Skip to main content

Advertisement

Log in

Cardioprotective effects of early and late aerobic exercise training in experimental pulmonary arterial hypertension

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Clinical studies suggest that aerobic exercise can exert beneficial effects in pulmonary arterial hypertension (PAH), but the underlying mechanisms are largely unknown. We compared the impact of early or late aerobic exercise training on right ventricular function, remodeling and survival in experimental PAH. Male Wistar rats were submitted to normal cage activity (SED), exercise training in early (EarlyEX) and in late stage (LateEX) of PAH induced by monocrotaline (MCT, 60 mg/kg). Both exercise interventions resulted in improved cardiac function despite persistent right pressure-overload, increased exercise tolerance and survival, with greater benefits in EarlyEX+MCT. This was accompanied by improvements in the markers of cardiac remodeling (SERCA2a), neurohumoral activation (lower endothelin-1, brain natriuretic peptide and preserved vascular endothelial growth factor mRNA), metabolism and mitochondrial oxidative stress in both exercise interventions. EarlyEX+MCT provided additional improvements in fibrosis, tumor necrosis factor-alpha/interleukin-10 and brain natriuretic peptide mRNA, and beta/alpha myosin heavy chain protein expression. The present study demonstrates important cardioprotective effects of aerobic exercise in experimental PAH, with greater benefits obtained when exercise training is initiated at an early stage of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agarwal D, Haque M, Sriramula S, Mariappan N, Pariaut R, Francis J (2009) Role of proinflammatory cytokines and redox homeostasis in exercise-induced delayed progression of hypertension in spontaneously hypertensive rats. Hypertension 54:1393–1400. doi:10.1161/hypertensionaha.109.135459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Arena R, Cahalin LP, Borghi-Silva A, Myers J (2014) The effect of exercise training on the pulmonary arterial system in patients with pulmonary hypertension. Prog Cardiovasc Dis 57:480–488. doi:10.1016/j.pcad.2014.03.008

    Article  PubMed  Google Scholar 

  3. Ascensao A, Magalhaes J, Soares JMC, Ferreira R, Neuparth MJ, Marques F, Oliveira PJ, Duarte JA (2005) Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. Am J Physiol Heart Circ Physiol 289:H722–H731. doi:10.1152/ajpheart.01249.2004

    Article  CAS  PubMed  Google Scholar 

  4. Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, Ockaili R, McCord JM, Voelkel NF (2009) Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 120:1951–1960. doi:10.1161/circulationaha.109.883843

    Article  PubMed  Google Scholar 

  5. Bonagura JD, O’Grady MR, Herring DS (1985) Echocardiography. Principles of interpretation. Vet Clin North Am Small Anim Pract 15:1177–1194. doi:10.1016/S0195-5616(85)50364-2

    Article  CAS  PubMed  Google Scholar 

  6. Campian ME, Hardziyenka M, de Bruin K, van Eck-Smit BLF, de Bakker JMT, Verberne HJ, Tan HL (2010) Early inflammatory response during the development of right ventricular heart failure in a rat model. Eur J Heart Fail 12:653–658. doi:10.1093/eurjhf/hfq066

    Article  CAS  PubMed  Google Scholar 

  7. Chan L, Chin LM, Kennedy M, Woolstenhulme JG, Nathan SD, Weinstein AA, Connors G, Weir NA, Drinkard B, Lamberti J, Keyser RE (2013) Benefits of intensive treadmill exercise training on cardiorespiratory function and quality of life in patients with pulmonary hypertension. Chest 143:333–343. doi:10.1378/chest.12-0993

    Article  PubMed Central  PubMed  Google Scholar 

  8. Correia-Pinto J, Henriques-Coelho T, Roncon-Albuquerque R, Lourenço A, Melo-Rocha G, Vasques-Nóvoa F, Gillebert T, Leite-Moreira A (2009) Time course and mechanisms of left ventricular systolic and diastolic dysfunction in monocrotaline-induced pulmonary hypertension. Basic Res Cardiol 104:535–545. doi:10.1007/s00395-009-0017-3

