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Abstract
Diabetes mellitus increases the risk of heart failure independent of co-existing hypertension and coronary artery disease. 
Although several molecular mechanisms for the development of diabetic cardiomyopathy have been identified, they are 
incompletely understood. The pathomechanisms are multifactorial and as a consequence, no causative treatment exists at 
this time to modulate or reverse the molecular changes contributing to accelerated cardiac dysfunction in diabetic patients. 
Numerous animal models have been generated, which serve as powerful tools to study the impact of type 1 and type 2 
diabetes on the heart. Despite specific limitations of the models generated, they mimic various perturbations observed in 
the diabetic myocardium and continue to provide important mechanistic insight into the pathogenesis underlying diabetic 
cardiomyopathy. This article reviews recent studies in both diabetic patients and in these animal models, and discusses novel 
hypotheses to delineate the increased incidence of heart failure in diabetic patients.
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Introduction

The prevalence of diabetes is increasing at an alarming 
rate. Estimations by the World Health Organization (WHO) 
reported that 422 million adults were affected by diabetes in 
2014, compared to 108 million in 1980. In 2004, 3.4 million 
people died due to complications associated with diabetes, 
and this number is expected to double by 2030 (www.who.
int). There are two predominant types of diabetes; type 1 
diabetes (T1D) is characterized by impaired insulin produc-
tion and insulinopenia as a primary result of an autoimmune 
response against pancreatic β-cells. In contrast, hallmarks 
of type 2 diabetes (T2D) are peripheral insulin resistance 
and pancreatic β-cell failure during the later course of the 
disease [164].

Diabetes induces micro- and macroangiopathy. The main 
cause of morbidity and mortality in diabetic patients are 
cardiovascular complications [175]. Numerous clinical tri-
als indicate diabetes as a major risk factor for myocardial 

infarction. Similarly, diabetes increases the risk of future 
heart failure up to fivefold [66, 104, 105, 109, 137]. How-
ever, the high prevalence of heart failure in diabetic patients 
is not explained by concomitant hypertension and coronary 
artery disease. Over four decades ago, Rubler and colleagues 
reported autopsy data from diabetic patients with left ven-
tricular (LV) dilatation in the absence of any obvious aetiol-
ogy for heart failure [169]. Later reports confirmed the initial 
observation [89, 161], resulting in the concept of “diabetic 
cardiomyopathy” (DCM). DCM is mainly characterized by 
diastolic dysfunction in the absence of systolic dysfunction 
(heart failure with preserved ejection fraction, HFpEF) [125] 
and increased fibrosis in the absence of hypertension or cor-
onary artery disease. The pathomechanisms underlying the 
development of DCM are multifactorial and incompletely 
understood. Consequently, no treatment to prevent or reverse 
the underlying molecular changes exists at this time [133].

Diabetes has adverse effects on the different cell types of 
the heart, including endothelial cells [63], fibroblasts [170] 
and cardiomyocytes. Various small and large animal models 
of T1D and T2D have been generated to study the impact 
of diabetes on the heart. These models are based on genetic 
manipulations, dietary interventions, and treatment with 
pancreatic toxins, which mimic many aspects of diabetes 
and DCM. In the present review, we will focus on studies 
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performed on diabetic patients and rodent models. We will 
explore mechanisms, which are mainly present in cardio-
myocytes and underlie the pathogenesis of DCM. Before 
these mechanisms will be discussed in detail, a brief intro-
duction of the most commonly used animal models of T1D 
and T2D including their strengths and limitations of their 
use is warranted.

Animal models

Rodents, especially mice and rats, are powerful tools to 
study the mechanisms involved in the development of DCM. 
The human, mouse, and rat genomes have nearly the same 
size, each containing about 30,000 protein-coding genes, 
with about 99% of the genes encoded in the mouse genome 
having a homologue in humans [82, 142]. In addition to 
these genomic similarities, further advantages of rodent 
models are the short breeding cycle and the availability of a 
variety of genetically engineered gain-of-function and loss-
of-function models. The main characteristics of commonly 
used rodent models to study various aspects of DCM in com-
parison with findings from T1D and T2D patients are sum-
marized in the Table 1, and will be discussed in detail below.

Streptozotocin (STZ) is a glucosamine-nitrosourea 
compound, which is toxic to pancreatic β-cells. Following 
intraperitoneal injection, STZ is transported into pancreatic 
β-cells by the glucose transporter 2 (GLUT2) based on its 
structural similarity to glucose, which results in necrosis and 
subsequent loss of insulin production [23]. STZ models are 
used to study both T1D and T2D. High-dose STZ protocols 
are primarily used to study T1D. Owing to the low pen-
etrance of T2D development with high fat diet (HFD) chow 
feeding, more recent models have taken advantage of the 
clinical presentation of late stage T2D and β-cell destruction 
by adding in very low dose of STZ [11, 132, 144, 160, 218]. 
Another model of T1D is the OVE26 mouse, which overex-
presses the Ca2+-binding protein calmodulin in pancreatic 
β-cells, resulting in pancreatic β-cell damage. Non-obese 
diabetic (NOD) mice develop T1D as a result of leukocyte 
infiltrate of the pancreatic islets, causing insulitis, and β-cell 
failure [131]. T1D Akita mice (Ins2Akita+/−) exhibit a spon-
taneous mutation in the Insulin2 gene, which facilitates mis-
folding of the insulin protein, endoplasmic reticulum (ER) 
stress and ultimately β-cell failure [227]. Although each of 
these models accurately reflects the insulin deficient nature 
of T1D, there are some limitations of which the most note-
worthy is that they do not adequately capture the autoim-
mune contribution to the development of T1D in human 
patients [71, 155].

Commonly used transgenic models of obesity, insu-
lin resistance and T2D are ob/ob [76] and db/db [40] 
mice, which are based on leptin deficiency or resistance, 

respectively. Similarly, Zucker fatty (ZF) rats develop obe-
sity as a consequence of non-functional leptin receptors 
[154]. Zucker diabetic fatty (ZDF) rats were generated by 
inbreeding ZF rats with high serum glucose levels [51]. 
Goto-Kakizaki (GK) rats are an inbred strain derived from 
Wistar rats that spontaneously develop T2D [81]. Mice with 
adipose tissue-specific overexpression of sterol regulatory 
element-binding protein-1c (SREBP-1c) develop insulin 
resistance and elevated plasma triglyceride levels [183]. To 
avoid potential perturbations based on altered leptin con-
centrations and signalling, a variety of studies feed rodent 
models a HFD with increased caloric intake to induce obe-
sity, insulin resistance, and T2D, which will be discussed in 
detail below.

