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Abstract
Purpose Inter-individual metabolic differences may be a reason for previously inconsistent results in diet–diabetes associa-
tions. We aimed to investigate associations between dietary intake and diabetes for metabolically homogeneous subgroups 
(‘metabotypes’) in a large cross-sectional study.
Methods We used data of 1517 adults aged 38–87 years from the German population-based KORA FF4 study (2013/2014). 
Dietary intake was estimated based on the combination of a food frequency questionnaire and multiple 24-h food lists. 
Glucose tolerance status was classified based on an oral glucose tolerance test in participants without a previous diabetes 
diagnosis using American Diabetes Association criteria. Logistic regression was applied to examine the associations between 
dietary intake and diabetes for two distinct metabotypes, which were identified based on 16 biochemical and anthropometric 
parameters.
Results A low intake of fruits and a high intake of total meat, processed meat and sugar-sweetened beverages (SSB) were 
significantly associated with diabetes in the total study population. Stratified by metabotype, associations with diabetes 
remained significant for intake of total meat (OR 1.67, 95% CI 1.04–2.67) and processed meat (OR 2.23, 95% CI 1.24–4.04) 
in the metabotypes with rather favorable metabolic characteristics, and for intake of fruits (OR 0.83, 95% CI 0.68–0.99) and 
SSB (OR:1.21, 95% CI 1.09–1.35) in the more unfavorable metabotype. However, only the association between SSB intake 
and diabetes differed significantly by metabotype (p value for interaction = 0.01).
Conclusions Our findings suggest an influence of metabolic characteristics on diet–diabetes associations, which may help 
to explain inconsistent previous results. The causality of the observed associations needs to be confirmed in prospective and 
intervention studies.
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Introduction

Type 2 diabetes mellitus (T2DM) with its adverse health 
consequences for individuals and its financial burden on 
healthcare systems is an important public health issue world-
wide [1, 2]. In Germany, the prevalence of known T2DM 
was 8.5% in 2009 and 9.5% in 2015, and it is expected to 
rise further due to an ageing population with an increase in 

unhealthy lifestyle [1, 3]. It has to be assumed that the actual 
prevalence of T2DM is even higher due to a large number of 
undiagnosed individuals [4, 5].

Changes in lifestyle, for example in dietary behavior, may 
prevent or delay the development of T2DM [6–8]. However, 
previous studies investigating the impact of food on the risk 
of T2DM have shown inconsistent results [9, 10].

It is well established that the variability of metabolic 
characteristics between individuals leads to differences in 
the response to dietary factors [11–15]. This could be a 
reason why associations of food groups and nutrients with 
T2DM are often weak or even different between studies. The 
identification of metabolically homogeneous subgroups of 
the population, so-called metabotypes or metabolic pheno-
types [16–21], has already been performed several times [16, 
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22, 23], and may help to better understand the inconsistency 
in diet-T2DM associations across studies. Furthermore, this 
may be relevant in diabetes prevention for the development 
of targeted dietary recommendations at the metabotype 
subgroup level, which may be more effective than general 
dietary advice [11, 14, 16, 24, 25].

Therefore, we aimed (1) to identify distinct metabotypes 
and (2) to investigate the cross-sectional associations of 
intake of several food groups and nutrients with T2DM 
stratified by metabotype subgroup in the large population-
based Cooperative Health Research in the Region of Augs-
burg (KORA) FF4 study.

Methods

Study population

Analyses were performed on data from the population-
based KORA FF4 (2013/2014) study, the second follow-
up of the KORA S4 health survey conducted in the region 
of Augsburg in Southern Germany between 1999 and 2001 
[26]. In brief, of the 4261 participants included in S4, 2279 
individuals also participated in the 14-year follow-up FF4 
study. Detailed information on the participation response has 
been given elsewhere [27]. All individuals answered self-
administered questionnaires, and participated in a standard-
ized physical examination as well as in a computer-assisted 
face-to-face interview conducted by trained investigators at 
the study center. A detailed description has been provided 
previously [5].

Ethical standards

All participants gave their written informed consent, and the 
study was approved by the Ethics Committee of the Bavarian 
Chamber of Physicians and conducted in accordance with 
the Declaration of Helsinki.

Assessment of glucose tolerance status

Prevalent diabetes was defined by either current intake of 
antidiabetic medication or a self-reported diagnosis, both 
validated with the respective treating physician. All par-
ticipants without previously known diabetes took part in a 
standard oral glucose tolerance test (OGTT) and their glu-
cose tolerance status was classified according to the 2003 
American Diabetes Association (ADA) diagnostic criteria 
[28]. Further details have been outlined elsewhere [29]. An 
OGTT value of ≥ 7.0 mmol/L fasting or ≥ 11.1 mmol/L 
2-h glucose was defined as undetected diabetes mellitus 
(UDM), also called screen-detected diabetes. Participants 
with isolated impaired fasting glucose (IFG 5.6–6.9 mmol/L 

fasting glucose), isolated impaired glucose tolerance (IGT 
7.8–11.0 mmol/L 2-h glucose) or combined IFG/IGT were 
classified as prediabetic. Individuals with fasting glucose 
levels < 5.6 mmol/L and 2-h glucose levels < 7.8 mmol/L 
were classified as normal glucose tolerant (NGT).

