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Abstract
Purpose  Lowering of LDL cholesterol levels by plant sterols and stanols is associated with decreased risk of cardiovascular 
disease in humans. Plant sterols and stanols also lower triacylglycerol (TG). However, it is not fully understood how reduction 
in TG is achieved and what the full potential of plant sterols and stanols is on whole-body metabolism. We here hypothesize 
that high levels of plant sterols and stanols stimulate whole-body energy expenditure, which can be attributed to changes in 
mitochondrial function of brown adipose tissue (BAT), skeletal muscle and liver.
Methods  Phytosterolemic mice were fed chow diets for 32 weeks to examine whole-body weight gain. In vitro, 24-h incuba-
tion were performed in adipocytes derived from human BAT, human myotubes or HepG2 human hepatocytes using sitosterol 
or sitostanol. Following mitochondrial function was assessed using seahorse bioanalyzer.
Results  Chow feeding in phytosterolemic mice resulted in diminished increase in body weight compared to control mice. 
In vitro, sitosterol or sitostanol did not change mitochondrial function in adipocytes derived from human BAT or in cultured 
human myotubes. Interestingly, maximal mitochondrial function in HepG2 human hepatocytes was decreased following sitos-
terol or sitostanol incubation, however, only when mitochondrial function was assessed in low glucose-containing medium.
Conclusions  Beneficial in vivo effects of plant sterols and stanols on lipid and lipoprotein metabolism are well recognized. 
Our results indicate that alterations in human mitochondrial function are apparently not involved to explain these beneficial 
effects.
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Introduction

Dietary plant sterols or stanols lower intestinal cholesterol 
absorption, which results in lower serum LDL cholesterol. 
A daily intake of 2-g plant sterols and/or plant stanols low-
ers serum LDL cholesterol up to 10% [1]. LDL cholesterol 
is a causal risk factor for the development of cardiovascular 
disease, thus lowering serum LDL cholesterol would reduce 
the risk to develop cardiovascular disease. Besides lowering 
serum LDL cholesterol, plant sterols and plant stanols lower 
serum triacylglycerol (TG) levels, especially in subjects with 
elevated serum TG who are at risk to develop metabolic 
disease [2].

Although the evidence that fasting TGs are independent 
risk factors for cardiovascular disease is weak [3], accumu-
lating evidence suggests that postprandial TGs are independ-
ent risk factors [4, 5]. So far, several studies have demon-
strated TG-lowering effects of plant sterols and stanols [6, 
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7],however, the mechanism behind the TG-lowering effects 
of plants sterols and stanols remains unclear. In C57Bl/6 
mice on a high-fat diet (HFD), both plant sterols and stanols 
lowered hepatic VLDL production [8], however, the molecu-
lar explanation for this effect remains so far unknown. Fur-
thermore, we have demonstrated in humans that plant stanol 
consumption strongly reduced serum concentration of large 
TG-rich VLDL in subjects with the metabolic syndrome [9]. 
Besides reduced hepatic VLDL-1 production, the reduced 
concentration of VLDL-1 particles could also be explained 
through enhanced TG clearance from the circulation. Pre-
viously, we indirectly excluded a role for LPL-mediated 
TG uptake in white adipose tissue (WAT) and muscle. No 
change was observed in circulating concentrations of apoC2 
and apoC3 during the postprandial phase, the activator, and 
inhibitor of LPL, respectively [10]. However, recent evi-
dence suggests that—at least in mice—a considerable frac-
tion of circulating TGs is cleared from the circulation by 
brown adipose tissue (BAT). BAT, as opposed to white adi-
pose tissue (WAT), is able to combust lipids and glucose as 
fuel resulting in heat production [11]. Uncoupling protein 1 
(UCP1) present in the mitochondria of brown adipocytes, 
uncouples the proton gradient in the electron transport chain 
generating heat instead of ATP. Because of this hallmark, 
BAT has been coined an important target to combat meta-
bolic disease [12, 13]. With respect to lipid metabolism, 
BAT stimulation via cold exposure in humans specifically 
showed uptake of the FFA tracer 18F-FTHA which was not 
observed in WAT or muscle [14]. Cold-exposed mice sub-
jected to an oral lipid tolerance test, did not show changes 
in TG concentrations due to active BAT [15]. Also phar-
macological intervention with metformin in mice, lowered 
circulating levels of TGs via increased VLDL-TG clearance 
by BAT [16]. Activated BAT might be an important player 
in lipid metabolism,however, it remains unexplored whether 
BAT plays a role in the action of plant sterols and stanols. 
Also the involvement of other organs with high mitochon-
drial density should not be overlooked. Therefore, we here 
examined how increasing plant sterols and stanols in mice 
affected whole-body metabolism in mice. Furthermore, we 
investigated if the TG-lowering action of plant sterols and 
plant stanols could be attributed to mitochondrial activity in 
BAT, skeletal muscle or liver.

