plane (x: direction of flow, y: direction of gradient). (a) from
molecular-dynamics (MD) simulations of a model of Ni; (b) from
Brownian dynamics (BD) simulations of a binary hard-sphere system

with size ratio δ = 0.8. Dashed and solid white circles are guides
to the eye to emphasize cuts of constant r where l = 2 and l = 4
deformations can be seen (two minima interspersed by two maxima,
respectively four separated minima)

to avoid crystallization, which leads to additional rings in
the appearance of Fig. 3b compared with the monodisperse
Ni system.)

While the quadrupolar distortion agrees with the
expectation from continuum mechanics (where one would
argue that a symmetric second-rank tensor such as the stress
tensor can be decomposed into multipole terms including
the monopole and a quadrupole), a closer inspection of
δg(r) reveals a growing amount of higher-order distortion
[77]. We discuss this point in the following, for the
spherical-harmonic projections of δg(r) and cuts along
constant radial distance r .

The leading non-trivial spherical-harmonic projections of
δg(r) confirm that on distances corresponding to nearest-
neighbor shells around particles, different local deformation

modes prevail (Fig. 4), both in the MD simulation
representative of the metallic system, and in experiment
on the colloidal hard-sphere-like suspension. To obtain the
latter data, we have developed a high-precision setup that
allows confocal-microscopy imaging of a flowing colloidal
suspension combined with accurate localization of the
particles through image analysis. Details of the technique
as well as our convention of the projections δglm(r) are
presented in Appendix D.

The quadrupolar term δg22(r) (solid lines) indicates the
shift of particles inward along the compression axis, and
outward along the extension axis; there results an oscillatory
signal in δg22(r) with a zero around the equilibrium nearest-
neighbor distance r ≈ 2R. In fact, the inward shift of
particles is stronger than the outward push, as is revealed

Fig. 4 Spherical-harmonics projections of the distorted radial distri-
bution function, δglm(r), as a function of radial distance in units of a
typical particle size. Dotted line (magenta): isotroptic change δg00(r);
solid line (blue): quadrupolar distortion δg22(r); dashed line (green):

hexadecupolar distortion δg44(r). The quiescent radial distribution
function is shown as geq(r)/5 (red dashed line) for comparison. a From
MD simulations of liquid Ni. b From confocal microscopy data of a
PMMA hard-sphere colloidal suspension
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by an overall isotropic contribution δg00(r) that has a
maximum slightly inward of r = 2R, and a minimum
at distances somewhat larger than the quiescent nearest-
neighbor distance (dotted lines in Fig. 4). The isotropic
contribution indicates that under shear, there is a flow-
induced enhancement of the pressure. Such an increase
in pressure has been linked to shear banding [78, 79]
which in turn is sometimes linked to the appearance of
stress overshoots [80, 81]. Note on the contrary that in
the simulations it has been verified that the flow remains
homogeneous for all the states that are considered here.

At the distance of the quiescent nearest-neighbor shell,
both the isotropic and the quadrupolar distortions nearly
vanish. There remains however a hexadecupolar term,
δg44(r) (dashed lines), as pointed out previously in the
context of MCT [77]. It has been attributed to specific
non-affine rearrangements of particles under the constant
breaking of cages due to shear. It is remarkable that this
signal, unexpected from continuum symmetry, can indeed
also be identified in the confocal-microscopy data of a
colloidal suspension, as demonstrated in Fig. 4b.

The interpretation that the hexadecupolar distortion
signals constant non-affine local rearrangements that are
indicative of the fully yielded system [77] is consistent with
the expectation that for small strains, only a quadrupolar
distortion should prevail [63, 64, 82]. This is indeed the
case, as seen by a comparison of the different angular
dependence of g(r) ≡ g(r, θ) in the flow–flow-gradient
plane, at constant r ≈ 2R (Fig. 5). For small strains that are
still in the linear-elastic regime, δg(r, θ) is well described
by a quadrupolar angle dependence ∝ sin 2θ , which is also
linear in the strain as expected for reversible deformations.
Both in the MD simulations of liquid Ni and in the colloidal

experiment do we observe that for strains larger than the
yield strain, γ � 0.1, the same angular dependence is best
described by the l = 4 form ∝ (sin 2θ)2 (bottom set of
curves in Fig. 5) that is quadratic in the strain, as indicative
of irreversible deformations.