Assessment of dietary intake

Dietary intake was assessed in 1602 KORA FF4 participants 
with up to three 24-h food lists [30] and a food frequency 
questionnaire. Combining this information, the usual die-
tary intake was estimated in an advanced blended two-step 
approach, which follows the idea of the National Cancer 
Institute (NCI) method and the Multiple Source Method 
(MSM) [31, 32] to separate the calculation of consumption 
amount and consumption probability. The consumption 
probability and the consumption amount on consumption 
days were estimated separately with models both including 
the same covariates to link the two parts. Then, the usual 
dietary intake of all food items was calculated for each par-
ticipant by multiplying the consumption probability of a 
certain food item by the usual consumption amount on a 
consumption day. The food groups were categorized accord-
ing to the European Prospective Investigation into Cancer 
and Nutrition (EPIC)-Soft classification system [33] and 
nutrients were derived using the National Nutrient Database 
(Bundeslebensmittelschlüssel BLS 3.02). For the analysis, 
we selected the 17 following food groups and nutrients in g/d 
associated with T2DM in the literature [9, 10, 34, 35]: fruits, 
vegetables, potatoes, total meat, red meat (beef and pork), 
poultry, processed meat, eggs, total dairy, milk, yogurt, 
cheese, coffee, fruit and vegetable juice, sugar-sweetened 
beverages (SSB), alcohol and fiber.

Assessment of covariates

The selection of covariates was based on theoretical con-
siderations and the existing literature on diet and diabetes 
[9]. These included age (years), sex (reference = male), 
energy intake (kcal/day), waist circumference (cm), fam-
ily history of diabetes [yes, no (= reference), do not know], 
physical activity [active in summer and in winter and active 
for ≥ 1 h per week in at least one season, inactive (= refer-
ence)], smoking status [never (= reference), former, current], 
hypertension [≥ 140/90 mmHg or antihypertensive medica-
tion given that the participants were aware of having hyper-
tension; yes, no (= reference)] and education [< 10 years 
(= reference), 10 to < 13 years, ≥ 13 years, in accordance 
with the German education system]. Waist circumference 
and blood pressure were measured at the study center under 
standardized conditions by trained staff. All other covariates 
were assessed during a standardized personalized computer-
assisted interview or via a self-administered questionnaire.
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Statistical analysis

We performed all statistical analyses using the statistical 
software package RStudio version 1.0.136 that uses R ver-
sion 3.2.2 (R Development Core Team, 2010, http://www.r-
proje ct.org). p values of < 0.05 were considered statistically 
significant.

Identification of metabotypes

The metabotypes were identified in KORA FF4 analogous 
to Riedl et al. [23] in KORA F4. Of the 34 originally used 
anthropometric and fasting biochemical blood parameters 
in KORA F4, a subset of 16 parameters was also available 
in KORA FF4 for the definition of metabotypes. These 
included body mass index (BMI), and the following blood 
biomarkers: glucose, total cholesterol, high density lipo-
protein cholesterol, total cholesterol/high density lipopro-
tein cholesterol ratio, low-density lipoprotein cholesterol, 
glycated hemoglobin, uric acid, triglycerides, leukocytes, 
gamma-glutamyltransferase, glutamate-pyruvate transami-
nase, glutamate–oxaloacetate transaminase, alkaline phos-
phatase, high-sensitivity C-reactive protein and insulin.

In the preprocessing step, the KORA FF4 study popula-
tion (n = 2279) was reduced to 2218 participants by exclud-
ing 54 participants who did not fast for at least 8 h before 
blood collection and by excluding 7 participants with more 
than 10% missing values of all clustering variables listed 
above. The remaining missing values in the clustering vari-
ables were imputed using the R package “mice” (multivari-
ate imputation by chained equations) version 2.25 [36] gen-
erating five complete data sets with ten iterations each. All 
biochemical and anthropometric parameters were z-stand-
ardized prior to clustering. Subsequently, the 2218 FF4 par-
ticipants were divided into three clusters using the k-means 
cluster algorithm of the R package “miclust” (multiple impu-
tation in cluster analysis) version 1.2.5 [37] based on all 16 
biochemical and anthropometric parameters available in this 
study. A detailed metabolic characterization of these clusters 
representing metabotypes is provided in the Online Resource 
(Supplemental Table 1). Further details on the identification 
procedure of metabotypes are given elsewhere [23].