Materials and methods

Materials

Stock solutions of sitosterol and sitostanol (Sigma) were 
prepared in ethanol and provided to the different in vitro 
cell models. Final sitosterol and sitostanol concentrations 
used were 12 µM and 1.2 µM, respectively, and compared to 

ethanol as carrier control. All conditions were set at identical 
ethanol concentration of 0.25%.

Animal experiments

Male age-matched ApoE × ABCG8 knockout mice and 
ApoE knockout mice (C57Bl/6J background, in house 
breeding), were housed in a light (12:12)- and temperature-
controlled (21 °C) facility and received laboratory chow 
(RMH-B, Hope Farms, Woerden, The Netherlands) ad libi-
tum. ApoE × ABCG8 knockout (KO) mice and apoE KO 
mice were fed chow diet for 32 weeks. Body weight devel-
opment was monitored by measuring body weight of the 
mice at weeks 16, 24, 28, and 32. Experiments were con-
ducted in conformity with the law on the welfare of labora-
tory animals and experimental procedures were approved 
by the responsible ethics committee of the UMCG (6946). 
In vivo sterol concentrations were determined as previously 
described [17].

Cell culture

HepG2 cells were grown in MEM supplemented with 10% 
FCS, sodium pyruvate and non-essential amino acids and 
pen/strep as described [18]. Collection and differentiation 
of human primary myotubes have been described previously 
[19]. Growth and differentiation of human primary differen-
tiated adipocytes have been described before [20], however, 
modifications have been applied to the original protocol. 
In short, human adipose tissue biopsies derived from deep 
neck surgery were incubated with collagenase to collect the 
stromal vascular fraction. Collected cells were grown to con-
fluence before differentiation was initiated. Differentiation 
was initiated for 7 days via differentiation medium made up 
of biotin (33 µM), pantothenate (17 µM), insulin (100 nM), 
dexamethasone (100 nM), IBMX (250 µM), rosiglitazone 
(5 µM), T3 (2 nM), and transferrin (10 µg/ml). Cells were 
transferred to maintenance medium consisting of biotin 
(33 µM), pantothenate (17 µM), insulin (100 nM), dexa-
methasone (10 nM), T3 (10 nM) and transferrin (10 µg/ml) 
for 5 additional days.

Cellular respiration

Cells were plated and/or differentiated in XF96 cell culture 
microplates (Agilent Technologies, Santa Clara, CA, USA). 
After 24 h incubation with 12 µM sitosterol or 1.2 µM sito-
stanol or vehicle, oxygen consumption and mitochondrial 
function were measured using the Seahorse XF96 extracel-
lular flux analyzer (Agilent Technologies, Santa Clara, CA, 
USA). Cells were incubated for 1 h at 37 °C in unbuffered 
XF assay medium. For HepG2, XF medium was supple-
mented with 5.5 or 25 mM glucose (Sigma Aldrich, Saint 
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Louis, MO, USA), 2 mM GlutaMax (Thermo Fisher Sci-
entific, Waltham, MA, USA) and 1 mM sodium pyruvate 
(Thermo Fisher Scientific, Waltham, MA, USA). For human 
primary cultured myotubes XF medium was supplemented 
with 5.5 mM glucose, 4 mM GlutaMax and 1 mM sodium 
pyruvate. For cultured human primary adipocytes derived 
from WAT or BAT XF assay medium was supplemented 
with 25 mM glucose, 2 mM GlutaMax and 1 mM sodium 
pyruvate. Basal oxygen consumption rate (OCR) was meas-
ured. Followed by injections (which can be seen in the trace) 
of 1 µM oligomycin (inhibitor ATP-synthase/complex V of 
the electron transport chain), 1 µM beta-adrenergic ago-
nist norepinephrine (NE), 0.5 µM mitochondrial uncoupler 
FCCP, 10 mM pyruvate or 1 µM rotenone + antimycin A 
(inhibitor of complex I and III of the electron transport 
chain). Oligomycin and NE were purchased from Sigma-
Aldrich. In cultured human adipocytes, mitochondrial 
uncoupling was examined as mitochondrial respiration 
after the inhibition of ATP synthase with oligomycin (which 
was set to 100%), thus reflecting mitochondrial uncoupling 
because of proton leak. In other cultured cells basal respira-
tion was set to 100%.