The cross-over from quadrupolar to hexadecupolar sym-
metry in δg(2R, θ) is qualitatively explained by numerical
solutions of the full ITT-MCT equations combined with an
expression for the distorted structure factor [83]. We com-
pare (inset of Fig. 5) with the ITT-MCT prediction of a
two-dimensional hard-disk system; this choice allows to
significantly reduce the numerical complexity of the MCT
calculation and also serves to demonstrate the generality of
the result: The same evolution of δg(θ) is seen as in the sim-
ulations and experiments performed on 3D, slightly soft and
polydisperse particles. As a result of the strict hard-sphere
approximation, the distortion of g(r) directly at contact, r =
2R, is however much more pronounced, as anticipated from
the discussion of Fig. 3. The ITT-MCT curve highlights that
the local minimal in δg(θ) are at angles slightly different
from 45◦ an 135◦ and closer to 35.3◦ and 144.7◦ respec-
tively. To understand this, recall that after a rotation of the
coordinate system by π/2, these locations correspond to the
“magic angle” θc = 54.7◦ given by the zero of the second-
order Legendre polynomial. Coincidentally, in continuum
elasticity these are the directions expected for shear bands
forming in the locations where normal stresses vanish, e.g.,
in the deformation of rubber [84, 85].

It is interesting to note that the appearance of l = 4
distortions, which by continuum symmetry cannot directly
enter the stress tensor but do so indirectly through the effect
of the associated particle motion also on the l = 2 mode,
might be the signal of local particle rearrangements such as

Fig. 5 Angular dependence of g(r) at fixed radial distance r ≈ 2R,
as a function of the angle to the shear-flow direction, θ , for two
strains γ after startup flow before (γ = 0.01: top curves) and after
(γ > 0.1: bottom curves) the yield strain. Dash-dotted lines are fits
using a quadrupole signal sin 2θ (top) and a hexadecupolar signal

(sin 2θ)2 (bottom). a From MD simulation of liquid Ni. b From con-
focal microscopy of a PMMA hard-sphere colloidal suspension (r =
2.1R). Inset: Results from mode-coupling theory (ITT-MCT) for a 2D
hard-disk system
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the ones triggering STZ, ultimately causing yielding as seen
from a microscopic point of view. In similar vein, they could
be linked to the T1 events in emulsions and foams [86, 87]
(systems where also stress overshoots are seen [88]): such
individual plastic events release stress locally and hence are
thought ultimately responsible for yielding, yet they are not
easily linked to the macroscopic stress [89, 90].

Shear-history effects

A major effect of slow structural relaxation on the
rheology of viscoelastic fluids and amorphous solids is the
appearance of flow-history effects. Changes in the flow
conditions at previous times t ′ < t influence the response at
time t for the large time interval up to t−t ′ ∼ τ . In principle,
in the ideal glassy state, this interval extends arbitrarily far
back in time. This causes for example frozen-in stresses in
a sample that has been flowing at t < 0 and whose flow is
stopped at t = 0. In the glass, in principle, a stress σ∞ �= 0
is observed even as t → ∞, and this stress depends on
the infinitely past flow conditions. Again, colloidal model
suspensions provide clean model systems in which to study
these effects [67]. With their help, also the response in
amorphous metallic materials can be understood, based on
the hard-sphere analogy.

A related effect was first described by Bauschinger
[91] in the case of steel samples: in general, the elastic
response of a material depends on the way it has been
pre-strained. In crystalline materials, pre-strain can induce
obvious micro-structural changes such as the healing or

creation of lattice defects and grain boundaries. But also
in amorphous materials, there are (more subtle) strain-
dependent changes in the microstructure that will affect
the subsequent stresses. A slightly formalized version of
the measurement was proposed in the context of glasses,
aiming to address the so-called Bauschinger effect [92, 93]:
the initial sample is first sheared as in startup flow for a
certain time, until a pre-strain γw has been reached. After
the corresponding “waiting time” tw = γw/γ̇ , the shear
is reversed, keeping the rate constant, i.e., γ̇ (t > tw) =
−γ̇ (t < tw). After the stress has reached zero for some
t0 � tw, a reversed stress–strain curve is recorded.

