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Abstract
Seasonal predictions in the Mediterranean region have relevant socio-economic implications, especially in the context of 
a changing climate. To date, sources of predictability have not been sufficiently investigated at the seasonal scale in this 
region. To fill this gap, we explore sources of predictability using a weather regimes (WRs) framework. The role of WRs in 
influencing regional weather patterns in the climate state has generated interest in assessing the ability of climate models 
to reproduce them. We identify four Mediterranean WRs for the winter (DJF) season and explore their sources of predict-
ability looking at teleconnections with sea surface temperature (SST). In particular, we assess how SST anomalies affect the 
WRs frequencies during winter focussing on the two WRs that are associated with the teleconnections in which the signal is 
more intense: the Meridional and the Anticyclonic regimes. These sources of predictability are sought in five state-of-the-art 
seasonal forecasting systems included in the Copernicus Climate Change Services (C3S) suite finding a weaker signal but an 
overall good agreement with reanalysis data. Finally, we assess the ability of the C3S models in reproducing the reanalysis 
data WRs frequencies finding that their moderate skill increases during ENSO intense years, indicating that this teleconnec-
tion is well reproduced by the models and yields improved predictability in the Mediterranean region.
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1 Introduction

Seasonal forecasts provide estimates of statistics of weather 
on seasonal time scales placing them between conventional 
weather forecasts and climate projections. The physical 
basis for these forecasts comes from the effect of predictable 
seasonal-timescale signals arising from the ocean, and to a 
lesser extent the land surface, on the atmosphere (Palmer 
and Anderson 1994). Loosely speaking, the information we 

can get from seasonal forecasting is on the likelihood that 
the coming season will be wetter, drier, warmer or colder 
than the mean climatology for a given time of the year. To 
date, the reliability and the skill of seasonal forecasts var-
ies considerably in the different regions of the world (e.g. 
Weisheimer and Palmer (2014)), moreover scores are subject 
to considerable sampling uncertainty. Nonetheless, recent 
efforts in improving seasonal forecast systems have shown 
a fairly consistent picture of the pattern of grid-point skill 
over the European region, including marked seasonal vari-
ation (Stockdale et al. 2018). In this context, some authors 
have reported how teleconnections may condition the predic-
tion skill, as it happens with El Niño Southern Oscillation 
(ENSO) and the Madden–Julian oscillation (MJO) (Hendon 
et al. 2000). In particular, the reproduction of teleconnec-
tions in climate predictions may grant higher predictability 
(Miller and Wang 2019).

Weather regimes (WRs) are defined as persistent and 
recurrent atmospheric patterns that can last from a few 
days to two or three weeks at given geographic locations. 
They are generally used to study associated surface and 
atmospheric conditions in specific seasons and geographic 
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domains (Michelangeli et al. 1995; Straus et al. 2007; Fran-
zke et al. 2011; Hannachi et al. 2017). WRs are well estab-
lished in the Euro-Atlantic (EAT) domain (Cassou 2004), 
and there is growing evidence of their importance in modu-
lating European weather (Ferranti et al. 2015; Matsueda and 
Palmer 2018). Further, it has been shown that WRs can be 
associated to global teleconnections (Cassou 2008; Lin et al. 
2009) making them suitable for determining the presence of 
global teleconnections and in assessing the prediction skill 
of seasonal forecast systems, henceforth called prediction 
systems.

EAT regimes have been used to study the atmospheric cir-
culation and recurrent climate conditions of the Mediterra-
nean region specifically (Ullmann et al. 2014; Zampieri et al. 
2017). We focus our study of WRs on the Mediterranean 
region exclusively, as it has been done by Rojas et al. (2013), 
because they provide an effective way to look into seasonal 
variability in this region having identified four Weather 
Regimes: Meridional, Zonal, Anticyclonic, and Cyclonic.

The Mediterranean experiences an array of atmospheric 
circulation patterns whose dynamical interactions with the 
surface environment have high spatial variability. In par-
ticular the western and eastern sectors of the region show 
marked differences to consider the naming Eastern and 
Western Mediterranean (WM and EM, respectively) as 
homogeneous sub-regions of influence (Alpert et al. 2006; 
Ulbrich et al. 2012). Moreover, this region is influenced by 
a large number of teleconnection patterns, including many 
kinds of covariation, which are often far from being com-
pletely understood in terms of circulation dynamics (Ulbrich 
et al. 2012). The North Atlantic Oscillation (NAO), the Arc-
tic Oscillation (AO), the East Atlantic (EA), the Scandi-
navian Pattern, and snow cover over northern Eurasia are 
important teleconnections influencing the Mediterranean 
(Ulbrich et al. 2012). In addition to extra-tropical circula-
tion, other links of Mediterranean climate variability have 
been identified to tropical and sub-tropical systems: the El 
Niño Southern Oscillation (ENSO), and the South Asian 
Monsoon (SAM) (Alpert et al. 2006; Xoplaki et al. 2012). 
Among these teleconnections, particular attention has been 
given to NAO and ENSO, although the focus has typically 
been geared towards the European continent (Brönnimann 
2007; Dunstone et al. 2016) as opposed to the Mediterranean 
region specifically.