Analysis of associations between dietary intake 
and diabetes

Of the total 2218 FF4 participants with metabotype infor-
mation, those with type 1 diabetes mellitus (n = 4), unclear 
glucose tolerance status (n = 67) or missing information 
on dietary intake (n = 628) or covariate data (n = 2) were 
excluded from the analyses resulting in a final sample size 
of 1517 participants. All food groups were rescaled for 50 g/
day increments. Among the investigated nutrients, fiber was 

rescaled to 10 g/day and alcohol intake was classified by 
sex in accordance with the reference values of the German 
Nutrition Society (Deutsche Gesellschaft für Ernährung) as 
low (< 5 g/day for men and < 2 g/day for women), moderate 
(5 to < 20 g/day for men and 2 to < 10 g/day for women) or 
high (≥ 20 g/day for men and ≥ 10 g/day for women) [38]. 
Due to the low diabetes prevalence in metabotype clusters 
1 and 2 (see Table 1), these groups were combined and ana-
lyzed together in comparison to cluster 3.

To examine the cross-sectional associations between 
dietary intake and diabetes dichotomized in NGT/prediabe-
tes (= reference) and UDM/prevalent T2DM, binary logistic 
regression was performed. For each of the dietary intake 
variables, two models with different sets of covariates were 
fitted: the basic model was adjusted for age, sex and energy 
intake; the fully adjusted model was additionally adjusted 
for waist circumference, family history of diabetes, physical 
activity, smoking, education, hypertension, and metabotype. 
Thus, the respective models differed only in the dietary 
intake variable used, but included the same sample size and 
covariates. All analyses were performed for the total study 
population and stratified by metabotype subgroup.

Likelihood ratio tests were used to detect possible interac-
tion effects between metabotypes and the respective dietary 
intake variables in the fully adjusted model. Significant 
results indicated differences in diet–diabetes associations 
between metabotype subgroups. A flow chart showing the 
overall analysis strategy is provided in the Online Resource 
(Supplemental Fig. 1).

As a sensitivity analysis, we fitted intermediate adjusted 
models removing the covariates hypertension and waist 
circumference from the fully adjusted models, as these 
are rather intermediary/mediating variables than real con-
founders in diet–diabetes associations. In another sensitivity 
analysis, we restricted the study population to adults aged 
≥ 60 years to investigate age-specific effects.

Results

The number of individuals at each stage of our analysis is 
shown in the flow chart in Supplemental Fig. 1 provided 
in the Online Resource, leaving a final study popula-
tion of 1517 individuals for the analysis of diet–diabetes 
associations.

Table 1 presents the characteristics of the total study 
population and for each of the three metabotypes identi-
fied in KORA FF4. The total study population consists of 
approximately equal proportions of men and women with an 
age range of 38–87 years. Of 1517 participants, 777 (51.2%) 
had NGT, 539 (35.5%) had prediabetes, 64 (4.2%) had UDM 
and 137 (9.0%) had prevalent T2DM. By metabotyping, 678 
participants (about 45%) were grouped into cluster 1, 539 
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participants (about 36%) into cluster 2, and 300 participants 
(about 20%) into cluster 3. The proportion of participants 
with UDM and prevalent T2DM was higher in cluster 3 
compared to cluster 2 and cluster 1, respectively (UDM: 
9.7% vs. 4.3% vs. 1.8%; prevalent T2DM: 32.7% vs. 3.3% 
vs. 3.1%). Cluster 3 showed the highest proportions of men, 
individuals with a positive family history of diabetes and 
hypertension. At the same time, cluster 3 showed the lowest 

percentages of highly educated and physically active partici-
pants as well as current smokers. Participants of cluster 3 
were further characterized by the highest median age, BMI 
and waist circumference.

Table 2 shows the median usual dietary intake of par-
ticipants in the combined clusters 1 and 2 and of partici-
pants in cluster 3, in total and according to glucose tolerance 
status (NGT/prediabetes and UDM/prevalent T2DM). The 

Table 1  Demographic baseline 
characteristics of the total study 
population and across the three 
metabotype clusters, KORA 
FF4 study

Median (25th, 75th percentile) for continuous variables and n (column %) for categorical variables
BMI body mass index, KORA Cooperative Health Research in the Region of Augsburg, NGT normal glu-
cose tolerance, T2DM type 2 diabetes mellitus, UDM undetected diabetes mellitus

Total Metabotypes

Cluster 1 Cluster 2 Cluster 3

N = 1517 N = 678 N = 539 N = 300

Glucose tolerance status
 NGT 777 (51.2) 485 (71.5) 254 (47.1) 38 (12.7)
 Prediabetes 539 (35.5) 160 (23.6) 244 (45.3) 135 (45.0)
 UDM 64 (4.2) 12 (1.8) 23 (4.3) 29 (9.7)
 Prevalent T2DM 137 (9.0) 21 (3.1) 18 (3.3) 98 (32.7)

Sex
 Men 743 (49.0) 228 (33.6) 313 (58.1) 202 (67.3)
 Women 774 (51.0) 450 (66.4) 226 (41.9) 98 (32.7)

