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Abstract
The most predictable patterns and prediction skills of subseasonal rainfall prediction for the Indo-Pacific regions are investi-
gated using the daily hindcast product of the NCEP Climate Forecast System version 2. A maximum signal-to-noise empiri-
cal orthogonal function analysis indicates that on 30–60-day time scale the most predictable patterns exhibit a zonal dipole 
over the tropical Indian Ocean and the surrounding oceanic areas of the Maritime Continent in boreal winter and spring, 
associated with the eastward propagation of the Madden–Julian Oscillation. Differently, the most predictable patterns in 
boreal summer and autumn present a meridional dipole between a tropical belt (from the Arabian Sea, the Bay of Bengal, 
and the South China Sea to the western Pacific) and an equatorial belt (from the equatorial Indian Ocean to the equatorial 
Maritime Continent), related to the northward propagation of intraseasonal oscillation. Both the 30–60-day and 10–20-day 
patterns can be predicted at lead times around one half of their respective longest life cycles, with worst skills in summer. 
For the winter–spring 30–60-day patterns, the atmospheric drive on oceans plays an important role, and the corresponding 
winds at both upper and lower levels are consistent with the Gill response, suggesting the importance of the evaporation-wind 
feedback mechanism. During summer–autumn, cold sea surface temperature anomalies cause a change in land-sea thermal 
contrast, which is important for monsoon variations.
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1 Introduction

Tropical intraseasonal oscillation (ISO) is an important 
part of atmospheric variations. It mainly comprises the 
Madden–Julian oscillation (MJO; Madden and Julian 1971, 
1972), which has a spectral peak around 30–60 days, and 
the quasi-biweekly oscillation (QBWO; Krishnamurti and 
Ardanuy 1980; Chen and Chen 1993, 1995), which has a 
characteristic period of 10–20 days. Many studies have been 
focused on the influences of ISO on tropical monsoon (Chan 
et al. 2002; Zhou and Chan 2005), Mei-yu front (Hung and 
Hsu 2008; Jia and Yang 2013), rainfall and sea surface tem-
perature (SST) variations (Paegle et al. 2000; Maloney et al. 
2014; Chen et al. 2015), the diurnal cycle of rainfall over the 
Maritime Continent (MC) (Rauniyar and Walsh 2010; Kan-
amori et al. 2013; Birch et al. 2016), tropical cyclone (Huang 
et al. 2011; Liang et al. 2011), and extreme drought/flooding 
and heat wave events (Jones 2000; Lu et al. 2012; Chen et al. 
2016). Moreover, the two ISO modes exhibit a strong link-
age (Kajikawa and Yasunari 2005) although they originate 
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in different regions and propagate in different ways. Thus, 
improvement of the prediction skills for ISO variations or 
modes is helpful for improving rainfall prediction.

Dynamical prediction, characterized with overall 
improvement in operational climate forecast, has become 
indispensable in weather and climate forecasts in the past 
decades (e.g. Saha 2006, 2016). With improvements of ini-
tial condition and model resolution (Yang et al. 2009; Wen 
et al. 2012), and coupling process and data assimilation 
(Wang et al. 2001), the skills for seasonal prediction have 
become more promising. However, there are still deficien-
cies in models such as apparent systematic biases, errors of 
coupled process (Hannah et al. 2015), relationships between 
monsoons and other climate systems (Turner et al. 2005), 
etc. Furthermore, predictions show relatively poor skills for 
subseasonal variability and regional characteristics. Appar-
ently, many models have difficulties in capturing the robust 
variability of the ISO. The skills for subseasonal predic-
tion and potential predictability with dynamic models have 
raised much attention in both academic and operational sec-
tors (Waliser et al. 2003; Reichler and Roads 2005; Seo et al. 
2009; Wang et al. 2014).

