Skip to main content

Advertisement

Log in

Dietary riboflavin deficiency induces ariboflavinosis and esophageal epithelial atrophy in association with modification of gut microbiota in rats

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Riboflavin deficiency causes ariboflavinosis, a common nutritional deficiency disease. The purpose of this study is to investigate the effects of riboflavin deficiency on the important internal organs and its potential mechanisms.

Methods

Experiment 1, male F344 rats were randomly assigned to R6 (normal riboflavin, 6 mg/kg) and R0 (riboflavin-deficient, 0 mg/kg) groups. Experiment 2 rats were assigned to R6, R0.6 (0.6 mg/kg) and R0.06 (0.06 mg/kg) groups. Experiment 3 rats were assigned to R6 and R0 → R6 (riboflavin replenishment) groups. Bacterial communities were analyzed based on 16S rRNA gene sequencing.

Results

Riboflavin deficiency induced ariboflavinosis (R0.06 46.7%; R0 72%) and esophageal epithelial atrophy (R0.06 40%; R0 44%) in rats, while the R6 group did not display symptoms (P < 0.001, respectively). Esophageal epithelial atrophy occurred simultaneously (R0.06 66.7%; R0 63.6%) with ariboflavinosis or appeared alone (R0.06 33.3%; R0 36.4%). Esophagus is the most vulnerable internal organ. Riboflavin deficiency followed by replenishment (R0 → R6) was effective in treating ariboflavinosis (83.3% vs. 0%, P < 0.001) and esophageal epithelial atrophy (66.7% vs. 20%, P = 0.17). Riboflavin deficiency modulated gut microbiota composition. The several key genera (Romboutsia, Turicibacter and Clostridium sensu stricto 1) were strongly correlated with ariboflavinosis and esophageal epithelial atrophy (P < 0.01 or P < 0.05). The potential mechanism is that gut microbiota affects body's xenobiotic biodegradation and metabolism, and genomic instability.

Conclusions

Riboflavin deficiency induces ariboflavinosis and esophageal epithelial atrophy by modulating the gut microbiota, and offers new Queryinsight into riboflavin deficiency and esophageal lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data are available in the manuscript or upon request to the authors.

Abbreviations

Expt.:

Experiment

EIN:

Esophageal intraepithelial neoplasia

FLASH:

Fast length adjustment of short reads

g:

Gram

nM:

Nmol/L

OTUs:

Operational taxonomic units

PCoA:

Principal coordinates analysis

PICRUSt:

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States

QIIME2:

Quantitative insights into microbial ecology 2

R6 :

Riboflavin 6 mg/kg

R0 :

Riboflavin 0 mg/kg

R0.6 :

Riboflavin 0.6 mg/kg

R0.06 :

Riboflavin 0.06 mg/kg

R0 → R6 :

Riboflavin 0 mg/kg for weeks 0–20 and then 6 mg/kg for weeks 21–35

SCFAs:

Short-chain fatty acids

References

  1. Powers HJ (2003) Riboflavin (vitamin B-2) and health. Am J Clin Nutr 77(6):1352–1360. https://doi.org/10.1093/ajcn/77.6.1352

    Article  CAS  PubMed  Google Scholar 

  2. Juarez Del Valle M, Laino JE, de Moreno de LeBlanc A, de Savoy Giori G, LeBlanc JG (2016) Soyamilk fermented with riboflavin-producing Lactobacillus plantarum CRL 2130 reverts and prevents ariboflavinosis in murine models. B J Nutr 116(7):1229–1235

    Article  CAS  Google Scholar 

  3. Powers HJ, Hill MH, Mushtaq S, Dainty JR, Majsak-Newman G, Williams EA (2011) Correcting a marginal riboflavin deficiency improves hematologic status in young women in the United Kingdom (RIBOFEM). Am J Clin Nutr 93(6):1274–1284. https://doi.org/10.3945/ajcn.110.008409

