Skip to main content
Log in

Effect of teriparatide on repair of femoral metaphyseal defect in ovariectomized rats

Wirkung von Teriparatid auf die Heilung eines Defekts der Femurmetaphyse bei Ratten nach Ovarektomie

  • Originalien
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Abstract

Objective

This study aimed to investigate the effect exerted by teriparatide on the repair of femoral metaphyseal defect in ovariectomized rats.

Method

Female Sprague–Dawley rats were ovariectomized and after 3 months a critically sized defect of 3 mm in diameter—a through-hole bone defect—was drilled into each distal femur of the ovariectomized rats. The rats were injected with teriparatide (30 μg/kg) parathyroid hormone (PTH) in the peritoneum three times per week. After 4 and 8 weeks the animals were killed and the blood and bilateral femora were harvested for biochemical analysis, histopathological observation, and micro-computed tomography (CT) examination.

Results

The PTH group and control group were compared 4  and 8 weeks after surgery. PTH increased bone formation in the defect area. Moreover, PTH showed the strongest effects on bone volume per total volume, trabecular number, trabecular thickness, trabecular separation, and total fluorescence-marked new bone area. Additionally, the PTH treatment group showed inhibited serum concentrations of C-terminal telopeptide of type I collagen and enhanced expression of calcium, phosphorus, and bone alkaline phosphatase.

Conclusion

Our findings suggest a positive effect of PTH on defect healing in ovariectomized rats.

Zusammenfassung

Ziel

Ziel war die Untersuchung der Wirkung von Teriparatid auf die Heilung bei einem Femurmetaphysendefekt ovarektomierter Ratten.

Methode

Bei seit 3 Monaten ovarektomierten weiblichen Sprague-Dawley(SD)-Ratten wurde ein Defekt kritischer Größe von 3 mm Durchmesser mit einer Durchgangsbohrung in jedem distalen Femur der ovarektomierten Ratten erzeugt. Den Ratten wurde 3-mal pro Woche PTH-Teriparatid (30 μg/kg) in das Peritoneum injiziert. Nach 4 bzw. 8 Wochen wurden die Tiere getötet, Blut und die Femora beidseits wurden für biochemische und histopathologische Untersuchungen sowie für eine Mikro-CT-Untersuchung entnommen.

Ergebnisse

Die Parathormon(PTH)-Gruppe und die Kontrollgruppe wurden 4 bzw. 8 Wochen nach der Operation verglichen. Durch PTH konnte die Knochenbildung im Bereich des Defekts gesteigert werden; dabei wies PTH die stärksten Wirkungen auf das Knochenvolumen pro Gesamtvolumen („bone volume per total volume“, BV/TV), die Trabekelanzahl, Trabekeldicke, Trabekelseparation sowie den gesamten fluoreszenzmarkierten Bereich der Knochenneubildung auf. Außerdem waren eine Hemmung der Expression von CTX (C-terminales Telopeptid vom Typ-I-Kollagen) sowie eine Verstärkung der Expression von Kalzium (Ca2+), Phosphat (P) und alkalischer Knochenphosphatase („bone alkaline phosphatase“, B-ALP) in der PTH-Therapie-Gruppe festzustellen.

Schlussfolgerung

Den Befunden der vorliegenden Studie zufolge ist von einem positiven Effekt von PTH auf die Defektheilung bei ovarektomierten (OVX-)Ratten auszugehen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. Zhu Z, Zheng T, Lee CG, Homer RJ, Elias JA (2002) Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. In: Seminars in cell & developmental biology, vol 2. Elsevier, pp 121–128

  2. Riggs BL, Melton LR (1995) The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 17(5):S505–S511

    Article  Google Scholar 

  3. Pei L, Tontonoz P (2004) Fat’s loss is bone’s gain. J Clin Invest 113(6):805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289(5484):1508–1514

    Article  CAS  PubMed  Google Scholar 

  5. Moazzaz P, Gupta MC, Gilotra MM, Gilotra MN, Maitra S, Theerajunyaporn T, Chen JL, Reddi AH, Martin RB (2005) Estrogen-dependent actions of bone morphogenetic protein—7 on spine fusion in rats. Spine 30(15):1706–1711

    Article  PubMed  Google Scholar 

  6. Yingjie H, Ge Z, Yisheng W, Ling Q, Hung W, Kwoksui L, Fuxing P (2007) Changes of microstructure and mineralized tissue in the middle and late phase of osteoporotic fracture healing in rats. Bone 41(4):631–638

    Article  PubMed  Google Scholar 

  7. Namkung-Matthai H, Appleyard R, Jansen J, Hao Lin J, Maastricht S, Swain M, Mason RS, Murrell GA, Diwan AD, Diamond T (2001) Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone 28(1):80–86

    Article  CAS  PubMed  Google Scholar 

  8. Reeve J, Meunier PJ, Parsons JA, Bernat M, Bijvoet OL, Courpron P, Edouard C, Klenerman L, Neer RM, Renier JC, Slovik D, Vismans FJ, Potts JT Jr (1980) Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial. Br Med J 280(6228):1340–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mosekilde L, Gaard HC, Mcosker EJ, Wronski JT (1994) PTH has a more pronounced effect on vertebral bone mass and biomechanical competence than antiresorptive agents (estrogen and bisphosphonate) &; assessed in sexually mature, ovariectomized rats, vol 4. Elsevier, Amsterdam

    Google Scholar 

  10. Orwoll ES, Scheele WH, Paul S, Adami S, Syversen U, Diez-Perez A, Kaufman JM, Clancy AD, Gaich GA (2003) The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res 18(1):9–17. doi:10.1359/jbmr.2003.18.1.9