The NAO represents a pattern of North Atlantic climate 
variability and has long been identified as an influencing 
factor on the Mediterranean climate variability, especially 
during winter (Ulbrich et al. 2012). The positive phase 
(NAO+) is characterized by stronger-than average wester-
lies associated with warm and wet winters over Northern 
Europe, and to a drier weather into the Mediterranean; con-
versely, the negative phase (NAO–) is associated with cold 
and dry winters in Northern Europe, and moist air (increased 

precipitations) into the Mediterranean (Hurrell and VanLoon 
1997).

The ENSO is recognized as a major source of global cli-
mate variability (Halpert and Ropelewski 1992). Although 
related to the warming of the eastern Pacific SSTs (for 
extended periods of 6–12 months, and sometimes longer 
(Alpert et al. 2006)), ENSO induces climate anomalies in 
many parts of the planet and plays an important role in sea-
sonal prediction (Brönnimann 2007; Goddard et al. 2012). 
The influence of ENSO in the North Atlantic-European area 
is more likely to be found during ENSO extreme events and 
during the winter (Pozo-Vázquez et al. 2001). The relation-
ship of ENSO with weather and climate variability over the 
Mediterranean has most relevant influence at inter-annual 
timescales. While ENSO is associated to extreme precipita-
tion in northern Europe during DJF for both phases, in the 
eastern Mediterranean this link occurs during the autumn 
(SON) for the El Niño phase (Sun et al. 2015). However, the 
interannual variability induced by the atmospheric circula-
tion over the North Atlantic and Euro-Mediterranean region 
is large, making it hard to detect a noticeable ENSO signal 
(Kamil et al. 2017).

The overarching aim of this study is to investigate the 
prediction quality of five state of the art prediction systems 
in reproducing the seasonal variability of weather regimes 
over the Mediterranean during the winter (DJF). To address 
this aim, the objectives of this work are:

• Identify major teleconnections associated to winter Med-
iterranean weather regimes.

• Assess the ability of the C3S state of the art prediction 
systems in reproducing WRs and the spatial pattern of 
teleconnections.

• Assess C3S ability in reproducing seasonal WRs frequen-
cies.

We provide an overview of the dataset in Sect. 2, we 
describe results in Sect. 3, and summarize them in the con-
cluding Sect. 4.

2  Data and methods

We use daily geopotential height at 500 hPa and sea surface 
temperature data from the ERAInterim reanalysis (Dee et al. 
2011) as reference dataset to (1) define the weather regimes, 
(2) identify teleconnections and (3) assess the seasonal fore-
cast skill of the C3S prediction systems.

The Copernicus Climate Change Service1 (C3S—imple-
mented by ECMWF on behalf of the European Commission 

1 https:// www. clima te. coper nicus. eu/ about- us.

https://www.climate.copernicus.eu/about-us
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as part of the Copernicus Programme) produces seasonal 
forecast products from state of the art systems: ECMWF 
SEAS5 (Johnson et al. 2019), the UK Met-Office GloSea5 
(MacLachlan et al. 2015), Meteo-France System6 (Dorel 
et al. 2017), the German Weather Service DWD GCFS2.0 
(Fröhlich et al. 2020) and the Euro-Mediterranean Centre 
on Climate Change CMCC SPSv3 (Sanna et al. 2017). C3S 
provides a multi-system seasonal forecast service, where 
data is collected, processed and combined to enable user-
relevant applications. The data used in this study (Table 1) 
refers to the hindcast period 1993–2016, common to all 
C3S systems, and pertains atmospheric conditions glob-
ally, in particular: daily geopotential heights at 500 hPa for 
computing the weather regimes, and monthly sea surface 
temperature used for assessing the teleconnections. The use 
of multiple systems within C3S allows for accounting for 
model deficiencies, while having multiple runs per model 
allows for quantifying the effect of errors due to uncertainty 
in the initial conditions (Krishnamurti et al. 2000; Palmer 
et al. 2004; Hagedorn et al. 2005). Indeed, the C3S systems 
build their ensemble runs producing a set of slightly differ-
ent realisations of the same prediction, which are consid-
ered equally likely. The different members of the ensemble 
forecasts are built in either “burst mode”: all members are 
initialized with conditions on the same start date, but from 
perturbed initial states, intended to sample the uncertainty 
in observations (e.g. ECMWF, all members initialized on 1st 
of November); or in “lagged” mode: members are initialized 
on different start dates, sufficiently close to each other (e.g. 
UKMO, seven members initialized on the 1st, 9th, 17th, 25th 
of the month). The prediction systems are operated by differ-
ent modelling groups but are not always totally independent, 
e.g. they may share the same ocean or sea-ice component 
(Tebaldi and Knutti 2007). In this study, 25 ensemble mem-
bers for every C3S are used, although some systems have 
more (up to 40).

For the assessment of the atmospheric conditions associ-
ated to each WR we use daily fields of precipitation from 
the Global Precipitation Climatology (GPCP) v1.2 (Huff-
man et al. 2001) and two meters temperature (t2m) from 
ERAInterim, while for exploring the reanalysis climate tel-
econnections outside the Mediterranean we use sea surface 
temperature monthly fields from the HadISST v2 dataset 
(Titchner and Rayner 2014).

All reanalysis and model outputs are interpolated at the 
same 2.5º grid resolution.

