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Abstract Clinical, but not experimental evidence has

suggested that air pollution particulate matter (PM)

aggravates myocardial infarction (MI). Here, we aimed to

describe mechanisms and consequences of PM exposure in

an experimental model of MI. C57BL/6J mice were chal-

lenged with a PM surrogate (Residual Oil Fly Ash, ROFA)

by intranasal installation before MI was induced by per-

manent ligation of the left anterior descending coronary

artery. Histological analysis of the myocardium 7 days

after MI demonstrated an increase in infarct area and

enhanced inflammatory cell recruitment in ROFA-exposed

mice. Mechanistically, ROFA exposure increased the

levels of the circulating pro-inflammatory cytokines TNF-

a, IL-6, and MCP-1, activated myeloid and endothelial

cells, and enhanced leukocyte recruitment to the peritoneal

cavity and the vascular endothelium. Notably, these effects

on endothelial cells and circulating leukocytes could be

reversed by neutralizing anti-TNF-a treatment. We iden-

tified alveolar macrophages as the primary source of ele-

vated cytokine production after PM exposure. Accordingly,

in vivo depletion of alveolar macrophages by intranasal

clodronate attenuated inflammation and cell recruitment to

infarcted tissue of ROFA-exposed mice. Taken together,

our data demonstrate that exposure to environmental PM

induces the release of inflammatory cytokines from alve-

olar macrophages which directly worsens the course of MI

in mice. These findings uncover a novel link between air

pollution PM exposure and inflammatory pathways, high-

lighting the importance of environmental factors in car-

diovascular disease.
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Introduction

Cardiovascular disease represents the leading cause of

mortality worldwide [26]. Chronic and acute inflammation

triggered by traditional and non-traditional risk factors has

been identified as the driving force behind cardiovascular

pathologies including atherosclerosis and myocardial

infarction (MI) [14, 31, 49]. In fact, environmental factors,

such as air pollution, strongly influence initiation and

outcome of cardiovascular disease [32]. Accordingly,

numerous epidemiological studies identified exposure to

environmental particulate matter (PM)—one of the main

components of what is widely referred to as ‘air pollu-

tion’—as a major cause of increased mortality from MI [6].

Particularly, an acute exposure to PM elevates the risk of
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MI within a few hours [39]. Following MI, increased risk

of death, progression to heart failure, and subsequent MI

have been associated with PM exposure in humans [52].

Moreover, daily changes in airborne PM levels correlate

with increased hospitalization due to MI, heart failure,

arrhythmias, and stroke [22]. In cumulative analyses, up to

80 % of the increase in PM-associated mortality was

caused by cardiovascular complications, while respiratory

complications accounted for only 20 % of total mortality,

indicating that cardiovascular, but not respiratory disease is

the main complication of air pollution [4]. In line with

these findings, exposure to PM accelerated experimental

atherosclerosis in hyperlipidemic rabbits [51] and wors-

ened cardiac function in previous animal studies [28].

Based on the observation that PM inhalation increases

the levels of circulating pro-inflammatory cytokines,

inflammation may be the cause of amplified cardiovascular

mortality in PM-exposed individuals [29, 40]. However,

neither the underlying mechanisms of the proposed

inflammatory response, nor the direct participation of PM

in experimental MI has been tested so far. To interrogate a

potential direct functional link between PM exposure and

MI, we have hypothesized that PM—by its surrogate

Residual Oil Fly Ash (ROFA)—directly modulates traits of

experimental MI in mice.

Methods

An expanded Methods section is available in the online-

only Data Supplement.

Particulate matter

ROFA particles were collected from Boston Edison Co.,

Mystic Power Plant, Mystic, CT, US, burning low-sulfur

residual oil (No. 6 fuel oil) and were kindly provided by

Dr. J. Godleski (Harvard School of Public Health, Harvard

University, Boston, MA, US). ROFA samples were

extensively characterized regarding their chemical com-

position and particle size. Vanadium, nickel, and iron are

the predominant metals present as water-soluble sulfates in

ROFA. Their particle mean aerodynamic diameter is

2.06 ± 1.57 lm [8, 38]. ROFA containing suspensions

were freshly prepared by suspending particles in sterile

saline solution at 5 mg/mL, followed by incubation in an

ultrasonic water bath for 5 min before use.