On the one hand, the subseasonal prediction that is 
focused on the extension from weather phenomena to sea-
sonal mean state is strongly associated with both boundary 
forcing and initial conditions, and thereby is full of chal-
lenges (Liu et al. 2015). On the other hand, the skill of sub-
seasonal prediction is different remarkably among various 
models, although it also depends on measuring methods and 
the variables analyzed. For example, fj prediction of rainfall 
is more challenging than prediction of atmospheric circula-
tion. Additionally, the inherent predictability of MJO can 
creep up to about 30–40 days, and the actual skill attains 
10–20 days and even 10–30 days when ensemble methods, 
in which the advantage of having a hindcast climatology for 
removing model bias is considered, are applied (Wheeler 
and Hendon 2004; Lin et al. 2008; Neena et al. 2014; Han-
nah et al. 2015). Both the MJO and QBWO modes may be 
potentially predictable at lead time longer than one-half of 
their respective life cycles (Wang et al. 2009). In spite of 
certain deficiencies, climate models exhibit skills in predict-
ing the major characteristics of ISO.

For a better understanding of subseasonal prediction, an 
analysis of the dominant modes identified by the so-called 
maximized signal-to-noise empirical orthogonal function 
analysis (MSN EOF; see next section for detail) seems help-
ful. On seasonal time scale, the most predictable patterns of 
monsoons (Liang et al. 2009; Zuo et al. 2013), low-level cir-
culation (Zhang et al. 2018a, b), and the SST patterns of the 
tropical Atlantic (Hu and Huang 2007) and the Indian Ocean 
(IO) (Zhu et al. 2015) have been depicted by this method. 
Jia et al. (2013) have focused on the prediction skills for 
the eight dominant QBWO modes from a prospective of 

global patterns (see Wang et al. 2008); however, the most 
predictable patterns of regional rainfall on subseasonal time 
scale are still unseen. Besides, previous studies on ISO are 
mainly concentrated on summer and winter seasons, with 
little attention on the transitional seasons. Due to the strong 
seasonal and regional features of the ISO (Yang and Wang 
2008; Wang and Xie 1997), it is necessary to discuss the 
regional modes of subseasonal prediction for all seasons. 
The Indo-Pacific Ocean is one of the mainly-concerned 
regions since it is one of the key regions for both QBWO 
sources and MJO phases. For example, tropical ISO mostly 
propagates eastward in the eastern hemisphere, and the Indo-
Pacific Ocean is the region where ISO is initiated actively 
(Wang and Rui 1990).

In light of the above aspects, here we conduct an inves-
tigation into the most predictable patterns and prediction 
skills of regional rainfall over the Indo-Pacific domain for 
subseasonal time scale and their evolutions. Observational 
data, model output, and analysis methods are introduced in 
Sect. 2. Skills of subseasonal prediction for rainfall patterns 
and regional characteristics, related large-scale features, and 
its lead-time dependence are examined in Sects. 3 and 4. The 
mechanisms for pattern distributions and diverse skills are 
also discussed in Sect. 4. A summary and discussion of the 
results obtained are shown in Sect. 5.

2  Data and methods

The National Centers for Environmental Prediction (NCEP) 
Climate Forecast System version 2 (CFSv2) is a fully cou-
pled dynamic prediction system, and it consists of the NCEP 
Atmospheric Global Forecast System with T126 resolution 
in the horizontal and 64 sigma layers in the vertical as the 
atmospheric model (Moorthi et al. 2001). Its land compo-
nent is the NCEP, Oregon State University (OSU), the Air 
Force, and the Hydrologic Research Laboratory land model 
(Ek et al. 2003) and the ocean component is the Modular 
Ocean Model version 4.0 from the NOAA Geophysical Fluid 
Dynamics Laboratory (GFDL) (Griffies et al. 2003). The 
daily rainfall output from the retrospective forecasts with 
45-day integration is analyzed. The hindcast runs were ini-
tialized from every 0000, 0600, 1200, and 1800 UTC cycle 
from 1999 to 2014, and the longest lead time for a target day 
is 44 days. The 0-day lead represents that the model runs 
were initialized on the current day, the 1-day lead for the 
forecasts initialized on the previous day, and the 44-day lead 
for 44 days ago. The hindcast output from 2011 to 2014 is 
calculated consistently with that from 1999 to 2010 (with 29 
February in the leap years omitted), and totally 44 lead days 
are obtained. For convenience, LD0 represents the smoothed 
output of 0-day lead, 1-day lead, and 2-day lead; LD1 rep-
resents the smoothed output of 1-day lead, 2-day lead, and 
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3-day lead; … and LD42 represents the smoothed output of 
42-day lead, 43-day lead, and 44-day lead. The 10–20-day 
and 30–60-day Lanczos band-pass filters (Duchon 1979) 
are applied on daily rainfall anomalies to obtain the time 
series of ISOs. Pentad mean and three-day mean are used 
for 30–60-day patterns and 10–20-day patterns after filter-
ing, respectively.