To identify the weather regimes, we use the Python 
package WRtool (Fabiano et al. 2020). The calculation is 
performed on the daily geopotential height field at 500 hPa 
through the following steps:

• The seasonal cycle is calculated separately for each 
model applying a day-by-day average of the field, 
smoothed with a 20-days running mean. This seasonal 
cycle is removed from the daily fields to obtain daily 
anomalies.

• Anomalies corresponding to the winter (DJF) season 
are selected over the Mediterranean, defined as the 
domain comprised between the latitudes 25 and 50 
North, and longitudes − 10 and 40 East.

• For the observations, we calculate the Empirical 
Orthogonal Functions (EOFs) of the daily anomalies 
and retain the 4 leading Principal Components (PCs), 
which account for about 80% of the sectorial variance. 
The 4 leading EOFs define our reference phase space, 
which is used for all further calculations. The model 
anomalies are projected onto the reference phase space, 
to obtain a set of 4 pseudo-PCs (see Fabiano et al. 2020 
for more details on this point).

WRs are calculated in two ways: raw and projected as 
detailed below. This distinction is made because while 
assessing the WR patterns we use each model’s own 

Table 1  Hindcast configurations of the C3S systems, all run at a 1° × 1° spatial, 6 hourly temporal resolutions

Model Version Ensemble generation Atmosphere component Ocean component Sea-Ice component

ECMWF SEAS5 System 5 25 members (burst) start on 
the 1st

IFS (TCo319, equiv. to 
N320: ~ 36 km, 91 levels)

NEMO (0.25º, 75 levels) LIM

UKMO GloSea5
System 13

28 members (lagged) 7 start on 
the 1st, 9th, 17th, 25th

UM (N216, ~ 60 km, 85 levels) NEMO (0.25º, 75 levels) CICE

METEO
FRANCE

System 6 25 members (lagged)
1 on the 1st
12 on the 25th and
12 on the 20th

ARPEGE (TL359, ~ 60 km, 91 
levels)

NEMO (1º, 75 levels) GELATO

DWD GCFS2.0
System 2

30 members (burst) start on 
the 1st

ECHAM6 (T127, ~ 100 km, 95 
levels)

MPIOM (0.4º, 40 levels; 
includes sea ice)

–

CMCC SPSv3
System 3

40 members (burst) start on 
the 1st

CSEM (1º, ~ 100 km, 46 levels) NEMO (0.25º, 50 levels) CICE
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clustering with the purpose of evaluating models’ capac-
ity to simulate the observed regimes in their own phase 
space, while for assessing model skill in reproducing WR 
frequencies, upon clustering we “re-project” to the refer-
ence phase space in order to have a common ground for 
comparison for observed and modelled data:

• Raw regimes A K-means clustering algorithm is applied 
to each set of model pseudo-PCs (or PCs for the obser-
vations), to group them into four clusters representing 
the Weather Regimes. The models’ regimes are finally 
reordered to give the best match with the observed ones 
in terms of pattern correlation.

• Projected regimes The K-means is only applied to the 
observations. Each day in the model pseudo-PCs time-
series is simply assigned to the regime corresponding to 
the closest reference centroid in phase space.

For each model, the raw regimes are computed consider-
ing together all members and starting dates. The raw regimes 
patterns are compared to the observed ones to assess the 
model ability to reproduce them (Sect. 3.2). Conversely, 
the projected regimes are calculated for each member (25 
per model) individually while assessing teleconnections 
(Sect. 3.3) and skill (Sect. 3.4) of the models.

We adopt four clusters on the basis of the current under-
standing of weather regimes in the Mediterranean and 
Europe for boreal winter (Rojas et al. 2013; Ullmann et al. 
2014).

The weather regimes consist of a daily cluster index over 
the DJF season that is then aggregated monthly to form a 
vector of length 72 (3 months *24 years) in order to calculate 
composites with monthly SSTs and reveal the presence of 
teleconnections outside the domain of study.

Fig. 1  Geopotential height anomaly for the four weather regimes. The white box indicates the domain on which the WRs are calculated
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3  Results

Four weather regimes from the 500  hPa geopotential 
height anomalies of the reanalysis data are identified 
(Fig. 1). The spatial patterns are consistent with the Medi-
terranean Weather regimes identified by Rojas et al. (2013) 
over a similar domain using 700 hPa geopotential height 
anomalies, and named as follows: WR1-Meridional, WR2-
Zonal, WR3-Anticyclonic, and WR4-Cyclonic. WRs are 
sorted from largest to smallest frequency of occurrence 
ranging from 29.6% for the most frequent, WR1, to 21.3% 
for the least frequent, WR4.

We provide a description of each of them considering 
the corresponding temperature (Fig. 2) and precipitation 
patterns (Fig. 3) computed as the composites of the fields 
with the daily regime index (the time series of WR rang-
ing from one to four). This was possible over the com-
mon window Dec-1996–Feb2015 for which gridded daily 

precipitation is available. For consistency, the same time 
window was used for temperature.

Correspondence between these WRs and those obtained 
over the East Atlantic domain (EAT) was sought in order 
to find similarities of the regimes in the two domains 
(details are reported in the Supporting Information, hence-
forth SI).