In addition to these more direct models of diabetes, trans-
genic models that replicate aspects of DCM have been gen-
erated. For example, mice with cardiomyocyte-specific over-
expression of the transcription factor peroxisome proliferator 
activated receptor α driven by the α myosin heavy chain gene 
promoter (MHC-PPARα) exhibit increased cardiac fatty 
acid oxidation (FAO) and a phenotype similar to DCM. The 
investigation of this models helps to explore mechanisms by 
which perturbed cardiac substrate oxidation impairs contrac-
tile function without systemic metabolic alterations that are 
associated with diabetes [72, 73]. Cardiomyocyte-selective 
insulin receptor knockout (CIRKO) mice are used to study 
the effect of decreased insulin signalling in cardiomyocytes 
without causing systemic metabolic disturbances [14]. The 
following sections and Fig. 1 summarize the main mecha-
nisms that have been proposed to explain the increased risk 
of heart failure observed in T1D and T2D. The hypotheses 
generated are based on studies conducted on either animal 
models or diabetic patients.

Animal studies with high caloric diets

Numerous studies use dietary treatments to induce obesity, 
insulin resistance, and T2D in rodents and large animal mod-
els [189]. The term “Western” diet is commonly used for 
diets with a high total fat and sucrose content, which allows 
mimicking pathologies that have been associated with the 
“Western” human dietary pattern. In contrast, rodent HFD 
chow typically contains a variable amount of fat and a vari-
able amount of added cholesterol [94]. Importantly, rodents 
usually eat any kind of fruit or grain from plants when liv-
ing in their natural habitat. “Western” diet and HFD chow, 
which is typically used for laboratory experiments, may con-
tain a fat content of up to 60%. In comparison, the increase 
in fat intake in rodent models is proportionally higher com-
pared to humans consuming “Western” diets.

HFD feeding with a relatively low fat content (45% calo-
ries from fat) is not associated with contractile dysfunction 
following a short feeding duration in mice; however, systolic 
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dysfunction develops after a prolonged duration of 20 weeks 
[198]. In contrast, HFD feeding of mice with 60% fat content 
contributes to systolic dysfunction after only 10 weeks of 
feeding and increases mortality [13], which suggests poten-
tial toxic effects for high caloric diets with a relatively high 
fat content. Similarly, exposure to “Western” diet (36% fat 
content and 36% sugar content) leads to solely diastolic dys-
function, while systolic function is preserved after a total 
duration of 8 months [158]. Other important parameters that 
could provide an explanation for the different phenotypes 

observed are the duration of the dietary treatment and the 
genetic background of the species used [211].

An additional mechanism is a potential biphasic response 
of cardiac insulin signalling, even though not directly proven 
across these studies. Cardiac insulin signalling is preserved 
in T2D humans and rodent models following short-term 
HFD feeding [55, 219]. However, prolonged HFD feeding 
in animal models impairs Akt activation and forkhead box 
O-1 (FOXO1) transcription factor phosphorylation [13], 
which results in persistent FOXO1 nuclear localization 

Fig. 1   Pathomechanisms and clinical features of diabetic cardiomyo-
pathy. ↑ increased/↓ decreased relative to normal conditions; AGE, 
advanced glycation end products; AT1R, angiotensin II receptor type 
1; ER, endoplasmic reticulum; FAO, fatty acid (FA) oxidation; FAT/
CD36, fatty acid translocase; GLOX, glucose oxidation; HBP, hex-
osamine biosynthetic pathway; IR, insulin receptor; PDH, pyruvate 

dehydrogenase; PDK4, pyruvate dehydrogenase kinase 4; PPARα, 
peroxisome proliferator activated receptor α; PTM, posttranslational 
modification; RAAS, renin–angiotensin–aldosterone system; RAGE, 
receptor for advanced glycation end products; ROS, reactive oxygen 
species; TF, transcription factor; UDP-GlcNAc, uridine diphosphate-
N-acetylglucosamine; β2AR, β2-adrenergic receptor
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and activation. The FOXO1-mediated adverse effects are 
multifactorial, including induction of autophagy, atrophy, 
and MHC isoform switching. The adverse consequences 
of persistent FOXO1 activation are supported by attenu-
ated systolic dysfunction following long-term HFD feed-
ing of mice with genetic deletion of FOXO1 [13]. Further 
experimental evidence is provided by transgenic animals 
with cardiomyocyte-specific deletion of IRS1 and IRS2, 
which exhibit severe heart failure [157, 166]. This effect 
is ameliorated by the deletion of FOXO1 [157]. The poten-
tial biphasic response of insulin signalling is important to 
consider in the design of future studies. Posttranslational 
modification of FoxO1 also mediates cardiac collagen and 
protein metabolism as reported in the context of ischemic 
heart failure [107].

Several studies subjected rodents to high caloric diets in 
addition to low-dose STZ treatment [11, 132, 144, 160, 218] 
to induce ß-cell dysfunction and insulinopenia, which are 
long-term complications of T2D. To objective of these stud-
ies is to overcome the potential low penetrance of diabetes 
development following HFD feeding in rodents. Similar to 
studies using HFD, the additional treatment with STZ pro-
moted oxidative stress, cardiac hypertrophy and contractile 
dysfunction in diabetic mice [132, 144].