Statistics

For XF seahorse cellular respiration experiments, differ-
ences were analyzed using a two-way analysis of variance 
(ANOVA) in GraphPad Prism (GraphPad Software Inc., San 
Diego, CA, USA). Statistical significance was set at p < 0.05.

Results

To verify the effects of plant sterols and stanols on whole-
body metabolism, body weight development was determined 
in apoE KO mice and ABCG8 KO mice following a chow 
diet of 32 weeks. The ABCG8 KO background was chosen 
because of the manifestation of phytosterolemia [21]. The 
ABCG8 background increased sitosterol from 4.9 ± 1.1 mg/
dl to 67.4 ± 12.7 mg/dl and campesterol from 11.8 ± 2.9 mg/
dl to 24.1 ± 4.3 mg/dl (n = 14–15)”. As shown in Fig. 1, 
apoE × ABCG8 KO mice did not increase their body weight 
in a comparable manner as the apoE KO mice. We here 
speculate that the reduced body weight development could 
be explained by increased energy expenditure in organs 
containing high numbers of mitochondria. Thus to further 
translate this hypothesis to human tissues we next performed 
in vitro experiments on human adipocytes, skeletal muscle 
and liver cells.

In vitro, we examined the effects of long-term (24 h) incu-
bation of sitosterol or sitostanol on cultured adipocytes derived 
from human BAT or WAT. In human adipocytes derived from 
BAT or WAT, neither sitosterol nor sitostanol was able to affect 

basal oxygen consumption rate (OCR). Adipocytes derived 
from human BAT showed a clear NE-stimulated increase in 
OCR, a response that was absent in adipocytes derived from 
WAT, illustrating the characteristic uncoupling capacity of 
BAT. However, the addition of sitosterol or sitostanol did not 
enhance mitochondrial uncoupling capacity as measured by 
NE-stimulated cellular respiration in adipocytes derived from 
either human BAT or WAT (Fig. 2a, b).

Next, we assessed whether sitosterol or sitostanol can affect 
cellular respiration in cultured liver cells hepG2 in times of 
energy deficit, here mimicked by low glucose medium. When 
hepG2 cells were incubated for 24 h with sitosterol or sito-
stanol, in contrast to our hypothesis, maximal respiration was 
significantly decreased when cells were incubated at low glu-
cose concentrations (Fig. 3a, b). When hepG2 cells were tested 
in high glucose concentration this did not affect cellular res-
piration in the presence or absence of sitosterol or sitostanol.

Besides WAT, BAT, and liver, the metabolic syndrome 
is a major risk factor for the development of type 2 diabe-
tes, in which glucose disposal is compromised the most in 
skeletal muscle [22]. Therefore, to complete our series of 
experiments, we examined whether skeletal muscle mito-
chondrial function was altered, also because human subjects 
with the metabolic syndrome benefitted from sitosterol or 
sitostanol-mediated TG reductions. However, our cellular 
respiration experiments in cultured human myotubes did not 
show changes following 24-h incubation with sitosterol or 
sitostanol (Fig. 4).

Discussion

In the current manuscript, first we demonstrate that mice 
with elevated plant sterol concentrations show diminished 
body weight gain. Consuming plant sterols and stanols is an 

Fig. 1   High levels of plant sterol and stanol affect body weight in 
mice. ApoE KO or apoE × ABCG8 KO were fed a chow diet for 
32 weeks. Data are expressed as mean ± SEM (n = 7). *p < 0.05
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alternative approach to elevate serum concentrations while 
at the same time lowering serum TG. We hypothesized that 
elevated mitochondrial activity could link these effects to 
the elevated plant sterol concentrations. Therefore, we here 
examined the in vitro effects of sitosterol and sitostanol on 
mitochondrial function in BAT, WAT, liver, and muscle. 
Unfortunately, our hypothesis could not be confirmed in 
the utilized in vitro models for human BAT, WAT, liver or 
skeletal muscle.

Plant sterols and stanols could potentially affect energy 
metabolism through mitochondrial metabolism. Having ele-
vated serum plant sterol concentrations, ABCG8 KO mice 
showed decreased body weight gain compared to control 
mice consuming the same chow diet (Fig. 1), which could be 
explained by a change in energy intake. Moreover, Schone-
wille et al. reported that mice fed a HFD-diet enriched with 
plant sterols or stanols consumed more calories but did not 

a

b

Fig. 2   Sitosterol or sitostanol does not alter cellular respiration in 
cultured human adipocytes. Cellular respiration was measured in 
cultured adipocytes derived from human WAT (a) or BAT (b). Adi-
pocytes were incubated for 24 h with sitosterol, sitostanol or vehicle 
only (EtOH). Cells were exposed to oligomycin (OG), norepineph-
rine (NE), FCCP and antimycin A + rotenone (AR) at the indicated 
arrows. Data are expressed as mean ± SEM (n = 7 for WAT, n = 4 for 
BAT)