Age (years)
 Median (25th, 75th) 60.0 (50.0, 69.0) 55.0 (47.0, 66.0) 61.0 (52.0, 69.0) 65.0 (56.8, 73.0)

Education (years)
 < 10 76 (5.0) 25 (3.7) 33 (6.1) 18 (6.0)
 10 to < 13 885 (58.3) 365 (53.8) 325 (60.3) 195 (65.0)
 ≥ 13 556 (36.7) 288 (42.5) 181 (33.6) 87 (29.0)

BMI (kg m−2)
 Median (25th, 75th) 26.9 (24.3, 30.3) 24.6 (22.7, 26.8) 27.8 (25.6, 30.4) 31.4 (28.6, 35.4)
 Underweight 6 (0.4) 6 (0.9) 0 (0.0) 0 (0.0)
 Normal 483 (31.8) 361 (53.2) 103 (19.1) 19 (6.3)
 Overweight 627 (41.3) 252 (37.2) 281 (52.1) 94 (31.3)
 Obese 401 (26.4) 59 (8.7) 155 (28.8) 187 (62.3)

Waist circumference (cm)
 Median (25th, 75th) 96.3 (85.7, 105.4) 86.9 (79.1, 96.1) 98.9 (92.3, 105.3) 109.7 (102.3, 117.4)

Physical activity
 Inactive 587 (38.7) 209 (30.8) 205 (38.0) 173 (57.7)
 Active 930 (61.3) 469 (69.2) 334 (62.0) 127 (42.3)

Smoking status
 Nonsmoker 637 (42.0) 304 (44.8) 224 (41.6) 109 (36.3)
 Ex-smoker 675 (44.5) 281 (41.4) 237 (44.0) 157 (52.3)
 Smoker 205 (13.5) 93 (13.7) 78 (14.5) 34 (11.3)

Family history of diabetes
 Yes 496 (32.7) 200 (29.5) 179 (33.2) 117 (39.0)
 No 879 (57.9) 435 (64.2) 302 (56.0) 142 (47.3)
 Do not know 142 (9.4) 43 (6.3) 58 (10.8) 41 (13.7)

Hypertension
 Yes 588 (38.8) 174 (25.7) 210 (39.0) 204 (68.0)
 No 929 (61.2) 504 (74.3) 329 (61.0) 96 (32.0)
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Table 2  Usual dietary intake of the study population by metabotype subgroup for NGT/prediabetes and UDM/prevalent T2DM, KORA FF4 
study

Total NGT/prediabetes UDM/prevalent 
T2DM

Total N = 1517 N = 1316 N = 201
 Cluster 1/cluster 2 N = 1217 N = 1143 N = 74
 Cluster 3 N = 300 N = 173 N = 127

Median (25%, 75%) Median (25%, 75%) Median (25%, 75%)

Food item
 Fruits (g/day)
  Cluster 1/cluster 2 145 (92, 206) 145 (91, 205) 146 (122, 215)
  Cluster 3 148 (90, 214) 147 (89, 209) 149 (96, 214)

 Vegetables (g/day)
  Cluster 1/cluster 2 168 (137, 210) 168 (137, 211) 165 (132, 195)
  Cluster 3 149 (121, 184) 149 (122, 184) 147 (121, 185)

 Potatoes (g/day)
  Cluster 1/cluster 2 55 (44, 70) 54 (44, 69) 64 (53, 84)
  Cluster 3 59 (48, 78) 57 (46, 75) 63 (50, 82)

 Total meat (g/day)
  Cluster 1/cluster 2 102 (81, 134) 102 (80, 133) 115 (88, 141)
  Cluster 3 136 (102, 161) 140 (104, 167) 133 (102, 160)

 Red meat (g/day)
  Cluster 1/cluster 2 25 (19, 33) 25 (19, 33) 28 (19, 36)
  Cluster 3 30 (22, 40) 29 (23, 40) 30 (22, 40)

 Poultry (g/day)
  Cluster 1/cluster 2 13 (10, 18) 13 (10, 18) 11 (11, 17)
  Cluster 3 13 (11, 19) 13 (11, 19) 13 (10, 19)

 Processed meat (g/day)
  Cluster 1/cluster 2 39 (28, 57) 38 (28, 56) 50 (33, 69)
  Cluster 3 59 (42, 81) 58 (42, 81) 61 (45, 80)

 Eggs (g/day)
  Cluster 1/cluster 2 11 (8, 17) 11 (8, 16) 12 (10, 22)
  Cluster 3 13 (9, 20) 12 (8, 20) 14 (9, 20)

 Total dairy (g/day)
  Cluster 1/cluster 2 186 (122, 264) 188 (125, 267) 162 (105, 212)
  Cluster 3 149 (94, 224) 148 (91, 226) 150 (95, 218)