Animal protocols

Male 8-week-old wild type or lymphocyte-free Rag1-de-

ficient (Rag1-/-) mice on a C57BL/6J background (Jack-

son Laboratories) were exposed to a suspension of ROFA

particles in saline (1 mg/kg body weight) or the same

volume of sterile saline solution (control group) by intra-

nasal (i.n.) instillation as previously described [42]. MI was

induced by permanent ligation of the left anterior

descending coronary artery (LAD) [20]. All experimental

protocols were approved by the Animal Ethics Committee

of the University of Freiburg, Germany. Every procedure

was carried out in accordance with institutional guidelines.

Histology

Seven days after MI, hearts were excised, embedded in

Tissue-Tek O.C.T. compound (Sakura Finetek), frozen,

and sectioned into 6 lm slices. Infarct area was demarked

by Masson’s Trichrome staining. The anti-CD11b antibody

clone M1/70 (BD Biosciences) was used as a pan-myeloid

cell marker in immunohistochemistry.

Flow cytometry

Cell suspensions were stained for flow cytometry as pre-

viously described [47] and acquired on a Canto II

cytometer (BD Biosciences). Antibodies were used as

indicated. For intracellular cytokine staining, leukocytes

were fixed and permeabilized by the Cytofix/Cytoperm kit

(BD Biosciences) and incubated with fluorochrome-con-

jugated anti-TNF-a, anti-IL-6, and anti-MCP-1 antibodies

(eBioscience). Data were analyzed with FlowJo (TreeStar).

To quantify leukocytes resident in the heart, infarcted

myocardial tissue was excised, weighted, digested, and the

obtained cell suspensions were analyzed as previously

described [20]. Specifically, cardiac monocytes were

identified as CD45?, Lin- (Lin = CD3, CD19, CD49b,

Ly6G, NK1.1), CD11b?, F4/80low, MHCIIlow, CD11clow,

CD68low, CD115? cells, subdivided into Ly6Chigh and

Ly6Clow subsets; neutrophils were identified as CD45?,

Lin?, CD11b?, MHCIIlow, CD11clow, SSChigh, Ly6Cint

cells; cardiac macrophages were identified as CD45?,

Lin-, CD11b?, F4/80high (MHCII?, CD68high) cells.

Alveolar macrophages were identified in bronchoalveolar

lavage (BAL) samples as CD45?, CD11blow, Siglec-F?,

CD11c?, CD64?, F4/80int cells (Supplemental Fig. 2).

Intravital microscopy

Three hours after the exposure to ROFA particles, mice

were anesthetized and leukocytes were fluorescently

labeled by a retro-orbital injection of rhodamine. A loop of

ileum was exteriorized and intravital microscopy was

performed on mesenteric veins as previously described

[47]. Rolling leukocyte flux was defined as the number of

leukocytes moving at a lower velocity than erythrocytes.

Adherent leukocytes were defined as cells that remained
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stationary for at least 30 s. Injection of 200 ng murine

TNF-a i.p. served as positive control.

Sterile peritonitis

One hour after ROFA exposure, C57BL/6J mice received

an i.p. injection of 2 ml 4 % thioglycollate broth. After 4 h,

a peritoneal lavage was performed and peritoneal exudate

cells (PECs) were quantified in a hemocytometer after red

cell lysis.

Cytokine levels

A cytometric bead array (CBA assay, BD Biosciences) was

used to quantify cytokine levels in plasma, BAL, and cell

culture supernatants according to manufacturer’s protocol.

Endothelium activation markers

Plasma levels of soluble ICAM-1 (sICAM-1) and VCAM-1

(sVCAM-1) were measured by ELISA (R&D Systems).

Alternatively, ICAM-1 and VCAM-1 expression was

quantified on in vitro cultured mouse endothelial cells by

immunohistochemistry as previously described [43].

Conditioned plasma

Mouse endothelial cells from non-exposed C57BL/6J mice

were isolated and cultured as previously described [47].

Neutrophils, monocytes, and macrophages were isolated by

magnetic bead separation. Cells were incubated with

plasma (1 % v/v) from saline- or ROFA-exposed mice, or

with ROFA particles (1 lg/mL). As indicated, incubation

was performed in the presence of a blocking anti-TNF-a
antibody (10 lg/mL). After 24 h, cell culture supernatants

were analyzed for cytokines, and cellular expression of

adhesion molecules was analyzed by immunohistochem-

istry and flow cytometry as previously described [48].

Macrophage depletion

Alveolar macrophages were depleted from C57BL/6J mice

before ROFA exposure by an i.n. instillation of 50 ll

dichloromethylene bisphosphonate (clodronate) liposomes

(5 mg/mL) as previously described [53]. PBS-loaded

liposomes were used as control. Alternatively, 200 ll

clodronate liposomes were injected i.v. for systemic

depletion of macrophages.