    Article  PubMed  Google Scholar 

  9. de Man FS, Handoko ML, Groepenhoff H, van’t Hul AJ, Abbink J, Koppers RJ, Grotjohan HP, Twisk JW, Bogaard HJ, Boonstra A, Postmus PE, Westerhof N, van der Laarse WJ, Vonk-Noordegraaf A (2009) Effects of exercise training in patients with idiopathic pulmonary arterial hypertension. Eur Respir J 34:669–675. doi:10.1183/09031936.00027909

    Article  PubMed  Google Scholar 

  10. Ehlken N, Lichtblau M, Klose H, Weidenhammer J, Fischer C, Nechwatal R, Uiker S, Halank M, Olsson K, Seeger W, Gall H, Rosenkranz S, Wilkens H, Mertens D, Seyfarth HJ, Opitz C, Ulrich S, Egenlauf B, Grunig E (2015) Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: a prospective, randomized, controlled trial. Eur Heart J. doi:10.1093/eurheartj/ehv337

    PubMed  Google Scholar 

  11. Ehlken N, Verduyn C, Tiede H, Staehler G, Karger G, Nechwatal R, Opitz CF, Klose H, Wilkens H, Rosenkranz S, Halank M, Grunig E (2014) Economic evaluation of exercise training in patients with pulmonary hypertension. Lung 192:359–366. doi:10.1007/s00408-014-9558-9

    Article  PubMed  Google Scholar 

  12. Falcao-Pires I, Goncalves N, Henriques-Coelho T, Moreira-Goncalves D, Roncon-Albuquerque R Jr, Leite-Moreira AF (2009) Apelin decreases myocardial injury and improves right ventricular function in monocrotaline-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 296:H2007–H2014. doi:10.1152/ajpheart.00089.2009

    Article  CAS  PubMed  Google Scholar 

  13. Favret F, Henderson KK, Allen J, Richalet J-P, Gonzalez NC (2006) Exercise training improves lung gas exchange and attenuates acute hypoxic pulmonary hypertension but does not prevent pulmonary hypertension of prolonged hypoxia. J Appl Physiol 100:20–25. doi:10.1152/japplphysiol.00673.2005

    Article  PubMed  Google Scholar 

  14. Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, Chamera E, Corretti MC, Champion HC, Abraham TP, Girgis RE, Hassoun PM (2006) Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 174:1034–1041. doi:10.1164/rccm.200604-547OC

    Article  PubMed  Google Scholar 

  15. Ghio S, Klersy C, Magrini G, D’Armini AM, Scelsi L, Raineri C, Pasotti M, Serio A, Campana C, Viganò M (2010) Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol 140:272–278. doi:10.1016/j.ijcard.2008.11.051

    Article  PubMed  Google Scholar 

  16. Gomez-Arroyo J, Mizuno S, Szczepanek K, Van Tassell B, Natarajan R, dos Remedios CG, Drake JI, Farkas L, Kraskauskas D, Wijesinghe DS, Chalfant CE, Bigbee J, Abbate A, Lesnefsky EJ, Bogaard HJ, Voelkel NF (2013) Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail 6:136–144. doi:10.1161/circheartfailure.111.966127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Handoko ML, de Man FS, Happe CM, Schalij I, Musters RJ, Westerhof N, Postmus PE, Paulus WJ, van der Laarse WJ, Vonk-Noordegraaf A (2009) Opposite effects of training in rats with stable and progressive pulmonary hypertension. Circulation 120:42–49. doi:CIRCULATIONAHA.108.829713

  18. Haykowsky MJ, Liang Y, Pechter D, Jones LW, McAlister FA, Clark AM (2007) A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed. J Am Coll Cardiol 49:2329–2336. doi:10.1016/j.jacc.2007.02.055