 Milk (g/day)
  Cluster 1/cluster 2 77 (30, 138) 78 (30, 140) 53 (32, 115)
  Cluster 3 47 (16, 100) 52 (16, 105) 44 (16, 87)

 Yogurt (g/day)
  Cluster 1/cluster 2 32 (14, 70) 33 (14, 71) 24 (13, 51)
  Cluster 3 23 (13, 56) 23 (13, 51) 23 (13, 56)

 Cheese (g/day)
  Cluster 1/cluster 2 27 (19, 37) 27 (19, 37) 28 (20, 38)
  Cluster 3 26 (19, 37) 26 (20, 37) 26 (18, 36)

Coffee (g/day)
  Cluster 1/cluster 2 435 (366, 479) 433 (366, 478) 449 (349, 501)
  Cluster 3 438 (331, 483) 420 (303, 476) 456 (374, 499)

 Fruit and vegetable juice (g/day)
  Cluster 1/cluster 2 45 (24, 115) 45 (24, 116) 32 (22, 86)
  Cluster 3 36 (24, 125) 43 (26, 167) 30 (23, 108)



1362 European Journal of Nutrition (2020) 59:1357–1369

1 3

intake of total meat, red meat, processed meat, SSB and 
total energy was higher and the intake of vegetables, total 
dairy, milk, yogurt and fruit and vegetable juice was lower in 
cluster 3 compared to the combined clusters 1 and 2. In both 
metabotype subgroups, the intake of potatoes and coffee was 
higher and the intake of milk, fruit and vegetable juice and 
SSB was lower in individuals with UDM/prevalent T2DM 
compared to individuals with NGT/prediabetes. Participants 
with UDM/prevalent T2DM in clusters 1 and 2 showed a 
higher intake of total meat and total energy, whereas par-
ticipants with UDM/prevalent T2DM in cluster 3 showed 
a lower intake of total meat and total energy compared to 
the participants with NGT/prediabetes of the respective 
metabotype subgroup.

In the total study population, intake of fruits and fiber 
as well as moderate alcohol consumption showed negative 
associations and intake of total meat, red meat, processed 
meat and SSB showed positive associations with UDM/
prevalent T2DM (all p < 0.05) in the basic model. These 
results are provided in Supplemental Table 2 in the Online 
Resource. Table 3 displays the odds ratios (OR) and 95% 
confidence intervals (CI) of the fully adjusted logistic regres-
sion models for the total study population. After adjustment 
for the additional covariates, associations remained signifi-
cant for intake of fruits (OR per increase in intake amount by 
50 g/day: 0.86, 95% CI 0.75–0.98), total meat (OR 1.50, 95% 
CI 1.09–2.08), processed meat (OR 1.83, 95% CI 1.22–2.77) 
and SSB (OR 1.09, 95% CI 1.01–1.17) (all p < 0.05).

The results of the fully adjusted models stratified by 
metabotype subgroup are presented in Table 4 (results of 
the basic model are shown in Supplemental Table 3 in the 
Online Resource). The positive associations of intake of total 

meat (OR 1.67, 95% CI 1.04–2.67) and processed meat (OR 
2.23, 95% CI 1.24–4.04) with UDM/prevalent T2DM, per 
increase in intake amount by 50 g/day, remained signifi-
cant in the combined clusters 1 and 2 only. In contrast, the 
negative association of intake of fruits (OR 0.83, 95% CI 
0.68–0.99) and the positive association of intake of SSB 
(OR 1.21, 95% CI 1.09–1.35) with UDM/prevalent T2DM, 
per increase in intake amount by 50 g/day, remained sig-
nificant in cluster 3 only. Significant interaction effects with 
metabotype subgroups were determined for intake of eggs 
(p = 0.02) and SSB (p = 0.01). Analyses were not further 
stratified by sex due to non-significance of interaction effects 
(p ≥ 0.05) with dietary intake.

The results (ORs, 95% CIs and p values for interaction) of 
the sensitivity analysis with intermediate adjusted models, 
that means without the covariates hypertension and waist 
circumference, are shown in Supplemental Table 4 and Sup-
plemental Table 5 in the Online Resource. These have not 
changed significantly in the total study population. In the 
analyses stratified by metabotype, the results were also only 
slightly different. However, the associations of intake of 
total meat and processed meat with UDM/prevalent T2DM 
in cluster 3 reached statistical significance. Likewise, the 
sensitivity analysis restricted to 762 adults aged ≥ 60 years 
showed results similar to the analyses of the total study pop-
ulation (data not shown).