Mechanisms contributing to myocardial 
dysfunction in diabetic patients and rodent 
models of T1D and T2D

Altered substrate metabolism

Diabetes is characterized by increased FAO and decreased 
glucose oxidation (GLOX, Figs.  1, 2) in the heart as 
described for T1D [92, 93] and T2D patients [152, 153], and 
several rodent models (summarized in the Table 1). Multiple 
mechanisms mediate the shift in substrate oxidation. The 
earliest defects are impaired translocation and abundance 
of glucose transporter 4 (GLUT4), as observed in a rodent 
model of HFD-induced obesity and insulin resistance [219]. 
These data imply impaired myocardial glucose utilization 
for the initial increase in FAO (Randle phenomenon [159]), 
even before any change in serum concentrations of free fatty 
acids and triglycerides. Glucose uptake and cellular mem-
brane GLUT4 expression are decreased in heart tissue from 
T2D patients, while insulin receptor (IR) mediated signal-
ling is increased [55]. An independent mechanism, which 
may increase fatty acid uptake in diabetic hearts, is enhanced 
fatty acid translocase (FAT/CD36) transport to the plasma 
membrane [57]. Under diabetic conditions, increased cir-
culating concentrations of fatty acids increase the activity 
of the transcription factor PPARα [24]. PPARα drives the 
expression of genes involved in fatty acid uptake, transport, 

and oxidation [165]. In addition, PPARα induces the expres-
sion of pyruvate dehydrogenase kinase 4 (PDK4), thereby 
decreasing pyruvate dehydrogenase (PDH) activity and fur-
ther suppressing GLOX [32, 219]. Importantly, hearts from 
MHC-PPARα mice are characterized by increased FAO and 
a metabolic phenotype similar to that found in DCM [73, 
87].

ATP production from fatty acid substrates is less efficient 
than glucose-based ATP production (ATP generated/O2 
consumed). Increased FAO rates in diabetic hearts enhance 
myocardial oxygen consumption (mVO2). However, contrac-
tile function does not increase and cardiac efficiency (cardiac 
work/mVO2) decreases. Studies in ob/ob and db/db mice 
indicate that mitochondrial uncoupling and increased reac-
tive oxygen species (ROS) levels parallel the increase in 
FAO [28, 29]. The increase in ROS might be a consequence 
of an imbalance between a dysfunction of the mitochon-
drial electron transport chain and the increased amount of 
reducing equivalents generated by increased FAO. ROS have 
a very short half-life and are considered to cause cellular 
damage in close proximity to their origin, which implies 
mitochondria as a primary target of ROS [33]. ROS acti-
vate uncoupling proteins (UCPs) [67] that enable protons 
to bypass the ATP synthase embedded in the inner mito-
chondrial membrane, resulting in mitochondrial uncoupling 
(decreased coupling of mitochondrial ATP production to 
mVO2). Subsequently, FAO increases and cardiac efficiency 
is further impaired. Similar to T2D animal models, obese 
young women exhibit insulin resistance, increased mVO2 
and FAO [153]. Importantly, fatty acid-mediated mito-
chondrial uncoupling, increased ROS levels and decreased 
cardiac efficiency are not present in T1D Akita mice [34], 
which is in contrast to T2D ob/ob and db/db mice [29, 
120]. Thus, varied mechanisms might be responsible for 
the altered myocardial substrate utilization in the different 
types of diabetes. The hypothesis has been raised that ROS-
mediated mitochondrial uncoupling may not be attributable 
to hyperglycaemia alone and may be a potential consequence 
of insulin resistance and T2D. This is supported by recent 
studies in CIRKO hearts, which exhibit increased oxidative 
stress and mitochondrial uncoupling under normoglycaemic 
conditions [26].

Mitochondrial dysfunction

Mitochondrial dysfunction is a key feature of DCM and is 
observed in cardiac tissue from diabetic patients and mod-
els of T1D and T2D (see Table 1). Based on the mecha-
nistic insight gained from rodent studies, the mechanisms 
for decreased mitochondrial oxidative capacity [5, 26–29, 
34–36, 74, 95, 117, 179, 180, 219] include altered mito-
chondrial ultrastructure [25, 26, 29, 179, 180], proteomic 
remodelling [35, 88, 180, 200], and oxidative damage of 
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proteins and mitochondrial DNA [206]. Additional mecha-
nisms for mitochondrial dysfunction comprise perturbed 
mitochondrial Ca2+ dynamics, mitochondrial uncoupling in 
T2D and decreased cardiac insulin signalling in T1D, which 
are described in detail in the corresponding sections of this 
review. Compelling data for mitochondrial dysfunction 
in T2D patients have been provided by a series of studies 
by Anderson and colleagues. These studies utilized right 
atrial cardiac tissue, which exhibit mitochondrial dysfunc-
tion, increased oxidative stress, increased H2O2 emission, 
and increased sensitivity to Ca2+-induced opening of the 

mitochondrial permeability transition pore (mPTP) [5, 6]. 
Recently, Jelenik and colleagues showed decreased mito-
chondrial coupling and efficiency in ventricular tissue from 
patients with impaired insulin sensitivity [101]. Importantly, 
mitochondrial capacity is greater in ventricular compared 
to atrial tissue samples in humans, which provides a ration-
ale to study mitochondrial function preferably in ventricu-
lar tissue [118]. Maximum respiration capacity is impaired 
in isolated mitochondria from patients with non-alcoholic 
steatohepatitis (NASH) and hepatic insulin resistance. This 
provides evidence for mitochondrial dysfunction under 

Fig. 2   Mitochondrial uncoupling and perturbed Ca2+ dynamics in 
cardiomyocytes of type 2 diabetic hearts. Hyperinsulinemia activates 
insulin receptors (IR) and Akt, contributing to increased fatty acid 
translocase (FAT/CD36) transport to the plasma membrane, increased 
fatty acid (FA) uptake and fatty acid oxidation (FAO). Impaired 
GLUT4 expression and translocation attenuate glucose uptake and 
utilization, which further increases FAO and myocardial oxygen 
consumption (mVO2). Increased FAO stimulates the generation of 
reactive oxygen species (ROS), which may induce damage to pro-
teins involved in oxidative phosphorylation and may activate uncou-
pling proteins (UCPs). Increased mitochondrial uncoupling enhances 
mVO2 and FAO, and decreases mitochondrial ATP production. As 
the increase in mVO2 is not paralleled by increased ATP production 
and contractility, cardiac efficiency (cardiac work/mVO2) decreases. 