3.1  Mediterranean weather regimes

The WR1, or meridional, is the most frequent regime with 
29.6% of occurrences in the season, it features a geopoten-
tial height dipole with positive anomaly over the northwest 
of the domain and a negative anomaly over the eastern half 
of the domain, which generate the temperature conditions 
depicted in Fig. 2a, i.e. a cold spell originating in north-
east Europe that propagates over the whole Mediterranean 
region, and a precipitation dipole (Fig. 3a) with a mostly 

Fig. 2  Temperature (ERAInt tas) patterns corresponding to each WR
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dry west caused by the anticyclonic conditions over the 
northwest and wet east of the domain. Total precipitation 
of this regime contributes to up to 50% of the total winter 
precipitation with maximum contributions over the Alps 
and Turkey (Rojas et al. 2013).

WR1 has no univocal correspondence with any EAT 
regime, but rather it is split into mostly the EAT Scandi-
navian Blocking and Atlantic Ridge regimes (see Section 
S1 and Fig. S1–S2 in SI).

WR2 is named zonal as strong westerlies bring humid 
air from the Atlantic to the Mediterranean and follows the 
meridional regime with 25.7% of occurrences in the season. 
Opposite to WR1, WR2 features a negative anomaly over the 
northwest and a positive anomaly over the eastern half of the 
domain (Fig. 1-b) to which corresponds a warm anomaly 
propagating from the northeast to the whole Mediterranean 
region, particularly intense in the Italian peninsula and east-
ern Europe (Fig. 2-b), and wet (dry) conditions in the west 

(east) of the domain (Fig. 3-b). Total precipitation of this 
regime contributes 30–50% of the total winter precipitation 
over France and the Iberian Peninsula (Rojas et al. 2013).

WR2, similarly to WR1, has no direct match in any of 
the EAT regimes, showing contributions mainly from three 
regimes: the NAO+, the Scandinavian Blocking, and the 
NAO– (Section S1 of the SI). Thus far the Scandinavian 
Blocking contributes to both WR1 and WR2, indicating that 
the Mediterranean region has features of its own that deserve 
to be characterized with ad hoc clustering.

WR3 amounts to 23.5% of occurrences in the season and 
features a pronounced positive geopotential anomaly cen-
tred over southern France—northwest Italy (Fig. 1-c). This 
regime is associated with anticyclonic conditions induc-
ing positive anomalies of surface temperature over most of 
the domain, except the southeast (Fig. 2-c), and very dry 
conditions over the whole domain (Fig. 3-c). Of all four 
regimes, WR3 is the one with greatest similarity to an EAT 

Fig. 3  Precipitation (GPCP) patterns corresponding to each WR
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regime: the NAO+ (Section S1, SI), which is characterized 
by stronger-than-average westerlies associated with warm 
and wet winters over Northern Europe, and to drier weather 
in the Mediterranean (Hurrell and VanLoon 1997). In par-
ticular, this regime is associated with a strengthening of the 
Icelandic low and with a north-eastward shift of the Azores 
High leading to weak northerly winds in the Mediterranean 
region, typical of stable anticyclonic conditions (Ullmann 
et al. 2014).

WR4 features, in contrast to WR3, a pronounced nega-
tive system over most of the domain associated to cyclonic 
conditions (Fig. 1-d) inducing negative anomalies of surface 
temperature over most of the domain (Fig. 2-d). Although 
this is the least frequent regime (21.3%), it is associated to 
generally wet conditions from west to east (Fig. 3-d) with a 
large contribution to total seasonal precipitations (e.g., the 
Alps and Italy receive 50–60% (Rojas et al. 2013)).

This regime is mainly associated with the EAT regime 
NAO- (Section S1, SI), which brings cold and dry winters in 
northern Europe and moist air into the Mediterranean (Hur-
rell and VanLoon 1997). WR4 is also associated, although 
to a smaller degree, with the EAT Atlantic Ridge regime.

The comparison between DJF weather regimes over the 
Mediterranean and the East Atlantic domain carried out 
in S1.1 of the SI with the aim of quantifying similarities 
between the two domains indicates that only one Mediter-
ranean regime (WR3-Anticyclonic) has marked similarity 
(i.e. is strongly related) with an EAT regime (NAO+), while 
the remaining three WRs result as hybrids of multiple EAT 
regimes, indicating that the Mediterranean region, although 

very close and partly overlapping the EAT domain, deserves 
to be analysed within its own boundaries as weather patterns 
are specific to this area.

Finally, the time persistence of the regimes, which can be 
expressed as the average number of consecutive days associ-
ated with a given WR, is shown in Fig. 4. For all WRs half 
of the sequences are shorter than 3 consecutive days. WR3-
anticyclonic and WR1-meridional have the highest persis-
tence on average, so they tend to last longer (4.7 and 4 on 
average) than cyclonic and zonal (3.7 and 3.4 days respec-
tively). The range of sequence lengths is larger for WR3—
anticyclonic (1–30 consecutive days) and WR2—zonal 
(1–29) than it is for WR1–meridional and WR4–cyclonic 
(1–17 and 1–15, respectively). The zonal regime, although 
it is the second most frequent WR (556 days out of 2166), 
tends to have shorter sequences than the anticyclonic 
(508 days) and cyclonic (461 days) regimes, indicating a 
pronounced transitional tendency. Interestingly, the highest 
outlier in Fig. 4 (WR3, 30 days) refers to winter 2013/2014, 
which was dominated by WR3, with January having 100% 
of WR3 days (December and February having 55% and 42%, 
respectively). This is consistent with Ferranti et al. (2018), 
who describe that the winter of 2013/2014 was dominated 
by NAO+ and westerly flow anomalies across the Atlantic 
and that these anomalous flow conditions yielded a series 
of storms and severe rainfall but rather mild temperatures 
over Europe. Regime persistence for both EAT and Mediter-
ranean domains is shown in Figure S3 of the SI.