a

b

Fig. 3   Sitosterol or sitostanol does not change cellular respiration 
in cultured human hepatocytes (hepG2). Cellular respiration was 
measured in hepG2 cells in low glucose (5.5 mM, a) or high glucose 
(25  mM, b). Cells were incubated with oligomycin (OG), FCCP or 
antimycin A + rotenone (AR). Data are expressed as mean ± SD 
(n = 8). *p < 0.05 for sitosterol versus control, $p < 0.05 for sitostanol 
versus control

Fig. 4   Sitosterol or sitostanol does not alter cellular respiration in 
cultured human myotubes. Myotubes were exposed to oligomycin 
(OG), FCCP, pyruvate and antimycin A + rotenone (AR). Data are 
expressed as mean ± SEM (n = 3)
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gain more weight compared to control littermates [8]. We 
proposed that increased BAT activity could not only play a 
role in lowering TG concentrations but also be responsible 
for increased energy expenditure resulting in lower body 
weight gain. Therefore, to evaluate a potential role for BAT 
in plant sterols and stanols action, we used an in vitro model 
to examine human BAT activity, which shows similarities to 
BAT activity in vivo in humans [20, 23]. Although, we did 
not observe a change in vitro BAT activity, this still would 
require in vivo experiments in humans to validate our in vitro 
results. So far, no other in-depth studies on mitochondrial 
function have been performed on plant sterols and stanols in 
various organs in parallel, and indeed the few experiments in 
mitochondria have not always yielded clear results because 
different cell systems have been used. For example, in iso-
lated mitochondria from the brain, stigmasterol was unable 
to change ROS production [24]. On the other hand, beta-
sitosterol enhanced mitochondrial membrane potential and 
mitochondrial ATP content in isolated mitochondria from 
hippocampal neuronal cells [25] and the ATP-stimulating 
effects of sitosterol have also been observed in H9c2 car-
diomyocytes [26]. Not without surprise, high concentra-
tions of stigmasterol can trigger apoptosis in hepG2 [27], 
which was also observed when using high concentrations 
of 7beta-hydroxysitosterol in human colon cancer cells [28]. 
However, in our experiments we have chosen physiologically 
relevant concentrations without toxic side effects. Various 
ways exist to measure mitochondrial function, which in the 
end could introduce variation when measuring mitochon-
drial function in vitro and/or in vivo. Therefore in the cur-
rent setting it is of high value that various organs have been 
examined in parallel using similar experimental setups.

Plant sterols and stanols decrease TGs in mice, which is 
further associated with decreased secretion of large TG-rich 
VLDL-1 particles from the liver [8]. In vivo, plant sterols 
and stanols reach the liver via chylomicrons [29], because 
of the structural resemblance to cholesterol. In this situa-
tion, elevated concentration of plant sterols and stanols in 
the diet lowered local hepatic inflammation [30],however, 
experiments on mitochondrial function have not been per-
formed. In contrast, long-term treatment of human subjects 
with intralipid (which contains plant sterols and stanols) 
resulted in liver damage [31, 32]. Although it has not been 
proven that liver damage is causally linked to plant sterols, 
it is striking that after switching from intralipid to a plant 
sterol-poor fat emulsion in the parenteral nutrition regimen, 
liver function is restored [33, 34]. The exact mechanism 
underlying potential harmful effects of plant sterols when 
supplied via parenteral routes is unknown,however, dis-
turbed mitochondrial function has been mentioned. Further 
in-depth experiments on mitochondrial membrane fluid-
ity following sitosterol and sitostanol could provide more 
information regarding how exactly sitosterol and sitostanol 

increase ATP content and mitochondrial membrane poten-
tial [25] that in the end stimulates whole-body metabolism. 
This effect on mitochondria is more or less in line with our 
findings presented here. These findings therefore could be 
interpreted as being harmful,however, thus far no negative 
side effects have been reported using plant sterols and/or 
plant stanols indicating that the human body can counter 
possible side effects.

To conclude, the TG-lowering potential of plant sterols 
and stanols is generally accepted. Based on our findings, we 
here conclude that in vitro mitochondrial function of human 
BAT, WAT, liver and skeletal muscle can be excluded as a 
target in the TG-lowering action accomplished by sitosterol 
or sitostanol. It is therefore most likely that the TG-lowering 
effects are linked to decreased hepatic VLDL production as 
proposed earlier.
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