The observational data sets applied include the daily 
rainfall data with a horizontal resolution of 1° from the 
Global Rainfall Climatology Project (GPCP; Adler et al. 
2003), and the daily wind data with a horizontal resolution 
of 1° from the European Centre for Medium-range Weather 
Forecasts (ECMWF) (Dee et al. 2011). The daily-interpo-
lated outgoing longwave radiation (OLR) data, also with a 
horizontal resolution of 1°, from the NOAA Climate Data 
Record (CDR) program for satellites (Liebmann and Smith 
1996; Lee et al. 2007; Lee 2014) and the daily SST data with 
a horizontal resolution of 0.25° from the NOAA optimally 
interpolated (OI) SST (Reynolds et al. 2007) are employed 
as well.

The MSN EOF, developed by Allen and Smith (1997), is 
a method to derive the patterns that optimize the signal-to-
noise ratio from all ensemble members (Venzke et al. 1999; 
Huang 2004) when the number of ensemble members is lim-
ited. The ensemble mean of the prediction system comprises 
two portions: one is the forced portion associated with the 
prescribed external boundary conditions and the other is the 
random part contributed by unpredictable internal noises. 
Because of the memories contained in all initial conditions, 
the consistency of evolution among different ensemble mem-
bers from a model is found. However, the size of ensemble 
members is limited and therefore the effect of internal noises 
coming from the deviations within ensemble members is 
not negligible. The MSN EOF contributes to extraction of 
the forced part, namely, the predictable signals. At the same 
time, it helps to minimize the effects of noises among differ-
ent ensemble members. Thus, higher variances of the MSN 
EOF patterns denote higher predictability. The first mode 
extracted by this method, the most predictable pattern, shows 
the maximized ratio of the variance of ensemble mean to the 
deviation among ensemble members. Previous studies have 
successfully applied the MSN EOF to derive predictable 
patterns of targeted variables over different regions (Venzke 
et al. 1999; Huang 2004; Hu and Huang 2007; Liang et al. 
2009; Zuo et al. 2013; Zhu et al. 2015; Zhang et al. 2018b). 
Similar to the conventional EOF modes, the MSN EOF 
predictable patterns also show a spatial–temporal distribu-
tion, and the relationship between the observed projection 
PC and ensemble mean PC denotes the skill of MSNEOF 
modes. Unlike conventional EOF, the MSNEOF involves the 
process to transfer red noise to white noise, which helps to 
reduce the effect of “noise” that tends to cancel each other 

within individual members but still makes a difference when 
ensemble size is relatively small.

More details are as followed: matrix X
M
= X

P
+ X

R
 , 

in which XM represents ensemble mean, XP predictable 
signal, and XR unpredictable random component; and XP 
and XR are assumed uncorrelated with each other. Despite 
the counterbalance of noise within individual ensemble 
members, the residual, namely XR, is not negligible. Thus 
the covariance matrix of ensemble mean matrix CM can 
be divided into two parts: the signal and residual noise 
covariance matrices. In order to deduct the spatial covari-
ance of noise and derive the eigenvectors of the above sig-
nal covariance matrix, “prewhitening” is involved in the 
MSN EOF by a transformation matrix ( F ) to transform 
the internal variation to white noise. This transformation 
matrix is derived by the first K weighted EOF patterns 
of the within-ensemble deviation matrix. The 1st column 
vector (the optimal filter) from the matrix of eigenvec-
tors of FT

C
M
F maximizes the ratio of the variances of 

ensemble mean to the deviations among ensemble mem-
bers due to noise filters. The PC of the MSN EOF is 
derived by projecting XM onto the above corresponding 
column vector and the predictable pattern of the MSN 
EOF is obtained by projecting XM onto the corresponding 
MSN PC. The 1st pattern is thus named the most predict-
able pattern, and the 2nd pattern is called the second most 
predictable pattern for the same reason.