3.2  WRs in the C3S seasonal prediction systems

The C3S prediction systems have shown a good consistency 
in reproducing raw WR patterns obtained with the ERAIn-
terim reanalysis dataset. The Taylor diagrams (Taylor 2001) 
help summarize the relative skill with which the prediction 
systems simulate the raw WRs spatial patterns. In these dia-
grams the similarity between two patterns is quantified using 
their correlation, their centred root-mean-square difference 
and the amplitude of their variations as their standard devia-
tions (Fig. 5). Overall, all C3S prediction systems capture 
well the spatial pattern of the reference (black dot) for the 
different regimes with the DWD system lying the farthest in 
all cases. In particular, WR3 and WR4 are the best captured 
regimes, showing good alignment in the standard deviation 
with ERA-Interim and generally smaller RMSE values, 
while WR1 and WR2, although with generally good corre-
lation values, exhibit greater standard deviations compared 
to the reference dataset. It is therefore apparent that the C3S 
prediction systems are better at reproducing spatial patterns 
of Anticyclonic and Cyclonic than Meridional and Zonal 
regimes.

The ranking of seasonal frequency of the raw regimes is 
relatively well captured by the C3S prediction systems. In 

Fig. 4  Box plots of single or consecutive days associated with each 
WR over the 24 seasons analysed. Bottom and top edges of the box 
indicate the 25th and 75th percentiles, respectively. The central line 
indicates the median, while the asterisk (with inset number) the 
mean. The ends of the whiskers correspond to the lowest (highest) 
value within the 2 inter-quartile range of the lower (upper) quartile. 
The outliers are plotted individually as ‘ + ’
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Fig. 5  Taylor Diagrams relative to the geopotential height at 500 
HPa anomalies (1993–2016 period) of each weather regime (Meridi-
onal, Zonal, Anticyclonic, Cyclonic), for the five C3S prediction sys-
tems (each comprising 25 members) and for the reference field, the 

ERAInterim reanalysis. The diagrams are function of the root mean 
square (dashed contours), the correlation coefficient (grey straight 
lines), and the standard deviation (x-axis or radial distance from the 
origin)

Table 2  Winter mean frequency 
(in % of total days) of raw 
weather regimes in ERA-
interim and individual C3S 
prediction systems computed 
over the period 1993–2016

DJF regime frequencies [%] 

  WR1 WR2 WR3 WR4 

ERAInt 29.6 25.7 23.5 21.3 

C3S         

ecmwfS5 27.9 24.2 27.2 20.8 

ukmoS13 25.9 26.1 26.0 22.0 

meteofS6 25.7 26.8 26.5 21.0 

dwdS2 26.2 24.5 28.3 21.1 

cmccS3 28.6 23.8 27.5 20.1 

Colouring reflects the order of the WRs from most frequent (dark green) to least frequent 
(white)
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Table 2 the ranking of the regimes follows the reanalysis 
order from dark to pale: all systems rank unanimously WR4 
as least frequent regime, while only ECMWF and CMCC 
rank WR1 as the most frequent regime. For instance, the 
second most frequent regime in the C3S systems is the Anti-
cyclonic, whereas it is actually the third most frequent in 
the reanalysis. It should be noted that some systems like 
UKMO and MeteoFrance present similar values of the fre-
quency (26%) in all regimes except WR4, so they do not 
show clear difference in the ranking. It is worth noting, as 
shown in Fig. 6, that C3S prediction systems underestimate 
regime frequencies for the WR1-meridional and overesti-
mate for WR3-anticyclonic, while for the other two regimes 
the biases are less pronounced.

3.3  Teleconnections

We explore teleconnections outside the domain of study 
using SST monthly fields. The SST teleconnections are 
firstly obtained for the reanalysis using the HadISST dataset 
as follows (as outlined in Figure S4 of the SI):

1. The WR frequency is computed monthly (DJF-1993-
2016)

2. The 85th percentile of the WR frequency time series 
is taken as the threshold for WR intense months (or 
monthly regime extreme).

3. The monthly SST anomalies are selected whenever the 
frequency exceeds the threshold.

4. The composite is obtained by averaging the selected 
SSTs.

Secondly, SST teleconnections are sought for the C3S 
models computing the threshold using a single distribu-
tion comprising the projected WR frequencies of all of the 

ensemble members (25). The selection of SSTs is then car-
ried out on a per member basis using this common threshold 
and yielding 275 SST occurrences (months). Ultimately, the 
SSTs obtained are averaged together to form the composite 
of each C3S model.

The choice of compositing over WR intense months 
with a threshold is owed to the large internal variability that 
would otherwise attenuate the signal. One expects that if 
a teleconnection exists, it will first appear in the case of 
extreme monthly anomalies, i.e. in months dominated by 
a single WR. However, it is worth noting that lowering the 
threshold a consistent signal in terms of pattern is found but 
the anomalies are weaker.