Perturbed intracellular Ca2+ handling (reduced sarcoplasmic reticu-
lum Ca2+ release by ryanodine receptors (Ryr) and impaired re-
uptake by SERCA2a) reduce peak cytosolic Ca2+ levels, which may 
further decrease contractility and intramitochondrial Ca2+ levels. This 
limits the activity of mitochondrial enzymes and further compromises 
contractile function. Note that mitochondrial uncoupling, increased 
ROS and decreased cardiac efficiency are not observed in rodent 
models of type 1 diabetes. I–V, mitochondrial electron transport chain 
complexes I–V; CoA, Coenzyme A; CPT, carnitine palmitoyltrans-
ferase; DHPR, dihydropyridine receptor; PDK4, pyruvate dehydro-
genase kinase 4; PPARα, peroxisome proliferator activated receptor 
α; TCA, tricarboxylic acid cycle. ↑ increased/↓ decreased relative to 
normal conditions
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conditions of insulin resistance even before the onset of 
diabetes [113].

Impaired Ca2+ handling

Ca2+ enters cardiomyocytes through voltage-dependent 
L-type Ca2+ channels (dihydropyridine receptor, DHPR) 
contributing to Ca2+ release from the sarcoplasmic reticu-
lum by ryanodine receptors (Ryr) and contraction in systole. 
Intracellular Ca2+ concentrations decrease to diastolic lev-
els following Ca2+ transport into the sarcoplasmic reticu-
lum via SERCA2a and into the extracellular environment 
via the sarcolemmal Na+/Ca2+ exchanger (NCX). In addition 
to these widely studied mechanisms of Ca2+ handling more 
recent evidence supports that regulation of store-operated 
Ca2+ entry (SOCE) may also be important in the develop-
ment of DCM, specifically via post-translational regulation 
of stromal interaction molecule 1 (STIM1) [233]. Intrami-
tochondrial Ca2+ concentrations change during the con-
traction cycle [99], which promotes the activity of mito-
chondrial enzymes, i.e. PDH, isocitrate dehydrogenase and 
α-ketoglutarate dehydrogenase [60, 146]. Ca2+ handling is 
perturbed in T1D animal models; for example, following 
STZ treatment [190, 195, 230]. In T2D db/db mice, sarco-
plasmic reticulum Ca2+ load is decreased, Ca2+ leakage from 
the sarcoplasmic reticulum is increased, and rates of Ca2+ 
decay are reduced [15, 151]. Similarly, ob/ob mice exhibit 
impaired mitochondrial Ca2+ handling and decreased rates 
of intracellular Ca2+ release following electrical stimulation 
[65, 70]. Cardiac fibres from T2D patients show decreased 
myofilament function as a consequence of impaired Ca2+ 
sensitivity and support the findings from rodent models 
[102]. Together, these studies indicate that perturbed Ca2+ 
handling accelerates the development of contractile dysfunc-
tion in T1D and T2D (Figs. 1 and 2).

Oxidative stress

Oxidative stress plays an essential role in the development 
of DCM, as described for humans [5, 6, 84, 141] and rodent 
models of T1D and T2D (summarized in the Table 1). Oxi-
dative stress can result from increased levels of ROS, which 
is caused by either increased mitochondrial ROS generation 
or decreased efficiency of ROS scavengers, i.e. glutathione 
peroxidase (GPX), catalase, and manganese superoxide dis-
mutase (MnSOD). Oxidative stress regulates several adverse 
mechanisms, including protein oxidation, generation of lipid 
peroxides, and formation of reactive nitrogen species from 
nitric oxide, which contributes to intracellular nitrosyla-
tion, such as protein tyrosine nitration [199]. Evidence for 
increased oxidative stress is provided by a study that uti-
lized cardiac tissue from T2D patients, in which increased 
emission of mitochondrial H2O2 and increased abundance 

of 3-nitrotyrosine- and 4-hydroxynonenal (HNE)-modified 
proteins were observed [6]. Furthermore, overexpression of 
MnSOD or catalase attenuates the onset of mitochondrial 
dysfunction and impaired cardiomyocyte contractility in 
T1D OVE26 mice [179, 226].

Lipotoxicity

The uptake of lipid intermediates is increased in DCM. 
Intracardiomyocellular accumulation of toxic lipid metabo-
lites accelerates myocyte death and contractile dysfunction. 
This is supported by several studies that utilized transgenic 
mouse models with increased cardiomyocyte fatty acid 
uptake, i.e. overexpression of fatty acid transport protein 
[44], long-chain acyl-CoA synthetase 1 (ACS) [45] and 
lipoprotein lipase with a cell-attachment glycosylphosphati-
dylinositol anchor, which precipitates lipotoxic cardiomyo-
pathy, even in the absence of diabetes [224]. The proposed 
mechanisms have been reviewed in detail recently [213], 
and include increased ROS generation, changes in the ER 
membrane composition resulting in ER stress, increased 
apoptosis as a consequence of increased de novo ceramide 
biosynthesis, and remodelling of the mitochondrial mem-
brane. A recent study using ACS transgenic mice revealed 
a novel mechanism for lipotoxic cardiomyopathy, in which 
posttranslational modifications of mitochondrial fusion and 
fission proteins increase mitochondrial fission [197]. Impor-
tantly, while numerous studies describe cardiac accumula-
tion of triglycerides in diabetic patients [135, 145, 167, 177] 
and genetic rodent models of diabetes [1, 32, 48, 177, 232], 
triglycerides represent a marker for toxic lipid metabolite 
accumulation and lipotoxicity, as opposed to directly causing 
harmful effects [213].