Statistical analysis

Data are presented as mean ± SEM. Unpaired Student’s

t test was used to analyze differences between two groups.

ANOVA followed by Student–Newman–Keuls post hoc

test was performed to evaluate differences between more

than two groups. Statistical significance was considered at

p\ 0.05.

Results

Exposure to ROFA particles aggravates myocardial

infarction

To test whether exposure to PM modulates MI, 8-week-old

C57BL/6J mice were challenged with ROFA particles

(1 mg/kg body weight) or an equal volume of sterile saline

solution by i.n. instillation. After 1 day, MI was induced by

permanent ligation of the left anterior descending coronary

artery (LAD). Mice were subsequently instilled with either

ROFA or saline solution on a daily basis. On day 7, hearts

were excised and cross sections of the myocardium were

stained with Masson’s Trichrome to depict infarction area

(Fig. 1a). We detected a significant increase in infarction

size by up to 67 ± 13 % (Fig. 1b) and decrease in collagen

density (Fig. 1c) in ROFA-treated mice compared with

respective control. These data indicate an adverse cardiac

remodeling in ROFA-exposed mice. We also identified

increased CD11b? myeloid cell accumulation in hearts of

ROFA-treated mice by immunohistochemistry (Fig. 1d).

We observed no differences in overall survival (data not

shown) or MI-associated arrhythmias in ROFA-exposed

mice (Supplemental Fig. 1), but a slight increase in the

duration of ventricular complexes 3 days after MI in this

group (Supplemental Table 1). The latter is consistent with

previous observations that ROFA exposure enhances the

vulnerability to cardiac arrhythmias [46]. To further char-

acterize the dynamics of myeloid cell infiltration to cardiac

tissue, leukocyte populations in the heart were quantified

by flow cytometry on days 0, 3, and 7 after LAD ligation

(Fig. 1e). Following MI, ROFA-exposed mice showed

enhanced accumulation of neutrophils, inflammatory

Ly6Chigh monocytes, and macrophages (Fig. 1f). Particu-

larly, macrophage numbers increased by 125 ± 31 % in

ROFA-exposed mice at day 7 (Fig. 1f). These results

demonstrate that exposure to ROFA particles increases MI

size and myocardial inflammatory cell accumulation, in

particular that of macrophages.

ROFA particles promote trafficking

of inflammatory leukocytes by enhancing leukocyte

activation

To directly test whether an acute exposure to ROFA par-

ticles enhances inflammatory cell recruitment, a main

pathomechanism in MI, we tested two in vivo models.
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First, we treated C57BL/6J mice by an i.n. instillation of

ROFA particles (1 mg/kg body weight), saline solution, or

an i.p. injection of murine TNF-a (200 ng), and monitored

leukocyte recruitment in mesenteric venules by intravital

microscopy (Fig. 2a). Interestingly, we observed a signifi-

cant increase in the number of rolling and adhering

leukocytes in ROFA-exposed mice (Fig. 2a, b, Supple-

mental Videos I–III). Accordingly, average rolling velocity

was decreased after ROFA exposure (Fig. 2c). TNF-a i.p.

treatment was used as a positive control and increased

leukocyte rolling and adhesion, as well as decreased mean

rolling velocity (Fig. 2c). Secondly, we tested whether

ROFA exposure is capable of modulating leukocyte

migration in vivo. Therefore, C57BL/6J mice were treated

with ROFA as described above, and the number of cells

accumulating in the peritoneal cavity was quantified. We

did not observe relevant changes after ROFA exposure

alone (Fig. 2d). However, after induction of sterile

peritonitis by thioglycollate, simultaneous exposure to

ROFA increased the number of peritoneal exudate cells

(PECs) by 74 ± 12 % compared to saline (Fig. 2d), indi-

cating that a ROFA exposure can boost, but not initiate

leukocyte migration. To explore a potential mechanism, we

assessed leukocyte activation by quantifying the abundance

of the activation epitope CBRM1/5 on the leukocyte inte-

grin CD11b/CD18 (Mac-1), an important mediator of

leukocyte rolling and adhesion [10]. Interestingly, ROFA

treatment significantly increased CD11b activation on cir-

culating neutrophils and inflammatory Ly6Chigh monocytes

(Fig. 2e). Moreover, we observed a significant increase in

neutrophil- and Ly6Chigh monocyte-platelet aggregates in

this group (Fig. 2f). Notably, plasma levels of the soluble

fraction of the endothelial adhesion molecules ICAM-1 and

VCAM-1 increased (Fig. 2g), suggesting that a ROFA

exposure also induces endothelial cell activation. Taken

together, these findings indicate that the exposure to ROFA
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Fig. 1 Exposure to ROFA particles aggravates MI. C57BL/6J mice