As shown in Figure S5 (in the SI) across all WRs the 
Pacific Ocean sector shows prominent teleconnection sig-
nals, particularly the Pacific Decadal Oscilllation (PDO) 
(Mantua et al. 1997; Mantua and Hare 2002) and ENSO 
regions. In WR1 a clear Niña/PDO– signal is found that is 
also persistent as it shows earlier than DJF when consider-
ing earlier time windows (NDJ and OND, not shown). The 
same applies to WR3 and the Niño signal. Conversely, the 
other WRs show weaker and short-lived signals: WR2 with 
a PDO+ signal and WR4 with a La Niña signal. These are 
consistent with the teleconnections documented in the lit-
erature as discussed in the Introduction.

After seeking teleconnections in the reanalysis for all 
WRs, we focus on the two regimes for which teleconnections 
are more pronounced, namely WR1—Meridional (Fig. 7) 
and WR3—Anticyclonic (Fig. 8) and assess how well the 
C3S prediction systems reproduce them. Interestingly, as 
seen in Fig. 6, these two WRs are the ones that are particu-
larly affected by sizable frequency biases in the models.

The signals in the C3S prediction systems are generally 
weaker than in the reanalysis, note that the colour bar lies 
in the ± 0.5 °C range, whereas in the reanalysis case the 
range is ± 1 °C. This is to be somehow expected because the 
composites for the C3S prediction systems are the result of 
averaging across multiple members, whose spread might be 
non-negligible. Although this can also reflect deficiencies 
in model simulations.

However, some systems capture fairly well the spatial 
patterns of teleconnection. In particular, with the excep-
tion of CMCC showing an opposite signal, the C3S pre-
diction systems capture well the La Niña pattern of WR1, 
although for MeteoFrance and UKMO the signal is weak 
and partly offset. Only ECMWF and DWD seem to capture 
the PDO− signal (the warm-centred eye in the north pacific) 
that is present in the reanalysis (Fig. 7). The El Niño pattern 
of WR3 is captured by the ECMWF and UKMO systems 
and only mildly by MeteoFrance, while neither CMCC and 
DWD are able to reproduce this signal (Fig. 8). Composites 
for WR2 and WR4 can be found in the SI (Figure S6 and 
Figure S7, respectively).

Fig. 6  C3S prediction systems bias in regime frequencies relative to 
the reference ERAInt
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3.4  Predictive capability of C3S prediction systems

We assess the models’ predictive skillby considering WR fre-
quencies in the reanalysis and looking at how well they are 
captured by the C3S prediction systems, using the projected 
regimes. We keep our focus on the WR1 and WR3 regimes. 
Figure 9 shows the seasonal frequency of the reanalysis (black) 
and that of each C3S prediction system mean (colour). A first 
positive result is that the overall mean of the C3S projected 

WR frequencies throughout the period is consistent with that 
of the reanalysis (Fig. 9 inset row one), i.e. ~ 30% for WR1 
and ~ 23% for WR3. Secondly, the WR frequency correlations 
between the reanalysis and each C3S prediction system (Fig. 9 
inset row two) are relatively low (in the 0.15–0.38 range) and 
not statistically significant but they are all positive, indicating 
an overall encouraging behaviour of the prediction systems in 
reproducing observed seasonal variations. Results for regimes 
WR2 and WR4 are shown in Figure S8 of the SI.

Fig. 7  DJF composites of reanalysis (top left) and C3S prediction systems obtained by averaging SST anomalies above the 85th percentile of the 
WR1 (meridional) frequencies, revealing teleconnections globally
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Lastly, comparing the WR frequency with the Niño 3.4 
time series (Fig. 9 last inset row) yields a negative (positive) 
correlation in the WR1 (WR3) reanalysis that is consistent 
with the teleconnections seen in Fig. 7 (Fig. 8). Interestingly, 
correlations of the C3S with Niño 3.4 are higher than those 
with ERA (reaching ± 0.62), indicating that overall the right 
responses to ENSO are captured by the systems, although in 
some cases the models are overly sensitive (DWD in WR1) 
or simply not sensitive at all (CMCC in both WRs and DWD 
in WR3).

Furthermore, we attempt to ascertain the ability of the 
C3S prediction systems in capturing observed periods of 
WR prominence by using all of the members. If we con-
sider terciles, there is no marked difference with climatol-
ogy, that is, counting for each prediction system the num-
ber of members that fall into the reanalysis’ terciles we 
find values around 33%, although slightly higher generally 
(Table S2-a). Instead, considering the four (out of 24) WR-
intense seasons, the share of members above the 85th per-
centile  (Q85) ranges from 0% in winter 2001–2002 of WR1 

Fig. 8  Same as Fig. 7 but for DJF WR3 (anticyclonic)
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for MeteoFrance to 64% in winter 2015–2016 of WR3 for 
UKMO as shown in Fig. 10. Overall, ECMWF and UKMO 
show markedly higher skill than the climatology. Indeed, the 
members of these two models predict frequencies above  Q85 
up to 50% more than expected in the case of no skill (15%, 
i.e. climatology) as summarised in Table S2-b.

The overall moderate skill of the C3S in reproducing WR 
frequencies leads to a last step in our assessment, which 
is based on the fact that the WRs are teleconnected to cli-
mate signals that C3S are able to capture (ENSO), as seen 
in Sect. 3.3.