3  Patterns and skills

3.1  Most predictable patterns of 30–60‑day time 
scale

The first and second modes of conventional EOFs of the 
regional rainfall during winter and spring on 30–60-day 
time scale are shown in Fig. 1. The standard deviations of 
30–60-day filtered rainfall for the winter half of the year 
(Fig. 1a, d) offer an overview of the spatial characteristics 
of convective activity associated with the MJO. Active con-
vection centers appear along the equator during the winter 
half of the year, with more extensive distribution further to 
the north in spring. Conspicuous active centers occur over 
the eastern equatorial IO, east of the Philippine Islands, and 
north of Australia. For this conventional EOF analysis, the 
first and second modes explain 17.91% and 11.43% (17.72% 
and 9.18%) of the total variances in winter (spring), respec-
tively (Fig. 1b, c, e, f). All the PCs contain obvious subsea-
sonal variability (not shown). Similar patterns, which mainly 
imply a zonally out-of-phase variation over the eastern tropi-
cal IO and the western tropical Pacific, can be seen from the 
first modes during the boreal winter half of the year. This 
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distribution characteristic is reserved in the second mode in 
spring, although it also denotes a zonal dipole within 10° 
of the equator. However, a consistent variation between the 

MC and the nearby areas is depicted by the second mode 
of winter.

Fig. 1  Standard deviation of rainfall subseasonal variations on 
30–60-day time scale in a winter and d spring for period of 1999–
2014. Conventional EOF modes of observed rainfall (mm/day) over 

the Indo-Pacific regions on 30–60-day time scale for b first mode in 
winter, c second mode in winter, e first mode in spring and f second 
mode in spring

Fig. 2  Standard deviation of rainfall subseasonal variations on 30–60-
day time scale in a summer and d autumn for period of 1999–2014. 
Conventional EOF modes of observed rainfall (mm/day) over the 

Indo-Pacific regions on 30–60-day time scale for b first mode in sum-
mer, c second mode in summer, e first mode in autumn and f second 
mode in autumn
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Figure 2 shows similar magnitude of variance for the 
dominant modes in summer and autumn, compared with 
Fig. 1, which respectively explain 33.13% and 25.44% of 
the total variance. Similar spatial distributions exhibit a 
strong meridional out-of-phase variation on subseasonal 
time scale during the boreal summer half of the year. The 
first modes of the two seasons mainly show dipoles over 
the IO, while the second modes primarily exhibit dipoles 
over the western Pacific. The main centers of convective 

variability on 30–60-day time scale shift away from the 
equator to 10–20°N during the summer half of the year 
(compare Fig. 2a, d with Fig. 1).

The variance contribution of the most predictable patterns 
in winter at different leads is around 30% (Fig. 3), which 
is higher than that given by conventional EOF1 (Fig. 1). 
Indeed, the MSN EOF effectively captures the most predict-
able pattern from the noise-embedded variation. Compared 
with Fig. 1a, the patterns of MSN EOF1s at different leads 

Fig. 3  First MSN EOF modes and PCs of rainfall (mm/day) predicted 
by the CFSv2 for lead days of 0, 6, 12, 18, 24, and 29 in winter on 
30–60-day time scale. The solid black lines represent the PCs of 
ensemble means and the dashed grey lines represent the PCs of differ-
ent ensemble members while the solid red lines represent the PCs that 