were exposed to ROFA particles (1 mg/kg body weight) or an equal

volume of sterile saline solution by i.n. instillation. MI was induced

by permanent ligation of the left anterior descending coronary artery

(LAD). After 7 days, infarct area was demarked and quantified by

Masson’s Trichrome staining in cross sections of heart tissue at

increasing distance from the site of coronary artery ligation (a, b). At

2 mm from the site of LAD ligation, collagen density was evaluated

within the infarcted tissue (c), and myeloid cell infiltration was

assessed by immunohistochemistry for the pan-myeloid marker

CD11b (d). Myeloid cell infiltration was characterized by flow

cytometry of digested hearts (e). Leukocyte populations of infarcted

tissue from saline- and ROFA-exposed mice were quantified at the

indicated time points after LAD ligation (f). Data are presented as

mean ± SEM of at least seven mice per group. *p\ 0.05
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particles induces inflammatory leukocyte recruitment,

possibly by the up-regulation of adhesion molecules on

endothelial and circulating myeloid cells.

Activation of leukocytes and endothelial cells

following ROFA exposure can be reversed

by blockade of pro-inflammatory cytokines

It has been suggested that exposure to PM increases the

levels of circulating pro-inflammatory cytokines, but it is

not known whether these cytokines are required for

inflammatory leukocyte recruitment after PM inhalation

[5]. Therefore, we hypothesized that cytokines circulating

in the blood activate leukocytes and endothelial cells in our

model. We first measured TNF-a, IL-6, and MCP-1 in the

plasma of exposed mice. Consistent with previous reports,

we detected elevated cytokine levels, such as TNF-a (an

increase up to 327 ± 100 %) and IL-6 (an increase up to

1686 ± 469 %) compared with samples from control mice

(Fig. 3a). Next, we tested the impact of cell culture media

supplemented with conditioned plasma from saline- or

ROFA-exposed mice (1 % v/v) to ex vivo cultures of

isolated myeloid and endothelial cells. Supplementation of

plasma from mice exposed to ROFA increased activation

of leukocytes and endothelial cells in vitro, as assessed by

CD11b activation and expression of endothelial adhesion

factors (Fig. 3b, c). Interestingly, a neutralizing anti-TNF-a
antibody reversed these effects. Similar results were
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Fig. 2 A single instillation of ROFA particles promotes adhesion and

migration of pro-inflammatory leukocytes. C57BL/6J mice were

treated with either saline, a suspension of ROFA particles in saline

(1 mg/kg body weight), or murine TNF-a (200 ng i.p.) as positive

control. After 3 h, leukocyte recruitment in mesenteric venules was

assessed in intravital microscopy. Leukocytes were stained by

rhodamine (a) and leukocyte rolling, adhesion (b), and cumulative

frequency of the rolling velocity (c) were quantified. The inlay in

c represents leukocyte mean rolling velocity. To evaluate whether

ROFA treatment primes leukocytes to migrate, the number of cells

residing in the peritoneal cavity (PECs) was quantified in saline- or

ROFA-exposed mice. Leukocyte migration was forced by inducing

sterile peritonitis by an i.p. injection of 4 % thioglycollate broth (d).

To assess leukocyte activation, expression of the CD11b activation

epitope (CRBM1/5, e) and formation of leukocyte-platelet aggregates

(f) were quantified on myeloid cells by flow cytometry. Plasma

markers of endothelial activation (g) were quantified by ELISA. Data

are presented as mean ± SEM of at least 10 mice per group
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obtained with a blocking anti-IL-6 antibody (data not

shown). These findings indicate that pro-inflammatory

cytokines circulating in the plasma after ROFA exposure

increase activation of leukocytes and endothelial cells.

ROFA particles do not directly activate endothelial

or circulating myeloid cells

Nano-scale particles and soluble PM constituents can break

through the respiratory epithelia and exert direct effects in

systemic circulation within minutes to hours [33, 45]. To

address whether ROFA particles circulating in the blood

directly induce a cellular response, we challenged

endothelial and circulating myeloid cells, such as neu-

trophils and monocytes, with a concentration of ROFA

particles higher than expected after inhalation (1 lg/mL).