Renin–angiotensin–aldosterone system (RAAS) 
activation

RAAS hyperactivation contributes to cardiac remodelling. 
RAAS inhibitors (angiotensin-converting enzyme (ACE) 
inhibitors, angiotensin (AT) receptor blockers and aldoster-
one receptor antagonists) are well-established standard treat-
ments for chronic heart failure. The activity of the RAAS is 
increased under diabetic conditions [53]. Similarly, in vitro 
studies in neonatal rat ventricular myocytes (NRVM) identi-
fied high glucose levels as stimulators for intracellular AT II 
synthesis [186]. AT II receptor type 1 (AT1R) density and 
synthesis are increased in T1D hearts, and the increase in 
fibrosis is partially inhibited following treatment with ACE 
inhibitors and AT receptor blockers [30, 187, 214]. Together, 
these studies suggest that RAAS activation adversely affects 
cardiac structure in DCM.
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Inflammation

Studies using rodent models of T1D and T2D identified 
a critical role for increased myocardial inflammation in 
the progression of DCM. Hearts from T1D mice and rats 
show increased leukocyte infiltration, increased levels of 
pro-inflammatory cytokines (TNFα and IL-1β), increased 
expression of vascular cell adhesion molecule-1 and inter-
cellular adhesion molecule-1, and decreased activity of 
the collagen degrading matrix metalloproteinase (MMP), 
which increases inflammation and fibrosis [196, 214, 217]. 
Similar data were obtained from HFD-fed and T2D rodents 
[100, 111, 139]. The detrimental effects caused by increased 
inflammation are further supported by the beneficial out-
comes of a variety of interventions, which decrease inflam-
mation in the hearts of diabetic rodents, i.e. TNFα antago-
nism [217], transgenic activation of the kallikrein–kinin 
system [196], AT receptor antagonist treatment [214], and 
pharmacological inhibition of p38 MAPK [215] or interleu-
kin converting enzyme [216].

Advanced glycation end products (AGE)

Under hyperglycaemic conditions, AGE are formed both 
intra- and extracellularly via the Maillard reaction. AGE 
are a heterogeneous group of compounds that are formed 
following non-enzymatic binding of sugar derivatives to 
proteins, lipids and nucleic acids, which impairs the physi-
ological function of the molecules bound [21, 185]. For 
example, AGE are formed on SERCA2a and Ryr, which 
perturbs Ca2+ dynamics [18, 19]. Furthermore, AGE cross-
link collagen molecules, contributing to increased fibrosis 
and contractile dysfunction [148]. In addition, AGE bind to 
their cognate receptor, receptor for advanced glycation end 
products (RAGE), which is located on the cellular mem-
brane. One mechanism for RAGE-mediated heart failure 
is activation of NF-κB signalling, which increases β-MHC 
expression, as evidenced by attenuated contractile dysfunc-
tion and β-MHC expression in db/db mice following block-
age of RAGE signalling [147]. Similar effects are present in 
T1D and T2D rats following treatment with the antioxidant 
dehydroepiandrosterone (DHEA), thus indicating a critical 
role for oxidative stress in the activation of RAGE-mediated 
pathways under diabetic conditions [7]. Additional RAGE-
mediated mechanisms are increased ROS production and 
pro-inflammatory signalling [21]. Transgenic overexpres-
sion of the methylglyoxal-metabolizing enzyme glyoxalase-1 
(GLO1) in mice decreases methylglyoxal-AGE levels and 
attenuates the onset of heart failure following myocardial 
infarction. These mice exhibit increased vascular density 
and decreased cardiomyocyte apoptosis compared to wild-
type controls, which is paralleled by increased recruitment 
of c-kit+ progenitor cells and their incorporation into the 

vasculature [20]. Repeated percutaneous infusions of cardiac 
mesenchymal cells in mice with ischemic cardiomyopathy 
significantly improve contractile function compared to a sin-
gle dose treatment, which suggests that multiple infusions 
are required for the full therapeutic potential of cell therapy 
[86]. In STZ-induced T1D rats, treatment with the cross-
link breaker ALT-711 decreases cardiac AGE levels, restores 
collagen solubility, and diminishes diabetes-induced gene 
expression [37]. Similarly, siRNA-mediated knockdown of 
RAGE attenuates LV dysfunction in T1D mice [128].

ER stress

The main physiological function of the ER is Ca2+ storage 
and folding of proteins. Accumulation of unfolded proteins 
inside the ER lumen causes a stress response, termed ER 
stress, which can result in apoptotic cell death in rodent 
models of T1D and T2D [115, 222]. ER stress also acti-
vates the unfolded protein response (UPR), which attenuates 
this effect. The main task of the UPR is to maintain cellular 
integrity by decreasing protein synthesis, degrading mis-
folded proteins, and increasing the synthesis of chaperones, 
which facilitate protein folding. Numerous studies have sug-
gested a causative role for oxidative stress in the induction of 
ER stress under diabetic conditions [119, 124, 222].

Autophagy

Autophagy is an evolutionarily conserved process that recy-
cles long-lived proteins and organelles to maintain cellular 
homeostasis. Depending on the extent of autophagy and its 
duration, autophagy can have both beneficial and detrimental 
effects. Perturbed autophagy is associated with the patho-
genesis of infectious diseases, cancer, obesity, and various 
disease conditions of the heart, including ischemia/reperfu-
sion injury, cardiac hypertrophy and DCM [112, 163]. Stud-
ies have provided opposing results in the context of DCM.

Autophagy is decreased in rodent models of T1D [221, 
231]. The proposed mechanisms comprise repression of 
AMPK and activation of mTOR under hyperglycaemic con-
ditions. In contrast, autophagy is increased in some animal 
models of diet-induced obesity and T2D, but the evidence 
for this has not been consistent [91, 112, 136]. The underly-
ing mechanisms for the differences in autophagy in T1D 
relative to T2D and the various models investigated need 
further investigation.

While T1D is associated with insulinopenia and impaired 
cardiac insulin signalling, proximal insulin signalling is pre-
served in T2D [55, 219]. Preserved insulin/mTOR signalling 
could be predicted to suppress autophagy in T2D, which is 
in contrast to some of the prior investigations. Therefore, 
differences in insulin signalling cannot fully explain the dif-
ferences in autophagy when comparing the different types of 
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diabetes. This also suggests that multiple mechanisms regu-
late autophagy in DCM that are, at least in part, independent 
of cardiac insulin signalling. It is also important to note that 
autophagy is a highly dynamic process and the differences 
detected might be attributed to experimental limitations in 
determining autophagic flux. Thus, additional research is 
warranted to gain further mechanistic insight and elucidate 
the impact of autophagy in DCM.