The Bauschinger effect manifests itself by an altered
response: the typical stress-overshoot, whose maximum
indicates a certain static yield strength of the material, is
strongly reduced after large pre-strains γw. Experiments
on PS-PNiPAM suspensions demonstrate this (Fig. 6): for
γw � 14.4%, some remnant overshoot is still seen, but
upon flow reversal after a pre-strain of order unity, a stress–
strain curve essentially without overshoot is observed. This
finding agrees with MD simulations of a molecular glass
former [93]. Within ITT-MCT, this is explained [93] as a
balance of two contributions to the generalized Green-Kubo
integral that determines σ(t) from all t ′ < t : a positive
overshoot arising from t ′ ∼ (tw − γc/|γ̇ |) < tw and a
negative one arising from t ′ ∼ (tw+γc/|γ̇ |) that cancel each
other if both contributions are well within the stationary
regime of the flow. Indeed, as γw is increased from zero, the
stress overshoot starts to vanish as soon as γw � γc.

ITT-MCT describes the reduction of the stress overshoot
qualitatively, and to emphasize the cancellation mechanism

Fig. 6 Symbols: Stress–strain
curves of a colloidal
hard-sphere-like suspension
(PS-PNiPAM particles,
R ≈ 90 nm) after different
amounts of pre-strain γw in the
opposite direction, at a shear
rate of γ̇ = 5 × 10−4 s−1. Lines:
Results from a generalized
Maxwell model (see text)
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Fig. 7 Filled symbols: Effective
shear modulus Geff = Δσ/Δγ

obtained from the colloidal
stress–strain curves shown in
Fig. 6. Open symbols: from MD
simulations of a typical
molecular glass former (data
from Ref. [93]). Line: Prediction
from a generalized Maxwell
model (see text; scaled by 11/15
to match the experimental shear
modulus at γw = 0)

in the Green-Kubo integral, a further simplified generalized
Maxwell model has been devised [93]. In this model, the
shear-induced structural relaxation is approximated by an
exponential relaxation decaying on the shear-induced time
scale γ̇ , and the affine advection effect acting on the MCT
vertices is modeled by an empirical function. Details of the
model are collected in Appendix B. Within the limits of
such crude approximations, the generalized Maxwell model
predicts the qualitatively correct trend of a reduction in
stress overshoot due to pre-strain once γw � γc (lines in
Fig. 6).

From the stress–strain curves at different γw, it is
suggestive to conclude that also the initial elastic response
of the material changes with pre-strain. While a rigorous
analysis of the corresponding derivative dσ(γ )/dγ within
ITT-MCT is demanding, the generalized Maxwell model
offers at least a qualitative description of the effect.
From the experimental data, the effective shear modulus
as obtained from a finite-difference evaluation, Geff =
Δσ/Δγ with Δγ ≪ 0.1. One observes (symbols in
Fig. 7) that the initial shear modulus Geff ≈ 11 kBT /R3

for γw → 0, decreases by almost 40% due to pre-strain,
and reaches Geff ≈ 7 kBT /R3 as γw  γc; i.e., the pre-
strained material exhibits weaker linear-elastic response.
A similar amount of reduction in Geff was found in MD
simulations of a typical molecular glass former modeled by
a binary truncated-Lennard-Jones mixture (open symbols in
Fig. 7, taken from Ref. [93]). The typical strain required
to break cages, γc, again sets the strain scale over which
this reduction in effective shear modulus takes place. The
analytical evaluation from the generalized Maxwell model
(lines in Fig. 7) confirms this.

Conclusions

We have juxtaposed data on the linear and nonlinear
rheologies of metallic melts and colloidal suspensions to
shed light on the question to what extent the often quoted
“hard-sphere analogy” for the slow relaxation dynamics of
disordered hard and soft matter can be made quantitative
in the context of linear and nonlinear rheologies. To this
end, we have also presented new measurements performed
on colloidal model suspensions: confocal microscopy data
for PMMA suspensions under startup flow to determine
a subtle hexadecupolar deformation mode at the onset of
yielding, and time-dependent non-stationary bulk rheology
of PS-PNiPAM particles to address specific questions of
the history-dependent nonlinear rheology typical of the
materials science of metallic glasses.

Our data analysis confirms quantitatively the common
qualitative notion that “colloids are big atoms” [1]: The
difference in the typical values for the elastic coefficients,
GPa in hard matter such as metallic glasses, versus Pa
in soft matter, is explained by the different number- and
hence energy-density scales due to the different sizes of the
relevant constituents.