are computed by projecting the observed rainfall onto the spatial dis-
tribution of the MSN EOF1. R represents the correlation coefficient 
between the solid red line and the solid black line, and R1 represents 
the averaged correlation coefficient among ensemble members
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consistently exhibit a generally zonal dipole as mentioned 
above, except for the relatively weak centers over the south-
ern equatorial IO. The two main centers over the northern 
IO and to the north of Australia result in a tilted dipole 
from LD0 to LD24, which is consistent with the evolution 
of equatorial eastward (EE) propagating mode [an equato-
rially trapped mode for tropical intraseasonal convection 
anomaly whose center is confined to a narrow equatorial 
belt between 15° S and 15° N, e.g., evolution of the cent-
ers from JAN 26 to FEB 19 1985; see Fig. 1 of Wang and 
Rui (1990)]. After LD26, the pattern resembles the mature 
phase of the EE mode [pentad 6 in Wang and Rui (1990)]. 
The model provides a decent prediction of both variability 
and magnitude of the variations at short leads. Moreover, the 
pattern at LD29 is still predictable, with R (the correlation 
coefficient between the ensemble-mean PC and the project-
ing observation PC) significantly exceeding a certain confi-
dence level. R1, the averaged correlation coefficient among 
different ensemble members, testifies that the influence of 
noise becomes more outstanding at longer leads due to lim-
ited size of ensemble members, which results in uncertainty 
of the signals at long leads. Although the spread of mem-
bers is definitely larger with increasing lead time and small 
ensemble size, after applying the MSN EOF analysis, R1 
surprisingly remains at a high confidence level of 0.95% and 
only drops slightly at longer leads. The sustaining high R1 
implies that the most predictable pattern in winter is quite 
robust at different leads, and the model can well capture 
the leading modes of ensemble-mean variation by the MSN 
EOF analysis.

The MSN EOF1s in spring explain at least 20% of the 
total variance at short leads and around 30% at longer leads 
(Fig. 4). The pattern is unstable before LD7 due to its sen-
sitivity to initial memory. After one week’s lead, initial 
memory decays and low-frequency component becomes 
pronounced. The pattern is stable from LD8 to LD28 in 
spring, exhibiting similarity to that in winter (compared 
with Fig. 3). The out-of-phase centers can be found from the 
equatorial IO and the main portion of the MC to the South 
China Sea (SCS), the eastern Bay of Bengal (BOB), and to 
the north of Australia before LD31, as shown in Fig. 4a–e. 
Such most predictable pattern is consistent with the evo-
lution of N(S)E mode [a similar track like the EE mode, 
but the convective center turns either northeast or southeast 
branch when passing through the MC, e.g. evolution of the 
centers from 6 to 25 APR 1985; Fig. 3 of Wang and Rui 
(1990)]. According to Fig. 4, there are two branches in the 
most predictable pattern during spring, with one occupying 
from the eastern BOB, the SCS to the western subtropical 
Pacific and the other occupying the north of Australia. These 
two branches are separated by stretched tips of the center 
extending from the equatorial IO to the New Guinea. Such 
features of spatial distribution are more obvious in spring 

than in winter. Moreover, the most predictable pattern in 
spring is similar to that in winter, except the two stronger 
centers over the eastern BOB and the SCS (associated with 
monsoon onset) and the relatively weaker southern branch 
to the north of Australia. (The southern branch is stronger in 
boreal winter than in spring due to the influence of the Aus-
tralian summer monsoon.) Similarly, R drops with increas-
ing lead time, while R1 maintains at a high level. The robust 
most predictable pattern in spring changes after LD31 from 
a zonal dipole into another type, a consistent variation type. 
A similar pattern shift can be found in the boreal winter 
around LD25 as shown in Fig. 3.

In short, the most predictable patterns during both winter 
and spring show a tropical zonal dipole that mainly implies 
the eastward propagation of MJO, a feature will be further 
discussed in Sect. 4. This characteristic of the dominance 
of MJO mode is consistent with the result of Wang and Xie 
(1997).

The most predictable patterns in summer and autumn 
are very similar with each other (thus autumn features not 
shown) and they remain stable at all leads with relatively 
high R1 values. (The first modes of summer and autumn 
explain ~ 40% of the total variance at short leads and even 
50% at longer leads.) The discrepancies of variance contri-
bution between MSN EOF1 and MSN EOF2 are quite larger 
during the boreal summer half of the year, compared with 
those during the winter half of the year (Figs. 3, 4). The 
Asian monsoon is considered to be the world’s most promi-
nent monsoon component. Under the background of mon-
soon onset and demise, active intraseasonal convective sys-
tems play an important role in climate prediction especially 
for the most predictable patterns in summer and autumn, 
which contributes to the high value of variance. Moreo-
ver, ensemble spread (discussed later), associated with the 
unpredictable “noise”, is controlled when the MSN EOF is 
applied, illustrating the high variance of the most predict-
able patterns in summer and autumn. There exist two out-
of-phase belts in both summer and autumn: one is between 
the Arabian Sea, the BOB, the SCS, and the western Pacific, 
and the other is from the equatorial IO to the MC as shown 
in Fig. 5 (autumn not provided). The out-of-phase centers 
over the IO, the Arabian Sea, and the BOB are mainly asso-
ciated with the Indian monsoon, while the ones over the SCS 
and the MC are related to the East Asia summer monsoon. 
These spatial distributions are consistent with the equatorial 
eastward movement of the northward moving (EN) mode, 
a combination of the major equatorial eastward movement 
and the northward movements over the Indian and west-
ern Pacific monsoon regions, e.g., AUG 29—SEP 2 1976 
[Fig. 4 in Wang and Rui (1990)]. R drops more quickly with 
increasing lead time in summer, compared with the other 
three seasons. However, the values of R1 in both summer 
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and autumn remain high at all leads, which is consistent 
with the stable patterns during the summer half of the year.