    Article  PubMed  Google Scholar 

  19. Henriques-Coelho T, Correia-Pinto J, Roncon-Albuquerque R Jr, Baptista MJ, Lourenco AP, Oliveira SM, Brandao-Nogueira A, Teles A, Fortunato JM, Leite-Moreira AF (2004) Endogenous production of ghrelin and beneficial effects of its exogenous administration in monocrotaline-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 287:H2885–H2890. doi:10.1152/ajpheart.01122.2003

    Article  CAS  PubMed  Google Scholar 

  20. Howard LS (2011) Prognostic factors in pulmonary arterial hypertension: assessing the course of the disease. Eur Respir Rev 20:236–242. doi:10.1183/09059180.00006711

    Article  CAS  PubMed  Google Scholar 

  21. Hwang H, Reiser PJ, Billman GE (2005) Effects of exercise training on contractile function in myocardial trabeculae after ischemia-reperfusion. J Appl Physiol 99:230–236. doi:10.1152/japplphysiol.00850.2004

    Article  PubMed  Google Scholar 

  22. Kashimura O, Sakai A, Yanagidaira Y (1995) Effects of exercise-training on hypoxia and angiotensin II-induced pulmonary vasoconstrictions. Acta Physiol Scand 155:291–295. doi:10.1111/j.1748-1716.1995.tb09976.x

    Article  CAS  PubMed  Google Scholar 

  23. Korte FS, Herron TJ, Rovetto MJ, McDonald KS (2005) Power output is linearly related to MyHC content in rat skinned myocytes and isolated working hearts. Am J Physiol Heart Circ Physiol 289:H801–H812. doi:10.1152/ajpheart.01227.2004

    Article  CAS  PubMed  Google Scholar 

  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  25. Ley S, Fink C, Risse F, Ehlken N, Fischer C, Ley-Zaporozhan J, Kauczor HU, Klose H, Gruenig E (2013) Magnetic resonance imaging to assess the effect of exercise training on pulmonary perfusion and blood flow in patients with pulmonary hypertension. Eur Radiol 23:324–331. doi:10.1007/s00330-012-2606-z

    Article  PubMed  Google Scholar 

  26. Lipskaia L, Chemaly ER, Hadri L, Lompre A-M, Hajjar RJ (2010) Sarcoplasmic reticulum Ca2+ ATPase as a therapeutic target for heart failure. Expert Opin Biol Ther 10:29–41. doi:10.1517/14712590903321462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lourenco AP, Roncon-Albuquerque R Jr, Bras-Silva C, Faria B, Wieland J, Henriques-Coelho T, Correia-Pinto J, Leite-Moreira AF (2006) Myocardial dysfunction and neurohumoral activation without remodeling in left ventricle of monocrotaline-induced pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol 291:H1587–H1594. doi:10.1152/ajpheart.01004.2005

    Article  CAS  PubMed  Google Scholar 

  28. Mereles D, Ehlken N, Kreuscher S, Ghofrani S, Hoeper MM, Halank M, Meyer FJ, Karger G, Buss J, Juenger J, Holzapfel N, Opitz C, Winkler J, Herth FF, Wilkens H, Katus HA, Olschewski H, Grunig E (2006) Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation 114:1482–1489. doi:10.1161/CIRCULATIONAHA.106.618397

    Article  PubMed  Google Scholar 

  29. Meyrick B, Gamble W, Reid L (1980) Development of crotalaria pulmonary hypertension: hemodynamic and structural study. Am J Physiol Heart Circ Physiol 239:H692–H702

    CAS  Google Scholar 

  30. Miyachi M, Yazawa H, Furukawa M, Tsuboi K, Ohtake M, Nishizawa T, Hashimoto K, Yokoi T, Kojima T, Murate T, Yokota M, Murohara T, Koike Y, Nagata K (2009) Exercise training alters left ventricular geometry and attenuates heart failure in dahl salt-sensitive hypertensive rats. Hypertension 53:701–707. doi:10.1161/hypertensionaha.108.127290