Therefore, we explore whether C3S models increase 
their prediction skill in presence of intense ENSO sig-
nals. Throughout the period of analysis 1993–2016, we 

thus isolate and plot the frequencies that correspond to 
intense DJF ENSO years2 considering the Niño 3.4 index 
with a threshold equal to 0.5 K° i.e. 10 events for La Niña 
(≤ − 0.5): 1996, 1997, 1999, 2000, 2001, 2006, 2008, 2009, 
2011, 2012; and 8 events for El Niño (≥ 0.5): 1995, 1998, 
2003, 2005, 2007, 2010, 2015, 2016.

For the reanalysis Fig. 11 (left panel) shows a negative 
median value of the El Niño WR1 frequencies and a positive 
median value for frequencies occurring during strong La 
Niña events. This is consistent with our previous finding on 

Fig. 9  Seasonal WR frequency for ERAInt (black) and mean of 25 
members for each C3S prediction systems (colour) over the period 
1993–2016. Inset numbers report the mean frequency (row 1) and the 

Pearson’s correlation to the ERAInt (row 2) and to the Niño 3.4 (row 
3) time series. Significant correlations are in bold

Fig. 10  For each C3S prediction systems (colour) percentage of 
members (out of 25) falling above the 85th percentile at each of the 
four WR-intense seasons (out of 24) over the period 1993–2016. Grey 

bars are seasonal WR frequency anomalies for ERAInt (grey), while 
red lines are the percentiles  Q85 (top) and  Q15 (bottom)

2 https:// www. origin. cpc. ncep. noaa. gov/ produ cts/ analy sis_ monit 
oring/ ensos tuff/ ONI_ v5. php.

https://www.origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://www.origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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WR1 being linked to La Niña. The C3S ensemble, denoted 
“full-ENS” behaves similarly: the distributions of the fre-
quency anomalies of the ensemble considering only El Niño 
(red) or La Niña (blue) seasons—show an increase during 
La Niña signal (Fig. 11) as the reanalysis, with a concur-
rent decrease during El Niño. Conversely, for WR3, El Niño 
increases the frequency anomaly while La Niña reduces it. 
This time too results are in agreement with the El Niño 
teleconnection found in WR3. It should be noted that not 
only do the WR frequencies increase when the ENSO phase 
agrees with those observed (Figs. 7, 8), but also that the 
frequency is reduced with the opposite phase. Arguably, this 
is a sign of good predictability (e.g. WR1 the Niña signal 
increases, but also the Niño signal decreases considerably).

We select the best three models among the C3S prediction 
systems (henceforth named “sel-ENS”) as those closest to 
the observations (reanalysis) across the four WRs in the Tay-
lor diagrams shown in Fig. 5, namely ECMWF, UKMO, and 
MeteoFrance. The increase in WR frequency during intense 
ENSO years becomes more evident when considering this 
ensemble subset in Fig. 11—for which medians increase in 
value going from 0.52 to 0.82 for La Niña in WR1, and 
from 0.03 to 0.86 for El Niño in WR3. This corroborates 
the hypothesis that the systems are sensitive to ENSO and 
increase their skill when ENSO signal is intense.

The difference between the entire ensemble sample and 
its La Niña and El Niño sub-samples tested statistically 
significant (Table 3) in virtually all cases of the full and 

Fig. 11  Boxplots of WR frequency anomalies considering La Niña 
(blue) and El Niño (red) intense years. Inset values indicate median 
of the data. The entire C3S prediction system ensemble is noted as 
“full-ENS”, while “sel-ENS” refers to the ECMWF, UKMO, and 

MeteoFrance systems. Inset stars flag significant difference against 
the sample with all years using the Kolmogorov–Smirnov test at the 
5% significance level

Table 3  Comparison between WR frequency anomalies for the full C3S prediction system ensemble and the sel-ENS (ECMWF, UKMO, Mete-
oFrance): absolute distances between group medians and two-sample statistical tests on WR frequency anomalies

KS refers to the Kolmogorov–Smirnov test (null hypothesis: the two samples are from the same continuous distributions); W refers to the Wil-
coxon ranksum test (null hypothesis: the two samples come from continuous distribution with equal medians). Both tested at the 5% significance 
level, i.e. pval < 0.05 rejection of the null hypothesis

WR1 WR3

Medians abs. 
dist

Same distribution Equal medians Medians abs. 
dist

Same distribution Equal medians

[%] KS W [%] KS W

Full ensemble
 All vs. La Niña (10) 1.09 p = 0.009 p = 0.004 1.35 p = 0.04 p = 0.01
 All vs. El Niño (8) 1.61 p = 0.002 p = 0.001 1.21 p = 0.14 p = 0.04
 El Niño vs. La Niña 2.71 p = 1.6e−7 p = 5e−7 2.56 p = 5.1e−4 p = 1.3e−4

Selected C3S
 All vs. La Niña (10) 1.5 p = 0.02 p = 0.006 1.97 p = 0.004 p = 0.002
 All vs. El Niño (8) 1.8 p = 0.02 p = 0.003 1.92 p = 0.02 p = 0.002
 El Niño vs. La Niña 3.29 p = 2.5e−5 p = 3e−6 3.88 p = 1.4e−6 p = 2.1e−7
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the selected ensembles, with smaller p-values for the lat-
ter. Equal medians, using the Wilcoxon ranksum test (W) 
(Wilcoxon 1945), and same parent distributions, using the 
two-sided Kolmogorov–Smirnov test (KS) (Massey 1951), 
were tested at the 5% significance level. WR3 full ensemble 
vs El Niño sub-sample is the only case in which the KS 
null hypothesis was not rejected (difference between the two 
samples is not statistically significant). The difference in the 
samples is less pronounced in WR3 than it is in WR1.