In summary, the most predictable patterns during both 
summer and autumn show a meridional dipole. This feature 
mainly implies a northward propagation of the boreal sum-
mer ISO (with a period of 30–60 days).

3.2  Skills and pattern shift

Focusing on the spatial–temporal evolution of intraseasonal 
activities (Sperber et al. 1997; Waliser et al. 2003), previous 
studies showed skill versus lead time of MJO by anomaly 

correlation and indicated prediction skills of 10 days for 
rainfall and 3 weeks for zonal wind (Jones and Schemm 
2000; Jones 2000; Reichler and Roads 2005; Wang et al. 
2014). Seo et al. (2007) calculated the intraseasonal anomaly 
correlation and time evolution for each phase of U200 (Seo 
et al. 2005) and compared four empirical forecast schemes 
including the CFS dependence on PC1 and PC2, finding 
a correlation skill extension to 15 days for both PCs (Seo 
et al. 2009). Waliser et al. (2003) also stressed the influence 
of ensemble spread on prediction skills of models. Figure 6 
shows the skills of the predictable patterns of rainfall over 
the Indo-Pacific regions on 30–60-day time scale, and it 

Fig. 4  Same as Fig. 3 but for lead days of 0, 7, 14, 21, 28, and 35 in spring
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indicates that both MSN EOF1 and MSN EOF2 are similar 
with observations. As expected, skills decrease with increas-
ing lead time. The model exhibits the lowest skill around 
20 days in summer (Fig. 6a), for which the prediction is ini-
tiated from mid-April to mid-June when monsoon becomes 
active. This feature is consistent with the result of Lin et al. 
(2008) and Rashid et al. (2011). The most dominant pat-
terns can be predicted about 30 days in advance for winter 
and the two transitional seasons. Within the leads of two 
weeks, these three seasons show high correlations above 0.6. 
Compared with the MSN EOF1, the MSN EOF2 exhibits 
relatively lower predictability at the same leads (Fig. 6b).

As discussed above, only the predictable patterns in win-
ter and spring suffer from a pattern shift at long leads. The 
shift of the most predictable pattern in winter occurs after 
LD24 while the one in spring occurs after LD28, changing 
from a zonal dipole to uniform variation (Figs. 3, 4). Fig-
ure 7 testifies the similarity between the predictable patterns 
and the observed EOF modes during the winter half of the 
year. In winter, the solid blue line maintains at a high level 
above 0.6 at short lead, implying that the most predictable 
pattern matches the first EOF mode of observed rainfall 
on 30–60-day time scale quite well before LD25 (Fig. 1b). 
A sudden drop of the blue line occurs around LD25, and 

Fig. 5  Same as Fig. 3 but for lead days of 0, 4, 8, 12, 16, and 20 in summer
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the correlation between the most predictable pattern and 
the observed EOF 2 (Fig. 1c) becomes comparatively pro-
nounced (the solid red line ascends largely and surpasses the 
blue line), which implies a pattern shift of the most predict-
able pattern from observed EOF 1 to EOF 2. Accordingly, 
the MSN EOF2 in winter also exhibits a pattern shift from 
observed EOF 2 to EOF 1 around LD25 (dashed pink line 
replaced by dashed black line, Fig. 7a), and such a transfor-
mation of pattern can be seen from Fig. 8a–c, characterized 
by a transformation from the consistent variation over the 
MC to a tropical zonal dipole. Compared with the pink line, 
the higher value of the blue line suggests higher predict-
ability of the MSN EOF1 than of the MSN EOF2, which is 
consistent with the result in Fig. 6.