The base of drawing colloid-vs-atomic analogies is of
course a purely dimensional argument for the relevant
length and energy scales. We assume that for the
stresses, local arrangements are responsible that express
predominantly entropic balances caused by the fact that
in all the systems we consider, strongly non-overlapping
particles are redistributed by thermal fluctuations. Hence,
the hard-sphere system is a good model system for
dense liquids [33, 94], and energy scales from the direct
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interactions between particles cause secondary effects. In
fact, in metallic melts, chemical short-range order effects
may become interesting, and ultra-soft penetrable particles
for example will represent a different system class [95–97].

A key for addressing the mechanisms of yielding and
flow of amorphous materials close to the (MCT) glass tran-
sition, and to address, e.g., the fate of low-temperature STZ
as thermal fluctuations become dominant, is to establish a
direct link between microstructural observations and macro-
scopic rheology. Scattering experiments employing light
scattering [98–104] and differential dynamic microscopy
[105], X-ray diffraction [77, 106], and small-angle neu-
tron scattering [107] under flow are in principle available.
Direct imaging in confocal microscopy under flow [108,
109]—which can also be combined directly with rheometry
measurements [110–113]—offers a unique way to extract
individual particle positions, also in the flow–gradient plane
of shear that is difficult to access in scattering.

Using such tools, it remains a fascinating question to
establish the merits and limitations of a unified view
on colloidal and bulk-metallic rheology, possibly fixing
the boundaries in the deformation–temperature map where
different views apply.
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Appendix A: Integration through transients
andmode-coupling theory of the glass
transition (ITT-MCT)

We briefly summarize the main ingredients of the mode-
coupling theory of the glass transition (MCT) for the
nonlinear rheology of colloidal systems, obtained in the
framework of the integration-through transients (ITT)
method of calculating non-equilibrium statistical averages.
The ITT-MCT was first developed by Fuchs and Cates
[114–116], and for a more thorough summary we refer to
previous literature [117–119].

ITT starts from an exact reformulation of the Smolu-
chowski (Fokker-Planck) equation that governs the time
evolution of the non-equilibrium probability distribution
function of the system. This allows deriving a generaliza-
tion of the Green-Kubo formula for the stress, relating the
non-equilibrium stress σ to the shear-rate tensor κ and the
microscopic stress fluctuations σ̂ = −(1/V )

∑N
k=1rkFk

(for an N-particle system with volume V , particle positions
rk and interaction forces Fk). One obtains:

σ (t) =
∫ t

−∞
dt ′βV

〈
κ(t ′) : σ̂ exp−

[∫ t

t ′
Ω†(s) ds

]
σ̂

〉
eq

, (1)

where angular brackets indicate equilibrium statistical
averaging, β = 1/kBT is the Boltzmann factor, and it
was assumed that the system was in unstrained quiescent
equilibrium in the infinite past. The differential operator
Ω† is the adjoint Smoluchowski operator and includes
the nonlinear effects of the deformation history on the
dynamics.

The microscopic correlation function that appears under
the integral of Eq. 1 is in principle exact, but can only
be evaluated after further approximations. In ITT-MCT,
one assumes that the dominant stress contributions dur-
ing structural relaxation arise from microscopic density
fluctuations δnk to wave vector k. One defines the tran-
sient dynamical density correlation function Φkt ′ (t)(t, t

′) =〈
δn∗

kt ′ (t) exp−
[∫ t

t ′ Ω
†(s) ds

]
δnk

〉
, where the affine defor-

mation imposed by the homogeneous deformation of the
system is taken into account: a density fluctuation δnk at
time t originates from an earlier one δnk0(t) at time 0, where
kt ′ = k · F t t ′ . F t t ′ is the deformation gradient tensor that is
known from the finite-strain theory of continuum mechan-
ics. It is related to the velocity-gradient tensor by ∂tF t t ′ =
κ(t) · F t t ′ . After approximations of four-point correlation
functions, ITT-MCT arrives at:

σ/(nkBT ) = −n

∫ t

−∞
dt ′

∫
d3k

32π3 [k · ∂t ′B t t ′ · k]

kk
kkt ′(t)

c′(k)c′(kt ′(t))Φkt ′ (t)(t, t
′)2 . (2)
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The quantity c(k) is the quiescent-equilibrium direct
correlation function that is related to the static structure
factor by S(k) = 1/[1 − nc(k)]. The Finger tensor (also
called left Cauchy-Green tensor) B t t ′ = F t t ′ · F T

tt ′ is the
rotation-invariant measure of deformation. In simple shear
flow, −qt ′(t) · ∂t ′B t t ′ · qt ′(t) = q · κ(t ′) · q reduces to the
usual shear rate.