Posttranslational modification (PTM)

PTMs can alter the activity of proteins. Metabolic-driven 
PTMs are particularly important in diabetes, i.e. acetyla-
tion and O-GlcNAcylation. Sirtuins (SIRTs) are defined as 
NAD+-dependent class III histone deacetylases that dea-
cetylate target proteins involved in FAO, glucose metabo-
lism, and mitochondrial energetics. SIRTs are differentially 
regulated in models of heart failure and in animal models 
of T1D and T2D. For example, cardiac SIRT3 expression 
is decreased in HFD-fed mice, which increases acetylation 
of mitochondrial β-oxidation enzymes and increases FAO 
[4]. Expression of SIRT isoforms is mediated by dietary 
interventions and pharmacological treatment; for example, 
treatment with the anti-oxidant resveratrol increases the 
expression of SIRT1 [207], implying SIRTs as potential 
pharmacological targets.

Increased protein O-GlcNAcylation has adverse effects 
in DCM as recently reviewed [212]. Glucose is converted to 
fructose-6-phosphate in the first steps of glycolysis, which 
enters the hexosamine biosynthesis pathway (HBP). Under 
physiological conditions, about 5% of total glucose is metab-
olized in the HBP, which is further increased under diabetic 
conditions. Multiple pathways provide intermediates for 
the HBP, including metabolic pathways for the biosynthe-
sis and degradation of amino acids, fatty acids, and nucleo-
tides, which directly links the availability of nutrients to the 
substrate supply of the HBP. The end product of the HPB, 
uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), 
is transferred to serine or threonine residues of target pro-
teins by the enzyme O-GlcNAc transferase (OGT), a pro-
cess termed O-GlcNAcylation. In contrast to non-enzymatic 
AGE formation, O-GlcNAcylation is a reversible posttrans-
lational modification, with UDP-GlcNAc removal catalysed 
by O-GlcNAcase (OGA). Multiple nuclear, cytoplasmic, 
and mitochondrial proteins are targets for O-GlcNAc modi-
fication. O-GlcNAcylation also plays a central role in Ca2+ 
homeostasis, as evidenced by the modification of transcrip-
tion factors regulating the expression of SERCA2a [52] and 
the sarcoplasmic reticulum protein STIM1, thereby attenu-
ating SOCE and Ca2+ signalling [233]. O-GlcNAcylation 
of Ca2+/calmodulin-dependent protein kinase 2 (CAMKII) 
impairs Ca2+ handling and increases the risk of cardiac 
arrhythmia in diabetes [68].

O-GlcNAcylation directly impairs mitochondrial capac-
ity. Proteomic studies identified 86 mitochondrial proteins 
as O-GlcNAc targets, with target proteins involved in major 
metabolic pathways, including the FAO and tricarboxylic 
acid (TCA) cycles [129]. UDP-GlcNAc is transported from 
the cytosol into mitochondria by the pyrimidine nucleotide 
carrier (PNC1) and cardiac mitochondria express both OGA 
and OGT [9]. OGT expression is increased in mitochondria 
from T1D rat hearts and modulation of OGT or OGA activ-
ity affects mitochondrial capacity [9]. These data indicate 
that cardiac mitochondria express the required machinery 
for O-GlcNAc modification which, in turn, regulates mito-
chondrial capacity. Together, O-GlcNAcylation provides 
an exciting new area of research, linking the availability of 
nutrients to cardiac energetics and contractile dysfunction, 
which may accelerate the onset of heart failure in diabetes.

Epigenetics

Epigenetics is a rapidly expanding area of research and refer 
to a heritable modification of gene expression without altera-
tions in DNA sequences. The modifications include non-
coding RNAs (i.e. microRNAs and long-noncoding RNAs), 
DNA methylation, and histone modifications. Epigenetics 
are important during embryogenesis and play a central role 
during development and the pathogenesis of various disease 
conditions, including DCM. In addition to the transgenera-
tional nature of epigenetics, these modifications can also be 
part of transcriptional regulation and may be regulated by 
altered metabolic flux directly associated with hyperglycae-
mia and other metabolic changes seen in diabetes [56].

miRNAs and lncRNAs

MicroRNAs (miRNAs or miRs) are short, single-stranded, 
non-coding RNA molecules consisting of about 22 nucleo-
tides. The majority of miRNAs are encoded within the 
introns of protein-coding and non-coding genes. miRNAs 
are evolutionarily conserved and regulate gene expres-
sion at the post-transcriptional level. The mechanisms of 
miRNA-based gene regulation include binding of miRNAs 
to mRNAs for later degradation or repression of transla-
tion. Each miRNA can target multiple mRNAs, which pro-
vides the possibility to a single miRNA to orchestrate an 
entire pattern of gene expression. miRNAs play an impor-
tant role in the regulation of cellular energy homeosta-
sis, metabolism, and pathogenesis of numerous diseases, 
including diabetes. For example, miRNAs-103/107 are 
up-regulated in livers from ob/ob and diet-induced obese 
mice, and silencing of miRNAs-103/107 improves glu-
cose homeostasis and insulin sensitivity [194]. Numerous 
miRNAs regulate cardiac fibrosis and hypertrophy [191]. 
For example, miRNA-21 augments pathological cardiac 
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remodelling by stimulating MAP kinase signalling in 
fibroblasts [192]. Similarly, miRNAs are differentially 
regulated in diabetic hearts [85, 126, 178]. One example 
is miRNA-223, which is upregulated in LV biopsies from 
T2D patients and regulates GLUT4 expression and glucose 
uptake [126]. As previously reviewed, miRNA expression 
is altered in rodent models of T1D and T2D [85, 176]. 
One example of this has been observed in T2D ZDF rats, 
in which dysregulated miRNA-29 expression is correlated 
with cardiac structural damage [8]. Furthermore, differ-
ences in miRNA profiles regulate the hyperglycaemic 
memory in DCM. miRNA array analysis performed on 
LV tissue from STZ-induced T1D mice indicated dysregu-
lation of 316 out of 1008 miRNAs. Following normali-
zation of blood glucose levels by insulin treatment, the 
expression of 268 miRNAs remained significantly altered, 
thus suggesting a contribution of miRNAs to glycaemic 
memory. Ingenuity pathway analysis indicates that dys-
regulated miRNAs are implicated in myocardial signal-
ling networks regulating autophagy, hypertrophic growth, 
oxidative stress, fibrosis, and heart failure, all of which are 
characteristics of DCM [39].