    Article  CAS  PubMed  Google Scholar 

  4. Whitfield KC, Karakochuk CD, Liu Y, McCann A, Talukder A, Kroeun H, Ward M, McNulty H, Lynd LD, Kitts DD, Li-Chan EC, McLean J, Green TJ (2015) Poor thiamin and riboflavin status is common among women of childbearing age in rural and urban Cambodia. J Nutr 145(3):628–633. https://doi.org/10.3945/jn.114.203604

    Article  CAS  PubMed  Google Scholar 

  5. Choi JY, Kim YN, Cho YO (2014) Evaluation of riboflavin intakes and status of 20–64-year-old adults in South Korea. Nutrients 7(1):253–264. https://doi.org/10.3390/nu7010253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O'Brien MM, Kiely M, Harrington KE, Robson PJ, Strain JJ, Flynn A (2001) The North/South Ireland food consumption survey: vitamin intakes in 18–64-year-old adults. Public Health Nutr 4(5a):1069–1079

    Article  CAS  Google Scholar 

  7. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24(2):160–168. https://doi.org/10.1016/j.copbio.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  8. Sydenstricker VP (1941) Clinical manifestations of ariboflavinosis. Am J Public Health Nations Health 31(4):344–350. https://doi.org/10.2105/ajph.31.4.344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thakur K, Tomar SK, Singh AK, Mandal S, Arora S (2017) Riboflavin and health: a review of recent human research. Crit Rev Food Sci Nutr 57(17):3650–3660. https://doi.org/10.1080/10408398.2016.1145104

    Article  CAS  PubMed  Google Scholar 

  10. Mensink GB, Fletcher R, Gurinovic M, Huybrechts I, Lafay L, Serra-Majem L, Szponar L, Tetens I, Verkaik-Kloosterman J, Baka A, Stephen AM (2013) Mapping low intake of micronutrients across Europe. Br J Nutr 110(4):755–773. https://doi.org/10.1017/s000711451200565x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hannon EM, Kiely M, Harrington KE, Robson PJ, Strain JJ, Flynn A (2001) The North/South Ireland food consumption survey: mineral intakes in 18–64-year-old adults. Public Health Nutr 4(5a):1081–1088

    Article  CAS  Google Scholar 

  12. Mataix J, Aranda P, Sanchez C, Montellano MA, Planells E, Llopis J (2003) Assessment of thiamin (vitamin B1) and riboflavin (vitamin B2) status in an adult Mediterranean population. Br J Nutr 90(3):661–666. https://doi.org/10.1079/bjn2003926

    Article  CAS  PubMed  Google Scholar 

  13. Richards JL, Yap YA, McLeod KH, Mackay CR, Marino E (2016) Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clin Transl Immunol 5(5):e82. https://doi.org/10.1038/cti.2016.29

    Article  CAS  Google Scholar 

  14. Petta I, Fraussen J, Somers V, Kleinewietfeld M (2018) Interrelation of diet, gut microbiome, and autoantibody production. Front Immunol 9:439. https://doi.org/10.3389/fimmu.2018.00439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aqil F, Jeyabalan J, Munagala R, Singh IP, Gupta RC (2016) Prevention of hormonal breast cancer by dietary jamun. Mol Nutr Food Res 60(6):1470–1481. https://doi.org/10.1002/mnfr.201600013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Long L, Pang XX, Lei F, Zhang JS, Wang W, Liao LD, Xu XE, He JZ, Wu JY, Wu ZY, Wang LD, Lin DC, Li EM, Xu LY (2018) SLC52A3 expression is activated by NF-kappaB p65/Rel-B and serves as a prognostic biomarker in esophageal cancer. Cell Mol Life Sci 75(14):2643–2661. https://doi.org/10.1007/s00018-018-2757-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu Z, Zhu B, Sun Y, Ai C, Wang L, Wen C, Yang J, Song S, Liu X (2018) Sulfated polysaccharide from sea cucumber and its depolymerized derivative prevent obesity in association with modification of gut microbiota in high-fat diet-fed mice. Mol Nutr Food Res 62(23):e1800446. https://doi.org/10.1002/mnfr.201800446