Interestingly, exposure to ROFA particles had no effect on

the expression of ICAM-1, VCAM-1, P-Selectin, or

E-Selectin in cultured endothelial cells, as shown by

immunohistochemistry and flow cytometry (Fig. 4a, b),

while the addition of TNF-a strongly up-regulated these

markers. Also, neutrophils and monocytes did not signifi-

cantly increase TNF-a secretion after incubation with

ROFA particles (Fig. 4c). These findings suggest that

ROFA particles cannot directly activate endothelial or

circulating myeloid cells.

Exposure to ROFA particles induces the release

of pro-inflammatory cytokines by alveolar

macrophages

PM inhalation can trigger the accumulation of macro-

phages in the lung and the release of inflammatory

cytokines [3, 17]. Therefore, we hypothesized that circu-

lating pro-inflammatory cytokines detectable in blood may

originate from alveolar macrophages. To give proof to this

concept, we isolated macrophages from a splenocyte cell

suspension by magnetic bead separation and incubated the
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Fig. 3 Activation of leukocytes

and endothelial cells by ROFA

is reversed by blockade of the

pro-inflammatory cytokine

TNF-a. C57BL/6J mice were

exposed to saline or a

suspension containing ROFA

particles (1 mg/kg body weight)

by i.n. instillation, and plasma

levels of pro-inflammatory

cytokines were quantified by a

cytometric bead array (a).

Isolated myeloid and

endothelial cells were incubated

in vitro with conditioned plasma

(1 % v/v) from saline- or

ROFA-exposed mice in the

presence or absence of a

blocking anti-TNF-a antibody

(10 lg/ml). After 24 h, the

abundance of the CD11b

activation epitope CBRM1/5

was quantified by flow

cytometry in myeloid cells (b).

On endothelial cells, expression

of ICAM-1 and VCAM-1 was

determined by flow cytometry

(c). Data are presented as

mean ± SEM from at least nine

mice per group (a) and from at

least three independent

experiments (b, c)
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obtained cells in RPMI media supplemented with either

saline or ROFA particles. Macrophages exposed to ROFA

showed increased CD11b activation (Fig. 5a, b) and aug-

mented secretion of pro-inflammatory cytokines (Fig. 5c).

Next, we confirmed that ROFA exposure was associated

with an increase in total leukocyte count in bronchoalve-

olar lavage (BAL) as previously reported [17] (Fig. 5d).

ROFA instillation strongly increased pro-inflammatory

cytokine levels in BAL, including TNF-a and IL-6

(Fig. 5e). To track down the cellular origin of these
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as positive control. Expression of the adhesion molecules ICAM-1,

VCAM-1, P-Selectin, and E-Selectin were quantified after 24 h by

immunohistochemistry (a) as well as by flow cytometry (b). Isolated

myeloid cells were incubated in vitro with ROFA particles (1 lg/mL),

and TNF-a levels were measured in cell culture supernatants (c). IgG

Isotype in panel a indicates the staining with an unspecific FITC- or

TRITC-coupled isotype antibody. Data are presented as mean ± -

SEM of at least three independent experiments per group. ns indicates

not significant
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cytokines, we performed intracellular cytokine staining in

distinct leukocyte subpopulations by flow cytometry, and

identified alveolar macrophages (CD45?, CD11blow,

Siglec-F?, CD11c?, CD64?, F4/80int, Supplemental

Fig. 2) as the primary source of these cytokines (Fig. 5f, g).

Other cells, such as T- or B-lymphocytes, did not show

relevant cytokine production (data not shown). Notably,

Toll-like receptor (TLR) 4 expression in alveolar macro-

phages, but not in circulating myeloid cells, was increased

(Supplemental Fig. 3), suggesting a functional role of TLR

pathways in macrophage activation following ROFA

exposure. These results indicate that alveolar macrophages

are the predominant source of pro-inflammatory cytokines

in the lung after exposure to environmental PM.