Median (25th, 75th percentile)
KORA Cooperative Health Research in the Region of Augsburg, NGT normal glucose tolerance, SSB sugar-sweetened beverages, T2DM type 2 
diabetes mellitus, UDM undetected diabetes mellitus

Table 2  (continued)

Median (25%, 75%) Median (25%, 75%) Median (25%, 75%)

 SSB (g/day)
  Cluster 1/cluster 2 6 (3, 16) 6 (3, 17) 5 (3, 9)
  Cluster 3 10 (5, 58) 11 (6, 47) 7 (4, 66)

Nutrient
 Energy intake (kJ/day)
  Cluster 1/cluster 2 7657 (6520, 8872) 7615 (6509, 8885) 7972 (6595, 8772)
  Cluster 3 7821 (6516, 9136) 8007 (6657, 9296) 7672 (6334, 8810)

 Alcohol (g/day)
  Cluster 1/cluster 2 5 (3, 14) 5 (3, 14) 5 (2, 16)
  Cluster 3 6 (3, 17) 7 (3, 19) 5 (2, 14)

 Total fiber (g/day)
  Cluster 1/cluster 2 18 (14, 21) 17 (14, 21) 18 (16, 21)
  Cluster 3 16 (14, 19) 16 (14, 19) 16 (14, 19)
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Discussion

Summary of main results

In the KORA FF4 study population, a low intake of fruits 
and a high intake of total meat, processed meat and SSB 
were significantly associated with UDM/prevalent T2DM. 
Taking into account metabolic differences between individu-
als, each of these associations remained significant only in 
one of both metabotype subgroups. In the combined clusters 
1 and 2, the intake of total meat and processed meat showed 
a positive association with UDM/prevalent T2DM. In clus-
ter 3, the intake of fruits was negative and the intake of 
SSB was positively associated with UDM/prevalent T2DM. 
Despite these differences in significant associations between 

metabotype subgroups, only the interaction effect between 
intake of SSB and metabotype was significant. In addi-
tion, the association between the intake of eggs and UDM/
prevalent T2DM was also significantly different between 
metabotype subgroups, however, egg intake was not signifi-
cantly associated with UDM/prevalent T2DM in the indi-
vidual metabotype subgroups potentially caused by loss of 
statistical power due to stratification. Thus, further signifi-
cant associations or significant differences in diet–diabetes 
associations between metabotypes as for example for intake 
of coffee (p value for interaction = 0.09) and processed meat 
(p value for interaction = 0.11) might be detectable in larger 
cohorts.

Discussion of results regarding the existing 
literature on diet–diabetes associations

In general, the associations of intakes of fruits, total meat, 
processed meat and SSB with UDM/prevalent T2DM that 
we found in the total KORA FF4 study population are in 
line with previous meta-analyses and review articles on the 
respective food groups [39–48]. However, results of a num-
ber of other studies were inconsistent [9, 10], and there are 
studies that have shown either no or only weak associations 
between these food groups and diabetes [49–57]. All other 
selected dietary intake variables were not associated with 
UDM/prevalent T2DM in our study, in contrast to some of 
the previous studies [9, 10, 34, 35]. Our study was the first 
to investigate associations between diet and diabetes stratify-
ing by metabotype, i.e., considering metabolic differences 
between individuals. As we identified intakes of fruits, total 
meat, processed meat and SSB to be significantly associ-
ated with diabetes in only one of both metabotypes, meta-
bolic differences may partially explain conflicting results 
in diet–diabetes associations observed in previous studies. 
This holds mainly for the association between intake of SSB 
and diabetes, which was shown to be significantly different 
between both metabotype subgroups. Despite previously 
described age-related metabolic differences [58], the results 
of our sensitivity analysis restricted to older participants 
≥ 60 years remained relatively stable. Consequently, these 
metabotypes may be relevant for adult populations with a 
large age range and not only for adult populations with spe-
cific age categories.

Metabotypes for the development of targeted 
dietary recommendations for diabetes prevention

In the previous literature, there are numerous studies on 
metabotyping [16, 22, 23]. Some of these studies defined 
metabotypes including fasting plasma values, while a few 
studies classified metabotypes based on plasma parameter 
responsiveness to dietary interventions [17, 22, 59–62]. 

Table 3  Fully adjusted associations between the consumption of vari-
ous food items and nutrients with UDM/Prevalent T2DM in the total 
study population, KORA FF4 study

Logistic regression models: reference category = NGT/prediabetes. 
Fully adjusted models adjusted for age, sex, energy intake, waist cir-
cumference, family history of diabetes, physical activity, smoking, 
education, hypertension and metabotype. Significant results (p < 0.05) 
printed in bold
N = 1517
CI confidence interval, KORA Cooperative Health Research in the 
Region of Augsburg, NGT normal glucose tolerance, OR odds ratio, 
SSB sugar-sweetened beverages, T2DM type 2 diabetes mellitus, 
UDM undetected diabetes mellitus
a Compared against low alcohol intake (< 5 g/day for men, < 2 g/day 
for women as reference category); moderate considered 5 to < 20 g/
day for men, 2 to < 10 g/day for women; high considered ≥ 20 g/day 
for men, ≥ 10 g/day for women