    Article  CAS  PubMed  Google Scholar 

  18. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  20. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821. https://doi.org/10.1038/nbt.2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koppel N, Maini Rekdal V (2017) Chemical transformation of xenobiotics by the human gut microbiota. Science. https://doi.org/10.1126/science.aag2770

    Article  PubMed  Google Scholar 

  24. Wynder EL, Klein UE (1965) The possible role of riboflavin deficiency in epithelial neoplasia. I. epithelial changes of mice in simple deficiency. Cancer 18:167–180

    Article  CAS  Google Scholar 

  25. Foy H, Kondi A (1984) The vulnerable esophagus: riboflavin deficiency and squamous cell dysplasia of the skin and the esophagus. J Natl Cancer Inst 72(4):941–948

    CAS  PubMed  Google Scholar 

  26. Gerritsen J, Umanets A, Staneva I, Hornung B, Ritari J, Paulin L, Rijkers GT, de Vos WM, Smidt H (2018) Romboutsia hominis sp. nov., the first human gut-derived representative of the genus Romboutsia, isolated from ileostoma effluent. Int J Syst Evol Microbiol 68(11):3479–3486. https://doi.org/10.1099/ijsem.0.003012

    Article  CAS  PubMed  Google Scholar 

  27. O'Neal L, Obregón-Tito AJ, Tito RY, Ozga AT, Polo SI, Lewis CM Jr, Lawson PA (2015) Clostridium amazonense sp. nov. an obliqately anaerobic bacterium isolated from a remote Amazonian community in Peru. Anaerobe 35(Pt B):33–37. https://doi.org/10.1016/j.anaerobe.2015.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mangifesta M, Mancabelli L, Milani C (2018) Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Sci Rep 8(1):13974. https://doi.org/10.1038/s41598-018-32413-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao F, Feng J, Li J, Zhao L, Liu Y, Chen H, Jin Y, Zhu B, Wei Y (2018) Alterations of the gut microbiota in Hashimoto’s thyroiditis patients. Thyroid 28(2):175–186. https://doi.org/10.1089/thy.2017.0395

    Article  CAS  PubMed  Google Scholar 

  30. Call L, Stoll B, Oosterloo B, Ajami N, Sheikh F, Wittke A, Waworuntu R, Berg B, Petrosino J, Olutoye O, Burrin D (2018) Metabolomic signatures distinguish the impact of formula carbohydrates on disease outcome in a preterm piglet model of NEC. Microbiome 6(1):111. https://doi.org/10.1186/s40168-018-0498-0

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Han H, Yin J, He X, Tang Z, Li T, Yao K, Yin Y (2019) D- and l-aspartate regulates growth performance, inflammation and intestinal microbial community in young pigs. Food Funct 10(2):1028–1037. https://doi.org/10.1039/c8fo01410h

    Article  CAS  PubMed  Google Scholar 

  32. Bosshard PP, Zbinden R, Altwegg M (2002) Turicibacter sanguinis gen. nov., sp. nov., a novel anaerobic, Gram-positive bacterium. Int J Syst Evol Microbiol 52(Pt 4):1263–1266. https://doi.org/10.1099/00207713-52-4-1263

    Article  CAS  PubMed  Google Scholar 

  33. Liu G, Bei J, Liang L, Yu G, Li L, Li Q (2018) Stachyose improves inflammation through modulating gut microbiota of high-fat diet/streptozotocin-induced type 2 diabetes in rats. Mol Nutr Food Res 62(6):e1700954. https://doi.org/10.1002/mnfr.201700954

    Article  CAS  PubMed  Google Scholar 

  34. Anhe FF, Varin TV, Le Barz M, Pilon G, Dudonne S, Trottier J, St-Pierre P, Harris CS, Lucas M, Lemire M, Dewailly E, Barbier O, Desjardins Y, Roy D, Marette A (2018) Arctic berry extracts target the gut-liver axis to alleviate metabolic endotoxaemia, insulin resistance and hepatic steatosis in diet-induced obese mice. Diabetologia 61(4):919–931. https://doi.org/10.1007/s00125-017-4520-z