Specific depletion of alveolar macrophages prevents

ROFA-mediated inflammation

We hypothesized that ROFA exposure induces an inflam-

matory response driven by alveolar macrophages thereby
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Fig. 5 Exposure to ROFA particles induces the release of pro-

inflammatory cytokines by alveolar macrophages. Macrophages

isolated from the spleen were cultured in the presence of ROFA

particles (1 lg/mL) or medium alone (RPMI). Cell activation was

assessed by expression of the CD11b activation epitope CBRM1/5 (a,

b). The concentration of pro-inflammatory cytokines was determined

in cell culture supernatants (c). To quantify cytokine secretion in vivo,

C57BL/6J mice were exposed to saline solution or ROFA particles

(1 mg/kg body weight) by i.n. instillation. A bronchoalveolar lavage

(BAL) was performed after 3 h and total cell numbers (d) and the

concentration of pro-inflammatory cytokines were quantified (e). The

BAL cell suspension was analyzed by flow cytometry. Alveolar

macrophages were identified as CD45?, CD11blow, Siglec-F?,

CD11c?, CD64?, F4/80int cells (Supplemental Fig. 2), and intracel-

lular cytokine staining was performed for TNF-a and IL-6 (f, g). Data

are presented as mean ± SEM of at least three independent exper-

iments (a–c) or at least six animals per group (d–g)

44 Page 8 of 14 Basic Res Cardiol (2016) 111:44

123



impairing MI healing. To proof this concept in a loss-of-

function approach, alveolar macrophages were depleted in

our model by clodronate liposomes. Clodronate is a

strongly hydrophilic bisphosphonate that—when delivered

in liposomes—induces apoptosis in macrophages after

internalization [44]. In a first approach, we injected clo-

dronate liposomes i.v. to systemically deplete macro-

phages. PBS-loaded liposomes were used as control. After

24 h, i.v. clodronate pretreatment abolished ROFA-in-

duced macrophage recruitment to the lung and reduced

local and systemic cytokine levels in this group (Supple-

mental Fig. 4), indicating that macrophages are a relevant

source of circulating pro-inflammatory cytokines. To

specifically deplete alveolar macrophages, we delivered

clodronate liposomes by i.n. instillation. This strategy was

highly effective in depleting macrophages from the lung,

but not from other locations (Supplemental Fig. 5). Alve-

olar macrophages were suppressed up to 5 days after a

single dose of clodronate (Supplemental Fig. 6). Specific

depletion of alveolar macrophages was effective in pre-

venting both local and systemic cytokine release following

ROFA exposure (Supplemental Fig. 7). To rule out that

some of the effects induced by ROFA are at least partially

mediated by the adaptive immune system, such as by

lymphocytes [2, 41], we exposed lymphocyte-free Rag-

1-/- mice to ROFA particles. Notably, the cellular and

inflammatory response resembled that of wild type mice

(Supplemental Fig. 8), indicating that lymphocytes do not

play a significant role in the acute inflammatory response

initiated by ROFA exposure.

Finally, to confirm that alveolar macrophages ultimately

determine the inflammatory response in infarcted cardiac

tissue after ROFA exposure, we tested a combined model

of alveolar macrophage depletion, ROFA exposure, and MI

(Fig. 6a). Clodronate depletion effectively reduced alveo-

lar macrophages 7 days after MI (Fig. 6b) and protected

from ROFA-mediated increase in BAL and systemic TNF-

a levels (Fig. 6c, d). In accord with the finding that blood

Ly6Chigh monocyte activation correlated with plasma TNF-

a levels in ROFA-exposed mice (Supplemental Fig. 9), we

observed lowered expression of the CD11b activation

epitope in circulating inflammatory Ly6Chigh monocytes in

clodronate-pretreated ROFA-exposed mice (Fig. 6e). As a

result, lack of alveolar macrophages prevented from mac-

rophage accumulation in infarcted tissue after ROFA

exposure (Fig. 6f, g). Moreover, depletion of alveolar

macrophages was also effective in reducing the ROFA-

mediated increase in leukocyte rolling and adhesion in

intravital microscopy (Fig. 6h, i, Supplemental videos IV–

VI), suggesting that enhanced inflammatory cell recruit-

ment is the cause of increased macrophage accumulation in

infarcted tissue of ROFA-exposed mice.

Discussion

Exposure to environmental PM correlates with cardiovas-

cular disease and mortality from MI [1, 3, 5]. However, it is

not known whether and by which mechanism PM influence

MI. In this study, we present the novel finding that the

exposure to ROFA particles aggravates experimental MI by

boosting inflammatory cell recruitment to the myocardium.

Mechanistically, four major findings support our model

(Fig. 7): (1) an acute ROFA exposure induced sustained

activation of macrophages, but not of lymphocytes, resi-

dent in the lung. (2) Activated alveolar macrophages

secreted pro-inflammatory cytokines, such as TNF-a and

IL-6, into the circulation. (3) This increase in systemic

cytokines promoted expression of myeloid and endothelial

adhesion factors, and pre-disposed for enhanced leukocyte

rolling, adhesion, and transmigration. Notably, anti-cy-

tokine therapy reversed these effects. (4) Experimental

depletion of alveolar macrophages reduced inflammatory

cytokine release and protected from inflammatory cell

recruitment induced by ROFA in vivo. Accordingly,

attenuation of myeloid cell recruitment into the myo-

cardium has been reported to improve MI healing [31].