For the evaluation of the transient correlation functions,
ITT-MCT provides an evolution equation that takes the form
of a nonlinear integro-differential equation. In principle,
the full ITT-MCT, including all spatial anisotropies, can be
solved [77, 120], but the numerical complexity is rather
high. For the results shown in Fig. 5, 2D calculations were
thus used, following Refs. [121, 122]. Here, we denote for
simplicity only the expressions obtained under an additional
isotropic approximation for the wave-vector integrals that
has been used to obtain the results shown in Fig. 2. It leads
to under the assumption of constant simple shear of rate γ̇

applied instantaneously at t ≥ 0, such that the correlation
functions also become functions of t − t ′ only:

σxy(t)/(nkBT ) = nγ̇

∫
k4 dk

60π2
c′(k)c′(k(t))Φk(t)(t)

2 , (3)

and

(1/q2D0)∂tΦq(t)+S(q)−1Φq(t)+
∫ t

0
dt ′ Mq(t−t ′)∂t ′Φq(t ′) = 0

(4)

with the memory kernel

Mq(t) = n

2

∫
d3k

(2π)3
VqkpVqk(t)p(t)Φk(t)Φp(t) (5)

where p = |q−k| and q(t) = q
√

1 + (γ̇ t/γc) accounts for
the shear advection. The vertices Vqkp = (q · k)c(k)/q2 +
(q ·p)/q2c(p) are given entirely in terms of the equilibrium
static structure of the system.

The ITT-MCT model tends to underestimate the decorre-
lation of fluctuations due to shear; hence, a correction factor
γc is introduced. The latter is typically taken to be γc = 0.1
in order to match the Lindemann criterion. For the data in
Fig. 2, in order to better match the stress overshoots seen in
experiment, we adjusted γc separately for Eq. 3 (called γ ′

c)
and for Eq. 5.

From the full solutions of the ITT-MCT equations,
non-equilibrium averages over microscopic quantities can
in principle be calculated, following the derivation of
appropriate generalized Green-Kubo relations similar in
spirit to Eq. 1 and closures in the spirit of the MCT
approximation of the memory kernel. This way, one obtains
expressions for the distorted microstructure and hence
δg(r). For details on these formulas and also the numerical
procedure to solve the ITT-MCT equations, we refer to
Ref. [121]. The calculations require as physical input the

direct correlation functions of the quiescent equilibrium
system; we use the standard Percus-Yevick approximation
for this to describe a hard-sphere-like system within the
theory.

Appendix B: GeneralizedMaxwell model

Based on a schematically simplified version of the
generalized ITT-MCT Green-Kubo-like formula for the
stress, Eq. 3, under simple shear geometry:

σxy =
∫ t

−∞
γ̇ (t ′)vσ (γtt ′)G(t, t ′, [γ̇ ]) , (6)

a generalized Maxwell model was proposed [22, 123] to
provide a model that captures a number of qualitative
predictions of the full ITT-MCT and at the same time
lends itself to a more rigorous analytical analysis. Based
on Maxwell’s model of viscoelasticity [124], and approxi-
mating the shear-induced structural relaxation rate 1/τ ∼
1/τeq + |γ̇ |/γc, one assumes the dynamical shear modulus
to decay exponentially at long times. Assuming further the
quiescent system to be effectively frozen in, one sets:

G(t, t ′, [γ̇ ]) � G∞ exp
[−(t − t ′)|γ̇ |/γc

]
. (7)

For our analysis of the Bauschinger effect, this relaxation
behavior is obtained for all times because, due to symmetry
constraints, only the magnitude of the applied shear rate
can enter the dynamical shear modulus. The vertex function
is further approximated by an ad hoc functional form that
captures the decay to zero with increasing strain and exhibits
an undershoot that gives rise to a stress overshoot under
startup flow:

vσ (γ ) =
(

1 − (γ /γ∗)2
)

exp
[
−(γ /γ∗∗)2

]
. (8)

Here, γ∗ and γ∗∗ are tunable parameters that play the role
of γc but differ in their numerical values in order to capture
the effect that, in determining the stress overshoot, density
fluctuations of slightly different wave length decorrelate on
slightly different strain scales; an effect that is necessarily
missing in a simplified model that ignores the spatial
resolution of density fluctuations. A modified variant of
vσ (γ ) employing fourth powers of γ was used to rationalize
startup flow in schematic ITT-MCT models [60]; here, we
use a simpler version that includes a strictly quadratic strain
dependence in vσ (γ ). It allows integrating the expressions
for the Bauschinger effect analytically, at the cost of giving
quantitatively less accurate fits of the experimental data.