Interestingly, the median values of the frequency of La 
Niña (El Niño) for WR1 (WR3) are enhanced for the sel-
ENS compared to the full C3S prediction system ensemble, 
indicating that choosing the best performing models does 
reproduce better the ENSO effect seen in the reanalysis. This 
is further quantified in Table 3 (El Niño vs. La Niña row 3 
and 6) in the distance between medians for which greater 
values are found in the sel-ENS: in WR1 3.29 as opposed 
to 2.71 for the full ensemble, and in WR3 3.88 with the full 
ensemble yielding 2.56. The significance of the difference 
between samples is also higher (smaller p-values than those 
of the full ensemble).

4  Summary and conclusions

The aim of this paper was to assess the ability of the C3S 
suite of prediction systems in reproducing Mediterranean 
WRs temporal variability and teleconnections associated.

After computing four weather regimes over the Medi-
terranean domain in the winter season, we described cli-
matic conditions associated to each WR and identified major 
SST teleconnections globally. On the basis of these find-
ings obtained using reanalysis data, we performed the same 
analysis using the C3S prediction systems to assess their 
ability to reproduce the weather regimes and the telecon-
nections. Finally, focussing on the two regimes with stronger 
teleconnection signal (WR1-meridional linked to La Niña, 
WR3-anticyclonic linked to El Niño) we considered the 
weather frequencies to evaluate the predictive skill of the 
C3S prediction systems.

We have focussed on the boreal winter that is typically the 
season in which medium to long range dynamical forecast 
systems have higher skill in predicting atmospheric variables 
(Neal et al. 2016). Using the WR approach, further research 
should focus on assessing predictability in other seasons, 
possibly extending the period of analysis to an entire year as 
done by Grams et al. (2017) with seven WRs in the Atlantic 
European region.

We can summarize our main findings as follows.

• Weather regimes in the Mediterranean correspond to 
different weather conditions than those of the standard 
Euro-Atlantic ones. Only the regime associated to the 

NAO+ shows similarities between the WRs of the two 
domains. Mediterranean WRs also have a shorter time 
persistence (days) than that of the Euro-Atlantic domain 
(approximately 3–5 days and 4–6 days, respectively), 
indicating a higher tendency to transition from one WR 
to another.

• Two WRs show a clear teleconnection to the ENSO 
region: WR1—meridional and WR3—anticyclonic. 
Although with a smaller amplitude compared to the 
reanalysis data, most C3S prediction systems are able 
to reproduce this teleconnection, confirming how the 
large number of ensemble members allows to increase 
the signal-to-noise ratio and separate the SST-forced 
variability from the atmospheric internal variability 
(Feng et al. 2019).

• The C3S prediction systems show moderate predictive 
skill in capturing changes in the seasonal frequencies 
of weather regimes: correlations with the reanalysis’ 
WR frequency are small but always positive. The abil-
ity to predict the reanalysis’ terciles is barely above 
the climatology, however, models in the sel-ENS group 
grant higher predictive skill when the WR is prominent 
(WR frequencies above the 85th percentile) with prob-
abilities of up to 50% higher than the climatology (i.e. 
15%).

• The predictive skill of the C3S prediction systems 
increases when considering only Niña (WR1) and Niño 
(WR3) intense years, indicating a good sensitivity of 
the models to the ENSO signal. In fact, the frequency 
distributions change significantly and, importantly, the 
significance increases when using the sel-ENS. This is 
consistent with Shukla et al. (2000), Peng et al. (2011) 
who report how substantial skill has been achieved in 
forecasting seasonal mean values, with skill consist-
ently higher in the tropics and in regions with strong 
teleconnections with ENSO and notably decreased skill 
during neutral ENSO conditions.

The weather regimes approach provides an effective 
framework for exploring the relationship of the WRs with 
temperature and precipitation patterns e.g. Cipolla et al. 
(2020), Zhang and Villarini (2019) in the Mediterranean. 
For their societal and economic relevance particular 
focus should be given to extreme events like extreme dry 
spells (Raymond et al. 2016) and meteorological droughts 
(Richardson et al. 2020), assessing the ability of seasonal 
forecasting ensembles to forecast them (Bloomfield et al. 
2020). In this context, state of the art seasonal prediction 
systems like the ones that belong to the Copernicus C3S, 
provide a valuable data set that is constantly updated for 
inter-model comparisons; their currently moderate sea-
sonal predictive skill will benefit from a continual effort in 
adopting common verification diagnostics (Doblas-Reyes 
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et  al. 2013). As suggested by Weisheimer and Palmer 
(2014), the goodness of seasonal forecasts should be 
assessed primarily in terms of the probabilistic reliability 
of ensemble forecasts considering a small ensemble spread 
as an indicator of low ensemble forecast error.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00382- 021- 05681-4.
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