Long-noncoding RNAs (lncRNAs) are transcripts that are 
longer than 200 nucleotides, which can repress or enhance 
gene expression [204]. Similarly to miRNAs, lncRNAs con-
tribute to the development of DCM [121, 127]. Circulating 
lncRNAs predict LV diastolic function and remodelling in 
patients with T2D [59]. The rapidly growing field of non-
coding RNA research will likely provide additional insights 
into non-coding RNAs and the development of DCM.

DNA methylation

DNA methylation involves the transfer of a methyl group to 
cytosine of CpG dinucleotides in promoter regions to form 
5-methylcytosine, which typically represses gene transcrip-
tion. The expression of genes associated with the develop-
ment of DCM is regulated by the methylation status of CpG 
islands, for example SERCA2a [106]. Another example 
is the expression of liver X receptor-α (LXRα), which is 
increased in cardiac tissue from T1D rats and regulates the 
expression of fatty acid metabolism genes. Bisulfite genomic 
sequencing showed significant differences in the methylation 
status of the CpG island at the LXRα promoter region [42]. 
Oxidative stress mediates DNA methylation in T1D hearts, 
which inhibits DNA synthesis and increases p53-dependent 
cell death signalling. Oxidative stress-mediated mechanisms 
involve methylation of the gene encoding the p53-inducible 
cyclin-dependent kinases (cdks) inhibitor p21WAF1/CIP1, 
which inhibits DNA synthesis and prevents the replication 
of damaged DNA [140]. These data link epigenetic DNA 
modifications to the pathogenesis of DCM.

Histone modifications

Histones package DNA into structural units called nucle-
osomes, which are the first level of chromatin organization. 
Each nucleosome consists of an octameric histone core 
wrapped in 147 base pairs of DNA. Histone tails are modi-
fied by a variety PTMs, including methylation, phosphoryla-
tion, ubiquitylation, and acetylation, which regulates gene 
expression. The acetylation status of histones is a major epi-
genetic mechanism that is mediated by histone acetyltrans-
ferases (HATs) and histone deacetylases (HDACs). HDACs 
play a critical role in embryonic development, cardiac hyper-
trophy and heart failure. There is emerging evidence that 
HDACs are involved in the development of DCM, as indi-
cated by attenuated interstitial fibrosis and apoptosis follow-
ing HDAC inhibition in T1D mice [41, 223]. Furthermore, 
histones H2A, H2B and H4 are modified by O-GlcNAcyla-
tion [171], thereby directly linking nutrient availability to 
gene expression.

Decreased β‑adrenergic signalling

Signalling pathways transduced by the IR and β-adrenergic 
receptors (βARs) mediate divergent and overlapping path-
ways in the heart. Recent studies revealed a critical crosstalk 
between insulin and β-adrenergic signalling, which impairs 
cardiac contractility in T2D [78, 209]. βAR signalling is 
increased in heart failure. Studies in humans and animal 
models show that cardiac insulin signalling is preserved 
or increased in diet-induced obesity, T2D, and heart fail-
ure [55, 181, 219]. Pressure overload-induced hypertrophy 
and heart failure result in hyperinsulinemia and systemic 
insulin resistance, which accelerate adverse LV remodel-
ling. This effect is attenuated by systemic insulin deficiency 
or genetic reduction of cardiac IR-transduced signalling 
by heterozygous cardiomyocyte-specific deletion of the IR 
[181]. Importantly, large clinical studies have shown that 
strict insulin treatment of T2D patients increases mortality, 
despite a reduced incidence of microvascular complications, 
such as nephropathy and neuropathy [3].

β1AR is the predominant βAR receptor subtype expressed 
in cardiomyocytes, which couples to stimulatory G protein, 
Gs. In contrast, β2ARs bind to both Gs and inhibitory G 
protein, Gi. Gs-mediated signalling induces cyclic adeno-
sine 3′,5′-monophosphate (cAMP)-dependent activation 
of protein kinase A (PKA) and phosphorylation of phos-
pholamban, which increases myocyte contractility [220]. 
IR and βARs share Gi [188] and G-protein receptor kinase 
2 (GRK2) [49, 50, 201] as common downstream effectors, 
which serve as nodes linking these two signalling pathways. 
A functional membrane complex consisting of the IR and 
β2AR was also recently discovered [78, 79]. Insulin stimu-
lates translocation of GRK2 to the IR, which contributes to 
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GRK2-mediated phosphorylation of the β2AR and enhanced 
Gi-mediated signalling. Insulin increases the expression of 
phosphodiesterase 4D (PDE4D), which antagonizes cAMP 
activity and decreases PKA phosphorylation, thereby pro-
moting contractile dysfunction [209]. Induction of PDE4D 
and contractile dysfunction are attenuated in HFD-fed mice 
following pharmacological inhibition of GRK2 with parox-
etine, a FDA-approved selective serotonin reuptake inhibi-
tor. Similar data were obtained following treatment with the 
β2AR blocker Carvedilol [209]. This mechanism provides 
a potential explanation for the harmful effects of intensive 
insulin treatment observed in T2D patients, suggesting 
GRK2 and β2AR as potential promising pharmacological 
targets for the treatment of cardiomyopathy in T2D.

Increased cell death

Increased apoptotic and necrotic cardiomyocyte death is 
commonly detected in patients [6, 46, 77] and rodent mod-
els of T1D and T2D [10, 22, 96, 103, 173, 232]. Right atrial 
appendages from T1D and T2D patients subjected to elec-
tive coronary artery bypass surgery exhibit increased rates 
of apoptosis and necrosis, which are exacerbated following 
simulated ischemia/reperfusion [46]. The proposed mecha-
nisms triggering cell death are increased caspase activation 
[46], ROS production [96], ER stress [173], activation of 
death-receptor- and mitochondrion-dependent pro-apoptotic 
pathways [22], RAAS activation [103], and leptin deficiency, 
as indicated by decreased apoptosis in ob/ob mice following 
leptin treatment [10].