    Article  CAS  PubMed  Google Scholar 

  31. Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, Guerrero JL, Gwathmey JK, Rosenzweig A, Hajjar RJ (2000) Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 97:793–798. doi:10.1073/pnas.97.2.793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Moreira-Gonçalves D, Henriques-Coelho T, Fonseca H, Ferreira R, Padrão AI, Santa C, Vieira S, Silva AF, Amado F, Leite-Moreira A, Duarte JA (2015) Intermittent cardiac overload results in adaptive hypertrophy and provides protection against left ventricular acute pressure overload insult. J Physiol 593:3885–3897. doi:10.1113/JP270685

    Article  PubMed  Google Scholar 

  33. Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA (2003) Oxidative Damage to Mitochondrial Complex I Due to Peroxynitrite. J Biol Chem 278:37223–37230. doi:10.1074/jbc.M305694200

    Article  CAS  PubMed  Google Scholar 

  34. Nemoto S, DeFreitas G, Mann DL, Carabello BA (2002) Effects of changes in left ventricular contractility on indexes of contractility in mice. Am J Physiol Heart Circ Physiol 283:H2504–H2510. doi:10.1152/ajpheart.0765.2001

    Article  CAS  PubMed  Google Scholar 

  35. Novoyatleva T, Schymura Y, Janssen W, Strobl F, Swiercz J, Patra C, Posern G, Wietelmann A, Zheng T, Schermuly R, Engel F (2013) Deletion of Fn14 receptor protects from right heart fibrosis and dysfunction. Basic Res Cardiol 108:325. doi:10.1007/s00395-012-0325-x

    Article  PubMed Central  PubMed  Google Scholar 

  36. Pacher P, Nagayama T, Mukhopadhyay P, Batkai S, Kass DA (2008) Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc 3:1422–1434. doi:10.1038/nprot.2008.138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Padrão AI, Ferreira RMP, Vitorino R, Alves RMP, Neuparth MJ, Duarte JA, Amado F (2011) OXPHOS susceptibility to oxidative modifications: the role of heart mitochondrial subcellular location. Biochim Biophys Acta 1807:1106–1113. doi:10.1016/j.bbabio.2011.04.002

    Article  PubMed  Google Scholar 

  38. Padrão AI, Oliveira P, Vitorino R, Colaço B, Pires MJ, Márquez M, Castellanos E, Neuparth MJ, Teixeira C, Costa C, Moreira-Gonçalves D, Cabral S, Duarte JA, Santos LL, Amado F, Ferreira R (2013) Bladder cancer-induced skeletal muscle wasting: disclosing the role of mitochondria plasticity. Int J Biochem Cell Biol 45:1399–1409. doi:10.1016/j.biocel.2013.04.014

    Article  PubMed  Google Scholar 

  39. Penttilä J, Snapir A, Kentala E, Koskenvuo J, Posti J, Scheinin M, Scheinin H, Kuusela T (2006) Estimation of cardiac output in a pharmacological trial using a simple method based on arterial blood pressure signal waveform: a comparison with pulmonary thermodilution and echocardiographic methods. Eur J Clin Pharmacol 62:401–407. doi:10.1007/s00228-006-0115-1

    Article  PubMed  Google Scholar 

  40. Redout EM, van der Toorn A, Zuidwijk MJ, van de Kolk CW, van Echteld CJ, Musters RJ, van Hardeveld C, Paulus WJ, Simonides WS (2010) Antioxidant treatment attenuates pulmonary arterial hypertension-induced heart failure. Am J Physiol Heart Circ Physiol 298:H1038–H1047. doi:10.1152/ajpheart.00097.2009

    Article  CAS  PubMed  Google Scholar 

  41. Rognmo Ø, Moholdt T, Bakken H, Hole T, Mølstad P, Myhr NE, Grimsmo J, Wisløff U (2012) Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation 126:1436–1440. doi:10.1161/circulationaha.112.123117