For the results of the generalized Maxwell model shown
in Fig. 6, we used Geff = 15, γc = 0.14, γ∗ = 0.1,
and γ∗∗ = 0.125 at a shear rate given by the bare Péclet
number γ̇ τ0 = 5 × 10−4. This gives reasonable fits of the
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experimental data, but it overestimates G∞; in Fig. 7, this
effect was scaled out.

Appendix C: Simulation details

Molecular-dynamics (MD) simulations were performed
for a system of liquid Ni. These simulations employ
an embedded-atom method (EAM) potential proposed by
Foiles [125] that was gauged against experimental data
for the liquid state of Ni. The same model has been used
previously to study crystal growth in metallic melts [126–
128]; we refer the reader to these references for further
details on the interaction potential. Simulations with N =
8788 particles in the NV T ensemble using Lees-Edwards
boundary conditions to impose simple shear, and a DPD
thermostat to maintain a temperature of T = 1400 K were
employed. This represents a strongly undercooled state; the
melting temperature of the MD system is Tm ≈ 1748 K.
Shear was applied to match a dressed Péclet (Weissenberg)
number Pe = γ̇ τ ≈ 1.

For simulations of a sheared hard-sphere system under-
going Brownian motion, we employed an event-driven algo-
rithm [129]. In these BD simulations, a binary equimolar
mixture of N = 1000 particles with size ratio 1.4 is used as
a system whose glass-transition dynamics has been exten-
sively studied. Simulations are performed at ϕ = 0.81,
slightly above the MCT transition point of the system,
ϕc ≈ 0.795. The shear rate of γ̇ = 2 × 10−3/τ0 is applied
via Lees-Edwards boundary condition; the corresponding
dressed Péclet number Pe  10. For the evaluation of
stress and pair-distribution values, see Ref. [130]. For δg(r),
the correlations between big particles were evaluated; it is
not qualitatively different from the other partial g(r) in this
mixture.

Appendix D: Confocal microscopy under
shear

For colloidal microscopy, dispersions of poly-
methylmethacrylate (PMMA) colloids stabilized with
polyhydroxystearic acid and flourescently labeled with
nitrobenzoxadiazole in a solvent mixture of cyclohep-
tyl bromide and cis-decalin (to provide both density and
refractive-index matching) with addition of 4 mM tetrabuty-
lammoniumchloride were prepared. The dispersed particles
display hard-sphere behavior to a good extent [71] and
have an average radius R ≈ 780 nm (6% polydispersity).
A volume fraction of ϕ ≈ 0.565 was used, just below the
expected glass transition at ϕg ≈ 0.58. Shear is applied
corresponding to a dressed Péclet number Pe ≈ 144, by
means of a home-built shear cell employing two parallel

plates covered with PMMA particles to avoid wall slip [26,
27, 73, 99].

Prior to the measurements, the samples are exposed to
oscillatory shear (exceeding 100% strain for 10 cycles at a
frequency below 0.1 Hz) following a rest period of 600 s.

Confocal microscopy is performed with a VT-Eye
confocal microscope (Visitech International) mounted on a
Nikon Ti-U inverted microscope. Image stacks are acquired
at a depth of 15 μm into the sample, using a Nikon Plan Apo
VC 100× oil immersion objective. An image stack of 512×
512×50 pixels corresponds to a volume of 51×51×10 μm3,
and contains around 8500 particles. Coordinates are extracts
using standard routines [131] and refined [29]. The data for
g(r) are averaged over ten experiments, counting particles
within a slice of thickness 2.8R in the velocity-gradient
plane around each reference particle.

Projections onto spherical harmonics in 3D are defined
by

g(r) =
∞∑
l=0

l∑
m=−l

glm(r)Ylm(θ, φ) , (9)

and the relevant l = 2 and l = 4 terms in the 2D plane have
coefficients

g22(r) = 1

2

√
15

2π

∫
dΩ g(r) sin θ cos θ (sin φ)2 , (10)

g44(r) = 3

16

√
35

2π

∫
dΩ g(r) cos 4θ (sin φ)4 . (11)

This follows the convention of Ref. [132] but differs slightly
from the one used elsewhere [133].
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