In spring, the shift of the most predictable pattern from 
observed EOF 1 (Fig. 1e) to EOF 2 (Fig. 1f) can be found 

around LD30 as shown in Fig. 7b, which is consistent with 
the transformation seen from Fig. 4. However, the pattern 
shift around LD30 in spring is not as obvious as that in win-
ter, given that the pattern correlation between MSN EOF1 
and observed EOF2 (solid red line after LD30 in Fig. 7b) is 
only around 0.4, significantly lower than the 0.8 in winter 
(Fig. 7a). Moreover, the MSN EOF2 in spring resembles 
both observed EOF 1 and EOF2 as shown in Fig. 8e, f. In 
summary, the pattern shift confined to modes 1 and 2 occurs 
only in winter and spring at long leads.

According to Fig. 9a, the close relationships between 
ensemble members and ensemble mean for modes 1 and 
2 in winter both drop suddenly after LD20 and reach the 
lowest value around LD25 when a pattern shift arises, but 
the relationships become stronger again, a feature which is 
more remarkable than that in spring around LD30. During 
summer and autumn (Fig. 9d), the spread of ensemble mem-
bers is quite small with highly maintained values of correla-
tion coefficients around 0.9 at all leads. The low value of y 
axis in Fig. 9 denotes high spread within ensemble mem-
bers and vise versus. Both EOFs and PCs show the same 
result, implying that the pattern shift during the winter half 
of the year as shown in Figs. 7 and 8 is closely related to 
the large spread of ensemble members. That is, the large 
spread of ensemble members results in a pattern shift dur-
ing winter and spring. In fact, the pattern shift occurs more 
apparently during the winter half year in conventional EOF 
modes where the ensemble deviation is not under controlled 
(figures not shown). Without application of the MSN EOF, 
both the ensemble spread and the pattern shift are obvious in 
winter and spring. Waliser et al. (2003) pointed out that the 
mean forecast error and the mean signal tend to be equal at 
about 20–30 days over the western Pacific and the impact of 
ensemble spread on predictability, which possibly explains 
why pattern shift occurs around 20–30 days. Generally, 
ensemble spread is one of the main sources of errors besides 
systematic bias and initial condition. Thus, Fig. 9 explains 
the possible mechanism of pattern shift as discussed above. 
Although the instability of signals still slightly grows up 
with lead time, the MSN EOF helps to confine the spread 
of ensemble members and reduce the influence of noise 
(Fig. 9c, f).

4  Related large‑scale climate variation

Figures 10 and 11 show the patterns of regression of SST, 
OLR, and wind fields against the ensemble-mean PC1 on 
30–60-day time scale for winter and summer, respectively. 
Since the most predictable patterns of the Indo-Pacific rain-
fall are similar between winter and spring, and between 
summer and autumn, the regression patterns for spring and 
autumn are not discussed in detail.

Fig. 6  Correlation coefficients between ensemble-mean PCs and 
projected PCs (computed by projecting the observed rainfall upon 
the corresponding MSN EOF modes) for a MSN EOF1 and b MSN 
EOF2 on 30–60-day time scale. The black straight line represents the 
correlation coefficients at the 95% confidence level
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During boreal winter, an obvious warm SST center occu-
pies the northwest to Australia where a significant positive 
OLR center is located, and both centers are significant at 
all leads (Fig. 10, only LD0 shown). A significant negative 
OLR center is found over the equatorial IO, which lies 40° 
west of the warm SST center. This feature means an out-of-
phase relationship over the IO and nearby areas northwest 
to Australia (Fig. 1) and illustrates the corresponding pro-
cess between oceans and the atmosphere, stressing atmos-
pheric drive on the oceans. In spring, the regression patterns 
of both SST and OLR are similar to those in winter, with 
slightly eastward occupation of the OLR center and weaker 
SST warming center (figure not shown). At the lower level, 
strong easterly wind appears over the MC and its nearby 
areas in winter at all leads, accompanied by weak westerly 
wind over the equatorial IO. At the higher level, westerly and 
easterly winds occupy the MC and the western equatorial IO, 
respectively, with anticyclonic and cyclonic circulations over 
the subtropical northern and southern IO, West Australia, 
and the northwestern Pacific Ocean. In spring, significant 
cyclonic and anticyclonic circulations occur to the north and 
south of the strong westerly wind over the equatorial IO, 
respectively. Strong easterly wind over the eastern MC at the 
lower level and its counterpart at the higher level can also 
be identified (figure not shown), which is consistent with 
the Gill (1980) theory. In addition, at the lower level, the 
climatological winds are mainly westerly over the equatorial 
IO and easterly to the east of the MC. The regression of 850-
hPa wind discussed above also exhibits weak westerly wind 
over the equatorial IO and strong easterly wind over the MC, 
thus accelerating evaporation and favoring the equatorial 