Food or nutrient Fully adjusted model

OR 95% CI

Fruits (50 g/day) 0.86 0.75–0.98
Vegetables (50 g/day) 1.17 0.96–1.43
Potatoes (50 g/day) 1.16 0.73–1.84
Total meat (50 g/day) 1.50 1.09–2.08
Red meat (50 g/day) 1.01 0.39–2.53
Poultry (50 g/day) 1.50 0.38–5.51
Processed meat (50 g/day) 1.83 1.22–2.77
Eggs (50 g/day) 0.85 0.39–1.75
Total dairy (50 g/day) 1.00 0.90–1.11
Milk (50 g/day) 0.97 0.85–1.10
Yogurt (50 g/day) 1.08 0.86–1.33
Cheese (50 g/day) 1.58 0.76–3.27
Coffee (50 g/day) 1.02 0.96–1.09
Fruit and vegetable juice (50 g/day) 0.97 0.87–1.07
SSB (50 g/day) 1.09 1.01–1.17
Moderate alcohol  consumptiona 1.03 0.67–1.57
High alcohol  consumptiona 0.89 0.52–1.52
Total fiber (10 g/day) 1.11 0.62–1.93
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Fewer studies tested metabotype subgroups for a differential 
responsiveness to dietary intervention in a disease-specific 
manner [63–65]. For example, O’Sullivan et al. [63] identi-
fied a vitamin D-responsive metabotype subgroup concern-
ing markers of the metabolic syndrome, Moazzami et al. 
[64] found subgroups of individuals with different insulin 
response after an intervention with breads, and Vázquez-
Fresno [65] detected a responsive metabotype subgroup 
of cardiovascular risk patients to red wine polyphenols. In 
addition, O’Donovan et al. were the only ones developing 
dietary recommendations based on metabotype subgroups 
which was done using a decision tree approach [66, 67]. 
Thus to date, metabotypes have been rarely used for the 
development and establishment of targeted dietary recom-
mendations for disease prevention. Further research should 
identify discrete differences between metabotype subgroups 
in the context of diet–disease relationships. By assigning 
individuals to metabotype subgroups, targeted dietary 

recommendations in disease prevention may be implemented 
in whole populations.

Concerning the metabotypes identified in KORA FF4, 
diabetes prevention may be especially relevant for cluster 3, 
defining an unfavorable metabotype concerning metabolic 
characteristics. In detail, this cluster showed the highest 
median concentrations of glucose and glycated hemoglobin, 
which are used in the diagnosis of prediabetes and preva-
lent T2DM [68]. Consequently, there were high numbers 
of individuals with prediabetes, UDM and prevalent T2DM 
in this cluster. However, clusters 1 and 2 defining a rather 
beneficial metabotype could also benefit from targeted pre-
vention due to the high prevalence of prediabetes, which is a 
strong risk factor for the development of T2DM [69]. Other 
known risk factors for diabetes such as age, obesity, physi-
cal inactivity, family history of diabetes and hypertension 
were most frequent in cluster 3 [1, 68, 70]. In addition, low 
education as seen in cluster 3 was linked to poor health [71]. 

Table 4  Fully adjusted 
associations between the 
consumption of various food 
items and nutrients with UDM/
prevalent T2DM stratified by 
metabotype subgroup, KORA 
FF4 study

Logistic regression models: reference category = NGT/prediabetes. Fully adjusted models adjusted for age, 
sex, energy intake, waist circumference, family history of diabetes, physical activity, smoking, education 
and hypertension. Significant results (p < 0.05) printed in bold
N = 1517
CI confidence interval, KORA Cooperative Health Research in the Region of Augsburg, NGT normal glu-
cose tolerance, OR odds ratio, SSB sugar-sweetened beverages, T2DM type 2 diabetes mellitus, UDM unde-
tected diabetes mellitus
a Compared against low alcohol intake (< 5  g/day for men, < 2  g/day for women as reference category); 
moderate considered 5 to < 20 g/day for men, 2 to < 10 g/day for women; high considered ≥ 20 g/day for 
men, ≥ 10 g/day for women
b p value of likelihood ratio test for the comparison of models with and without the interaction term of 
metabotype and the respective food or nutrient