Numerous studies have previously suggested different

mechanisms. Firstly, a direct uptake of PM by phagocytes,

such as by macrophages, has been demonstrated [21].

Secondly, it is thought that certain PM constituents may

induce an oxidative stress response [50]. Airborne PM is

comprised of a heterogeneous mixture of solid and liquid

particles suspended in air, varying in size, chemical com-

position and sources of origin [5]. Anthropogenic emis-

sions are the main contributors to environmental PM

burden and mainly consist of motor vehicle emissions and

fossil fuel combustion during power generation and

industrial processes [32]. ROFA particles often present an

aerodynamic diameter below 2.5 lm (PM2.5), a size that

penetrates the lung deeper and has been shown to be more

closely associated with PM adverse health effects rather

than coarser particles (PM10) [5]. ROFA particles are

especially rich in soluble transition metals, that can

enhance the inflammatory response triggered by PM,

through generation of reactive oxygen species (ROS) [7].

In our study, we tested PM rich in water-soluble transition

metals [8, 36, 38]. Some deleterious effects observed in

local lung injury appear to be caused by reactive oxygen

species which may potentially be overcome by over-ex-

pression of superoxide dismutase [17, 18, 27, 28]. An

interesting link is provided by the observation that

increased oxidative damage after PM exposure leads to the

generation of oxidized lipid species, such as 1-palmitoyl-2-

arachidonoyl-sn-glycero-3-phosphorylcholine (oxPAPC) in

the bronchoalveolar lavage fluid. The later can be engulfed
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by macrophages mediated by pattern-recognition receptors,

such as Toll-like receptors (TLRs), and potentiate inflam-

matory signaling [24]. In accord, TLR4-deficient mice are

protected from PM-associated inflammation [24] and MI

[37]. In our study, TLR4 expression was enhanced in

alveolar macrophages after ROFA exposure, but not in

circulating leukocytes, raising the possibility that TLR4

may indeed mediate some inflammatory pathways initiated

by ROFA. However, we also observed that ROFA particles

alone induced pro-inflammatory cytokine expression in

isolated alveolar macrophages, indicating that such path-

ways are not required for, but rather synergistically support

the inflammatory response after ROFA exposure.

The concept that PM exposure induces leukocyte

recruitment by promoting both rolling and firm adhesion

has been reported earlier. In particular, Nurkiewicz et al.

have shown that rats exposed to ROFA exhibited increased

leukocyte deposition in the spinotrapezius muscle [34].

This effect was discussed to be caused by deposition of

myeloperoxidase in the arterial wall [35]. Moreover, we

previously showed that ROFA instillation activates

intravascular neutrophils [28], as also confirmed in this

study. However, it has not been elucidated whether

leukocytes are activated per se or whether this activation is

secondary to circulating mediators of inflammation. By

testing conditioned plasma from ROFA-exposed mice on

in vitro cultured leukocytes and endothelial cells, we

showed that cytokines are needed to induce cell activation,

while ROFA particles alone are not sufficient to fully

activate cell types participating in leukocyte recruitment.

In vitro, circulating TNF-a levels in ROFA-exposed mice

caused ICAM-1 and VCAM-1 expression in endothelial
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Fig. 6 Specific depletion of alveolar macrophages prevents ROFA-

mediated inflammation. To test their simultaneous effects, depletion

of alveolar macrophages, ROFA exposure, and MI were performed

gradually (a). After 7 days, numbers of alveolar macrophages in the

BAL were determined by flow cytometry (b). TNF-a levels in BAL

(c) and plasma (d) were quantified after 7 days, or at the indicated

time points. Expression of the CD11b activation marker on

inflammatory Ly6Chigh blood monocytes was expressed as MFI (e).

Myeloid cell subsets in infarcted hearts, including macrophages, were

quantified after 7 days (f, g). Rolling and adhering cells in mesenteric

venules were quantified in intravital microscopy after depletion of

alveolar macrophages and subsequent ROFA exposure (h, i). Data are

presented as mean ± SEM of at least seven mice pre group
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cells, as well as CD11b (Mac-1) integrin activation in

myeloid cells, a prerequisite for leukocyte adhesion to

ICAM-1 [9, 13]. This is particularly interesting since TNF-

a is capable of inducing endothelial activation [23]. Given

that nano-scale particles and soluble PM constituents have

been found in systemic circulation after PM inhalation

[33, 45], a slight effect of ROFA particles on endothelial

and circulating leukocytes cannot be completely ruled out.