Structural and functional consequences

Increased fibrosis

In DCM, increased collagen accumulation is observed in 
perivascular loci, between myofibers, and as replacement 
fibrosis [161]. Similarly, type III, but not type I or IV col-
lagen deposition, is increased in myocardial biopsies from 
T2D patients without prior history of hypertension and 
coronary artery disease [182]. Increased myocardial fibro-
sis may contribute to diastolic dysfunction in DCM. Serum 
concentrations of the carboxy-terminal propeptide of pro-
collagen type I (PIP), a marker of myocardial fibrosis, are 
increased in T2D patients with overt diastolic function, in 
which lower mitral and tricuspid E/A ratios were detected 
[97]. Fibrosis is also increased in some animal models of 
T1D [37, 187, 203, 210] and T2D [138, 232]. The mecha-
nisms responsible for increased fibrosis and connective tis-
sue content include AGE-mediated remodelling of the extra-
cellular matrix (ECM), increased transforming growth factor 
β (TGFβ)-mediated signalling, increased connective tissue 
growth factor (CTGF) expression, and decreased expression 
of MMP-2, resulting in attenuated extracellular matrix deg-
radation [203].

Diastolic dysfunction

A key clinical feature of DCM is diastolic dysfunction (see 
Fig. 3) with preserved ejection fraction (HFpEF), which may 
precede the later onset of systolic dysfunction (heart failure 
with reduced ejection fraction, HFrEF). As discussed in the 

Fig. 3   Diastolic dysfunction in the absence of coronary artery disease 
in a patient with type 2 diabetes. a Preserved diastolic function in a 
normal subject as indicated by the E/A wave ratio (E: peak velocity 
blood flow in early diastole, A: peak velocity blood flow in late dias-
tole caused by atrial contraction), b E′/A′ wave ratio (E′: peak mitral 
annular velocity during early diastolic filling, A′: peak mitral annu-
lar velocity during late diastolic filling caused by atrial contraction). 

Diastolic dysfunction in a patient with type 2 diabetes as indicated 
by c an abnormal high (“pseudonormal”) E/A wave ratio and E/E’ 
wave ratio as calculated from the values presented in panels (c) and 
(d). Images were adjusted to the same scales. Coronary angiogram 
of the e right coronary artery system and f left main coronary artery 
system from the same patient presented in panels (c/d) indicating no 
concomitant coronary artery disease
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previous sections, various mechanisms contribute to dias-
tolic dysfunction, including AGE, increased fibrosis, and 
perturbed Ca2+ homeostasis. Diastolic dysfunction may 
be present in as many as 60–75% of diabetic patients, and 
is even more apparent under conditions of superimposed 
myocardial ischemic heart disease or hypertension [16, 
122, 184]. Furthermore, LV diastolic dysfunction may be 
present under conditions of insulin resistance even before 
the onset of T2D, independently of age, blood pressure, 
and body mass index [75]. After exclusion of patients with 
coronary artery disease, systolic dysfunction is detected 
in 24% of T2D patients, as determined by strain analyses 
and peak systolic velocity measurements [69]. While stud-
ies have reported diastolic dysfunction in T1D patients [31, 
174, 229], reports on systolic function in T1D are incon-
sistent, with some studies indicating preserved [168, 174] 
or increased systolic function [47]. The different results for 
studies with T1D and T2D patients may be a consequence 
of the selection of patients and the causative treatment of 
T1D patients with exogenous insulin, which may normalize 
the systemic milieu.

Cardiac contractile function has also been extensively 
investigated in numerous animal models of T1D and T2D. 
Both diastolic and systolic dysfunction has been observed 
in some of the models investigated (see Table 1). Impor-
tantly, the majority of studies with animal models did not use 
blood glucose level-normalizing treatments, which further 
emphasizes the impact of hyperglycaemia and metabolic 
disturbances on the development of contractile dysfunction.

Cardiac hypertrophy

Another clinical feature of DCM is LV hypertrophy, espe-
cially in T2D. While data from the Framingham Heart Study 
and the Framingham Offspring Study show an association 
between diabetes, LV wall thickness and mass in women, 
but not in men [80], the Strong Heart Study conducted in 
Native Americans reports increased LV mass and wall thick-
ness in both men and women [62]. Data from the Strong 
Heart Study suggest that LV hypertrophy increases the risk 
of future heart failure, especially in the context of co-exist-
ing hypertension [17]. LV hypertrophy is not observed in 
patients with impaired fasting glucose [162], indicating that 
LV hypertrophy might result from hyperglycaemia and other 
metabolic changes associated with longer existing diabetes. 
Proposed mechanisms contributing to LV hypertrophy are 
hyperactivation of the insulin signalling cascade in obese 
and T2D patients [55, 108] and increased levels of circulat-
ing pro-inflammatory cytokines. In contrast, most studies do 
not report myocardial hypertrophy in T1D patients [47, 168, 
174] and animal models of T1D (see Table 1). Similarly, 
genetic deletion of the insulin receptor decreases cardiac size 
[14]. These studies further highlight the impact of insulin as 

a growth factor and hyperinsulinemia as a pathomechanism 
for LV hypertrophy in obesity and T2D.

Summary and conclusions

Various pathomechanisms contribute to the pathogenesis of 
DCM. Rodent models are essential tools to decipher these 
mechanisms and mimic perturbations observed in T1D and 
T2D patients. Despite specific limitations of the models gen-
erated, transgenic mice are indispensable for mechanistic 
studies that provide mechanistic insight into the pathogen-
esis of DCM. Different treatment strategies have been tested 
in patients with diabetes mellitus and heart failure. These 
studies indicate that diabetic patients benefit from stand-
ard heart failure treatment. However, previous studies also 
suggest that selected diabetes mellitus treatment regimens 
may have adverse effects on cardiac function and increase 
heart failure hospitalization [130, 164]. These observations 
also emphasize the need for additional studies to gain fur-
ther mechanistic insight. Recent advancements in genome 
editing will result in the generation of novel models in the 
near future. These models will aid our understanding of 
the pathophysiology of DCM and hopefully accelerate the 
development of new therapeutic strategies for this rapidly 
expanding form of heart disease.
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