    Article  CAS  PubMed  Google Scholar 

  11. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–1441. doi:10.1056/NEJM200105103441904

    Article  CAS  PubMed  Google Scholar 

  12. Dhillon RS, Xie C, Tyler W, Calvi LM, Awad HA, Zuscik MJ, OʼKeefe RJ, Schwarz EM (2013) PTH‐enhanced structural allograft healing is associated with decreased angiopoietin‐2–mediated arteriogenesis, mast cell accumulation, and fibrosis. J Bone Miner Res 28(3):586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tao ZS, Zhou Q, Tu KK, Huang ZL, Xu H, Sun T, Lv YX, Cui W (2015) Treatment study of distal femur for parathyroid hormone (1–34) and beta-tricalcium phosphate on bone formation in critical size defects in rats. J Biomater Appl. doi:10.1177/0885328215592854

  14. Wei L, Ke J, Prasadam I, Miron RJ, Lin S, Xiao Y, Chang J, Wu C, Zhang Y (2014) A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects. Osteoporos Int 25(8):2089–2096. doi:10.1007/s00198-014-2735-0

    Article  CAS  PubMed  Google Scholar 

  15. Li YF, Zhou CC, Li JH, Luo E, Zhu SS, Feng G, Hu J (2012) The effects of combined human parathyroid hormone (1–34) and zoledronic acid treatment on fracture healing in osteoporotic rats. Osteoporos Int 23(4):1463–1474. doi:10.1007/s00198-011-1751-6

    Article  CAS  PubMed  Google Scholar 

  16. Egermann M, Goldhahn J, Schneider E (2005) Animal models for fracture treatment in osteoporosis. Osteoporos Int 16(Suppl 2):S129–S138. doi:10.1007/s00198-005-1859-7

    Google Scholar 

  17. Turner AS (2001) Animal models of osteoporosis—necessity and limitations. Eur Cell Mater 1:66–81

    CAS  PubMed  Google Scholar 

  18. Comelekoglu U, Bagis S, Yalin S, Ogenler O, Yildiz A, Sahin NO, Oguz I, Hatungil R (2007) Biomechanical evaluation in osteoporosis: ovariectomized rat model. Clin Rheumatol 26(3):380–384. doi:10.1007/s10067-006-0367-2

    Article  PubMed  Google Scholar 

  19. Hodsman AB, Bauer DC, Dempster DW, Dian L, Hanley DA, Harris ST, Kendler DL, McClung MR, Miller PD, Olszynski WP, Orwoll E, Yuen CK (2005) Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 26(5):688–703. doi:10.1210/er.2004-0006

    Article  CAS  PubMed  Google Scholar 

  20. Hock JM (2001) Anabolic actions of PTH in the skeletons of animals. J Musculoskelet Neuronal Interact 2(1):33–47

    CAS  PubMed  Google Scholar 

  21. He YX, Zhang G, Pan XH, Liu Z, Zheng LZ, Chan CW, Lee KM, Cao YP, Li G, Wei L, Hung LK, Leung KS, Qin L (2011) Impaired bone healing pattern in mice with ovariectomy-induced osteoporosis: a drill-hole defect model. Bone 48(6):1388–1400. doi:10.1016/j.bone.2011.03.720

    Article  PubMed  Google Scholar 

  22. Cheng N, Dai J, Cheng X, Li S, Miron RJ, Wu T, Chen W, Zhang Y, Shi B (2013) Porous CaP/silk composite scaffolds to repair femur defects in an osteoporotic model. J Mater Sci Mater Med 24(8):1963–1975. doi:10.1007/s10856-013-4945-y

    Article  CAS  PubMed  Google Scholar 

  23. Uebelhart D, Bernard J, Hartmann DJ, Moro L, Roth M, Uebelhart B, Rehailia M, Mauco G, Schmitt DA, Alexandre C, Vico L (2000) Modifications of bone and connective tissue after orthostatic bedrest. Osteoporos Int 11(1):59–67. doi:10.1007/s001980050007

    Article  CAS  PubMed  Google Scholar 

  24. Lentle RG, Kruger MC (2005) Changes in mineralization and biomechanics of tibial metaphyses in splinted rats. J Appl Physiol 99(1):173–180. doi:10.1152/japplphysiol.00845.2004

    Article  CAS  PubMed  Google Scholar 

  25. Cortet B, Colin D, Dubois P, Delcambre B, Marchandise X (1995) Methods for quantitative analysis of trabecular bone structure. Rev Rhum 62(11):781–793

    CAS  Google Scholar 

  26. Boyd SK, Davison P, Muller R, Gasser JA (2006) Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 39(4):854–862. doi:10.1016/j.bone.2006.04.017

    Article  PubMed  Google Scholar 

  27. Hao YJ, Zhang G, Wang YS, Qin L, Hung WY, Leung K, Pei FX (2007) Changes of microstructure and mineralized tissue in the middle and late phase of osteoporotic fracture healing in rats. Bone 41(4):631–638. doi:10.1016/j.bone.2007.06.006

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yang.

Ethics declarations

Conflict of interest

Z-S. Tao, Y-X Lv, W. Cui, Z-L. Huang, K-K. Tu, Q. Zhou, T. Sun, and L. Yang state that there are no conflicts of interest.

All national guidelines on the care and use of laboratory animals have been followed and the necessary approval was obtained from the relevant authorities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, ZS., Lv, YX., Cui, W. et al. Effect of teriparatide on repair of femoral metaphyseal defect in ovariectomized rats. Z Gerontol Geriat 49, 423–428 (2016). https://doi.org/10.1007/s00391-015-0949-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-015-0949-1

Keywords

Schlüsselwörter

Navigation