    Article  CAS  PubMed  Google Scholar 

  35. Henning SM, Yang J, Hsu M, Lee RP, Grojean EM, Ly A, Tseng CH, Heber D, Li Z (2018) Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. Eur J Nutr 57(8):2759–2769. https://doi.org/10.1007/s00394-017-1542-8

    Article  CAS  PubMed  Google Scholar 

  36. Plottel CS, Blaser MJ (2011) Microbiome and malignancy. Cell Host Microbe 10(4):324–335. https://doi.org/10.1016/j.chom.2011.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O'Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–723. https://doi.org/10.1038/nature11605

    Article  CAS  PubMed  Google Scholar 

  38. Legoux F, Bellet D (2019) Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science 366(6464):494–499. https://doi.org/10.1126/science.aaw2719

    Article  CAS  PubMed  Google Scholar 

  39. Pan F, Chen Y, He JZ, Long L, Chen Y, Luo HJ, Xu YW, Pang XX, Yang Q, Wang JJ, Xu XE, Wang SH, Li EM, Xu LY (2019) Dietary riboflavin deficiency promotes N-nitrosomethylbenzylamine-induced esophageal tumorigenesis in rats by inducing chronic inflammation. Am J Cancer Res 9(11):2469–2481

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ratnaparkhe M, Wong JKL, Wei PC, Hlevnjak M, Kolb T, Simovic M, Haag D, Paul Y, Devens F, Northcott P, Jones DTW, Kool M, Jauch A, Pastorczak A, Mlynarski W, Korshunov A, Kumar R (2018) Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors. Nat Commun 9(1):4760. https://doi.org/10.1038/s41467-018-06925-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nickoloff JA, Jones D, Lee SH, Williamson EA, Hromas R (2017) Drugging the cancers addicted to DNA repair. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djx059

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Stanley Li Lin, Department of Cell Biology and Genetics, Shantou University Medical College, for assistance in revising the manuscript. We are grateful for assistance from the Central Laboratory at Shantou University Medical College, including Prof. Wen-Hong Luo, for obtaining the riboflavin concentration data by HPLC.

Funding

This work was supported by Grants from the Natural Science Foundation of China-Guangdong Joint Fund (No. U1301227), the National Cohort of Esophageal Cancer of China (2016YFC0901400).

Author information

Authors and Affiliations

Authors

Contributions

LYX and EML planned the studies. FP, LLZ, HJL, YC, LL, XW, and PTZ performed the experiments. FP held the responsibility for all data integrity and data analysis. LYX and EML conducted the whole research. LYX had primary responsibility for the final content. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to En-Min Li or Li-Yan Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval and consent to participate

All experimental procedures administered on animals were approved by the Institutional Animal Care and Use Committee of Shantou University.

Electronic supplementary material

Below is the link to the electronic supplementary material.

394_2020_2283_MOESM1_ESM.tif

Supplemental Fig. 1. Riboflavin deficiency induces low body weight (A) and ariboflavinosis (B) in rats. (C) Riboflavin replenishment is effective in treating ariboflavinosis (TIF 14938 kb)

394_2020_2283_MOESM2_ESM.tif

Supplemental Fig. 2. Representative pictures of hematoxylin and eosin-stained gastrointestinal tissue (A) and other major internal tissues (B). Scale bars, 50 μm (TIF 23814 kb)

Supplemental Fig. 3. Rarefaction curves (A) and Shannon-Wiener curves (B) (TIF 1564 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, F., Zhang, LL., Luo, HJ. et al. Dietary riboflavin deficiency induces ariboflavinosis and esophageal epithelial atrophy in association with modification of gut microbiota in rats. Eur J Nutr 60, 807–820 (2021). https://doi.org/10.1007/s00394-020-02283-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02283-4

Keywords

Navigation