Food or nutrient Cluster 1/cluster 2
N = 1217

Cluster 3
N = 300

p value 
 interactionb

OR 95% CI OR 95% CI

Fruits (50 g/day) 0.91 0.75–1.11 0.83 0.68–0.99 0.24
Vegetables (50 g/day) 1.25 0.94–1.64 1.09 0.80–1.47 0.63
Potatoes (50 g/day) 0.82 0.41–1.57 1.59 0.80–3.23 0.74
Total meat (50 g/day) 1.67 1.04–2.67 1.51 0.95–2.41 0.16
Red meat (50 g/day) 0.95 0.20–3.92 0.89 0.26–3.03 0.49
Poultry (50 g/day) 0.79 0.07–6.81 2.29 0.40–13.42 0.64
Processed meat (50 g/day) 2.23 1.24–4.04 1.79 1.00–3.26 0.11
Eggs (50 g/day) 1.82 0.65–4.73 0.38 0.12–1.14 0.02
Total dairy (50 g/day) 0.97 0.84–1.12 1.02 0.89–1.18 0.83
Milk (50 g/day) 0.93 0.76–1.10 1.00 0.83–1.21 0.70
Yogurt (50 g/day) 1.05 0.75–1.41 1.14 0.83–1.59 0.71
Cheese (50 g/day) 2.44 0.87–6.67 1.02 0.36–2.91 0.13
Coffee (50 g/day) 0.97 0.88–1.07 1.08 0.98–1.18 0.09
Fruit and vegetable juice (50 g/day) 0.98 0.83–1.13 0.97 0.84–1.12 0.53
SSB (50 g/day) 0.92 0.73–1.08 1.21 1.09–1.35 0.01
Moderate alcohol  consumptiona 0.97 0.53–1.76 1.05 0.55–1.98 0.75
High alcohol  consumptiona 0.84 0.39–1.78 0.81 0.37–1.77
Total fiber (10 g/day) 1.44 0.65–3.08 0.87 0.36–2.09 0.29
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The lowest percentage of current smokers and simultane-
ous highest percentage of ex-smokers in cluster 3 indicated 
smoking cessation due to the high diabetes prevalence in this 
cluster, as smoking is as well a strong risk factor for diabetes 
[1, 70]. When assessing dietary intake in our metabotype 
subgroups, individuals in cluster 3 showed a higher intake 
of total energy, total meat, red meat, processed meat and 
SSB than individuals in clusters 1 and 2. Simultaneously, 
individuals in cluster 3 consumed lower amounts of vegeta-
bles, total dairy, milk, yogurt and fruit and vegetable juice 
compared to individuals in clusters 1 and 2. This dietary 
pattern was shown to be associated with increased risk for 
diabetes [9, 10]. As targeted dietary advice may be more 
effective than general recommendations [11, 14, 16, 24, 25], 
the development of strategies for change in dietary behavior 
on the metabotype subgroup level, especially for the ‘high-
risk’ cluster 3, could improve the prevention of diabetes.

Strengths and limitations

One of the strengths of the study is the fact that associations 
between diet and diabetes were investigated in a large popu-
lation-based study, allowing us to perform stratified analyses 
by metabotype with sufficient sample sizes. Due to the lack 
of a uniform definition of the term ‘metabotype’, metabotyp-
ing was performed in KORA FF4 analogous to Riedl et al. 
[23] in KORA F4 to get comprehensive metabotypes based 
on a broad range of parameters [22]. However, only 16 of 
the 34 biochemical and anthropometric parameters origi-
nally used in F4, were available in FF4. Repeating the iden-
tification of metabotypes in F4 with the reduced set of 16 
parameters also available in FF4 and comparing to the origi-
nally identified metabotypes in F4 based on 34 parameters, 
revealed a similar allocation of individuals to the clusters 
(1513 of 1729 individuals or 87.5% of participants). In addi-
tion, the newly defined metabotypes in FF4 based on the 
16 parameters showed a good distinction of demographic 
and metabolic characteristics. Consequently, we assume to 
have identified metabotypes in KORA FF4 that are still com-
prehensive despite the reduced set of biochemical markers 
and we assume that these metabotypes were appropriate to 
consider metabolic differences in diet–diabetes associations. 
Another strength is the availability of extensive dietary data 
assessed by food frequency questionnaire and up to three 
24-h food lists, which enabled the investigation of a large 
number of food items and their association with diabetes. 
However, as with all dietary assessment methods, misre-
porting cannot be ruled out. Further strengths include the 
assessment of diabetes by either a physician-validated diag-
nosis or an OGTT, and the availability of a large number of 
confounders for adjustment. Limitations of the study include 
the fact that a large proportion of the original S4 participants 
(1982 of 4261 individuals) did not participate again in the 

second follow-up KORA FF4 study due to death, refusal and 
loss to follow-up, what could have biased our results. Fur-
thermore, due to the cross-sectional study design, no causal 
relationships between dietary factors and diabetes could be 
established and longitudinal or intervention studies consid-
ering metabolic differences are needed. In addition, samples 
sizes, dietary intake amounts and the diabetes prevalence 
varied considerably between metabotype subgroups, which 
could have influenced our results.

Conclusions

Our cross-sectional results show differences in associations 
with diabetes for intake of fruits, total meat, processed meat, 
and especially for intake of SSB between distinct metabotype 
subgroups. This suggests an influence of metabolic charac-
teristics on diet–diabetes associations, which may help to 
explain the inconsistent results of previous studies. Further, 
prospective and intervention studies are needed to further 
elucidate the causal relationships between diet and diabe-
tes within specific metabolic subgroups. These results may 
enable the development of targeted dietary recommendations 
on the metabotype subgroup level in diabetes prevention.
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