As proof-of-concept, we have demonstrated that thera-

peutic inhibition of the prototypic pro-inflammatory cyto-

kine TNF-a reverses the effects of PM. In accord, it has

been recently shown that TNF-a blockade is also effective

to prevent PM-associated worsening in cardiac energetic

and contractile function [30]. Our findings do not exclude

the participation of alternative pro-inflammatory mediators.

In particular, Fijimaki et al. have demonstrated that IL-6-

deficient mice failed to accumulate leukocytes in the lung

after the exposure to diesel exhaust particles [12],

proposing that IL-6 also participates in lung inflammation

in this setting.

In our study, alveolar macrophages are the source of

TNF-a and IL-6 after ROFA exposure. These data confirm

previous studies showing that macrophage activation

occurs in vitro and in vivo after exposure to PM [21]. It has

already been demonstrated that cytokine levels

detectable in BAL rise after PM inhalation [11, 17].

However, the cellular origin of these cytokines has not

been tracked down until now. Another important finding

from our study is that circulating TNF-a levels rise fol-

lowing PM exposure, even in the context of already ele-

vated TNF-a plasma levels after MI. Notably, lymphocytes

can promote acute and chronic inflammation by cytokine

secretion and providing chemotactic stimuli for myeloid

cells, particularly in the setting of MI [55]. To further

elucidate the relative participation of lymphocytes and

macrophages, Rag1-/- mice lacking mature lymphocytes

and clodronate-pretreated mice lacking alveolar macro-

phages were used as experimental models. Interestingly,

local and systemic inflammation in Rag1-/- mice resem-

bled that of wild type mice, indicating that T- and

B-lymphocytes do not play a relevant role in this context.

On the contrary, we observed that some cytokine levels

were even higher in Rag1-/- than in wild type mice,

suggesting a protective role of some lymphocyte subsets, as

previously suggested for T-regulatory cells in lung

inflammation [54]. Specific depletion of alveolar macro-

phages reduced local and systemic inflammation after

ROFA exposure, indicating that alveolar macrophages are

the source of circulating pro-inflammatory cytokines in our

model. Of note, we have not observed that i.n. clodronate

affects myeloid cell survival at other locations than the

lung. This is particularly important, since MI is driven by

the mobilization of monocytes from secondary lymphoid

organs and the bone marrow to the heart, where they
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Fig. 7 Proposed model of PM-induced aggravation of myeloid cell

recruitment during MI. Following PM inhalation, alveolar macro-

phages are directly activated by PM and orchestrate lung inflamma-

tion. The release of pro-inflammatory mediators, such as TNF-a and

IL-6, into the blood stream results in increased expression of adhesion

factors in myeloid cells and the endothelium. Consequently, leuko-

cyte migration to sites of pre-established inflammation is boosted.

Within the infarcted myocardium, monocytes and macrophages

accumulate, ultimately leading to impaired tissue remodeling and

increased infarction area
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rapidly differentiate into macrophages within a couple of

days [31]. Accordingly, lack of alveolar macrophages

prevented excessive inflammatory leukocyte accumulation

in infarcted tissue of ROFA-exposed mice. In this context,

it is also possible that ROFA exposure may trigger the

release of monocytes from the bone marrow of lymphoid

organs, although we have not observed elevated numbers

of circulating myeloid cells following ROFA exposure. On

the other hand, other effector functions of alveolar mac-

rophages apart from cytokine release may also contribute

to the observed effects. These questions will have to be

answered in future studies.

Despite ROFA is an accepted model particle for air

pollution PM [16], a potential limitation of our study is that

an acute exposure to ROFA may only partially reflect

environmental exposures as present in urban areas of

industrialized countries, in particular when PM is present at

lower concentrations. However, acute exposure to oil fly

ashes [15, 19, 25] in humans has been reported to induce a

comparable degree of lung injury and inflammation as

observed in the present study.

In conclusion, the presented findings unravel some of

the key mechanisms by which PM worsens the outcome

following MI, directly linking air pollution PM with the

activation of pathologic inflammatory pathways. After all,

our data highlight the importance of environmental factors

in cardiovascular disease.
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