    Article  PubMed  Google Scholar 

  42. Sahn DJ, DeMaria A, Kisslo J, Weyman A (1978) Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 58:1072–1083. doi:10.1161/01.cir.58.6.1072

    Article  CAS  PubMed  Google Scholar 

  43. Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231. doi:10.1016/0003-2697(91)90094-A

    Article  CAS  PubMed  Google Scholar 

  44. Spruijt OA, de Man FS, Groepenhoff H, Oosterveer F, Westerhof N, Vonk-Noordegraaf A, Bogaard H-J (2015) The effects of exercise on right ventricular contractility and right ventricular-arterial coupling in pulmonary hypertension. Am J Respir Crit Care Med 191:1050–1057. doi:10.1164/rccm.201412-2271OC

    Article  CAS  PubMed  Google Scholar 

  45. Talmadge RJ, Roy RR (1993) Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms. J Appl Physiol 75:2337–2340

    CAS  PubMed  Google Scholar 

  46. van Tol BAF, Huijsmans RJ, Kroon DW, Schothorst M, Kwakkel G (2006) Effects of exercise training on cardiac performance, exercise capacity and quality of life in patients with heart failure: a meta-analysis. Eur J Heart Fail 8:841–850. doi:10.1016/j.ejheart.2006.02.013

    Article  PubMed  Google Scholar 

  47. Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, Naeije R, Newman J, Oudiz RJ, Provencher S, Torbicki A, Voelkel NF, Hassoun PM (2013) Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol 62:D22–D33. doi:10.1016/j.jacc.2013.10.027

    Article  PubMed  Google Scholar 

  48. Weissmann N, Peters DM, Klopping C, Kruger K, Pilat C, Katta S, Seimetz M, Ghofrani HA, Schermuly RT, Witzenrath M, Seeger W, Grimminger F, Mooren FC (2014) Structural and functional prevention of hypoxia-induced pulmonary hypertension by individualized exercise training in mice. Am J Physiol Lung Cell Mol Physiol. doi:10.1152/ajplung.00275.2013

    PubMed  Google Scholar 

  49. Zerbetto E, Vergani L, Dabbeni-Sala F (1997) Quantification of muscle mitochondrial oxidative phosphorylation enzymes via histochemical staining of blue native polyacrylamide gels. Electrophoresis 18:2059–2064. doi:10.1002/elps.1150181131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very thankful to Miss Celeste Resende, Marina Neto, Manuel Pinto, Cristine Schmidt, António Bovolini for their technical support with animal care, training protocols and tissue processing. We are also very grateful to Maria José Mendes and Antónia Teles for their valuable collaboration in the sample’s preparation for molecular biology analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Moreira-Gonçalves.

Ethics declarations

Ethical standards

The manuscript does not contain clinical studies or patient data.

Conflit of interest

The authors declare that they have no conflict of interest.

Funding

This work was supported by Portuguese-Foundation-for-Science and-Technology grants PTDC/DES/104567/2008, PEst-C/SAU/UI0051/2014 and EXCL/BIMMEC/0055/2012 (partially funded by FEDER through COMPETE) and European-Commission grant FP7-Health-2010; MEDIA-261409. The Research Centre on Physical Activity Health and Leisure (CIAFEL) is supported by Pest-OE/SAU/UI0617/2011. Daniel Moreira-Gonçalves and Hélder Fonseca are supported by an individual grant from Portuguese-Foundation-for-Science and-Technology (SFRH/BPD/90010/2012 and SFRH/BPD/78259/2011, respectively).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira-Gonçalves, D., Ferreira, R., Fonseca, H. et al. Cardioprotective effects of early and late aerobic exercise training in experimental pulmonary arterial hypertension. Basic Res Cardiol 110, 57 (2015). https://doi.org/10.1007/s00395-015-0514-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0514-5

Keywords

Navigation