eastward propagation of subseasonal convective center 
according to the evaporation-wind feedback mechanism. In 
short, the most predictable patterns on 30–60-day time scale 
during the boreal winter half of the year are mainly associ-
ated with the eastward propagation of the MJO. Moreover, 
the regressions of climatic variables resemble the counter-
parts at LD0 and even at the leads when pattern shifts occur 
(figure not shown), implying similar climate variations and 
physical mechanisms for the most predictable patterns.

The patterns of regression are quite different for the sum-
mer half of the year. At different leads (Fig. 11, only LD0 
shown), cold SST domains including the Arabian Sea, the 
BOB, the SCS, and the western Pacific are significant. The 
negative relationship between northern IO SST and PC1 is 
consistent with the result of Wu and Cao (2017). The pre-
dominant cold SST distribution at different leads favors the 
land-sea thermal contrast, which is associated with monsoon 
activity. In addition, the regression of OLR shows an out-
of-phase distribution compared with the regression of SST. 
Negative centers occupy the Arabian Sea, the BOB, and the 
western Pacific where cold SST centers are located. The 
latitudinal distance between the negative OLR center and 
the positive SST center favors an out-of-phase meridional 
distribution of rainfall patterns during summer, and implies 
a response process from the atmosphere to oceans as well 
as a northward propagation of subseasonal convective activ-
ity. The regressions in autumn are similar to those in sum-
mer except for a stronger warm SST center over the eastern 
equatorial IO and a weaker cold SST center over the western 
Pacific, which is associated with a later withdrawal of the 

Fig. 7  Pattern similarities between conventional EOFs and the pre-
dictable patterns at different leads for a winter and b spring on 
30–60-day time scale. The solid blue line represents the pattern cor-
relation coefficients between the MSN EOF1 pattern and the first 
observed EOF mode. The dashed pink line represents the pattern cor-
relation coefficients between the MSN EOF2 pattern and the second 

observed EOF mode. The solid red line represents the pattern cor-
relation coefficients between the MSN EOF1 pattern and the second 
observed EOF mode. The dashed black line represents the pattern 
correlation coefficients between the MSN EOF2 pattern and the first 
observed EOF mode. The thin black straight line represents the 95% 
confidence level
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Indian monsoon and an earlier withdrawal of the East Asian 
monsoon as discussed in Sect. 3.

The regression of 850-hPa wind in summer (Fig. 11b) 
shows obvious cross-equatorial, westerly wind over 
the northern IO, the Arabian Sea, the BOB, and the 
SCS. Strong northeasterly wind prevails over the MC 
and nearby regions at the higher level (Fig. 11d). Such 

distribution denotes that monsoon circulation exerts a 
profound influence on the meridional movement of sub-
seasonal convective activity, which mainly propagates 
northward over the IO and the western Pacific (Wang 
and Rui 1990). Wind fields are nearly the same in summer 
and autumn, which mainly show an influence of monsoon 

Fig. 8  Second MSN EOF modes and PCs of rainfall (mm/day) pre-
dicted by the CFSv2 for lead days of a 16, b 21, and c 26 in winter 
and d 21, e 26, and f 31 in spring on 30–60-day time scale. The solid 
black lines represent the PCs of the ensemble means and the dashed 
grey lines represent the PCs of different ensemble members while the 

solid red lines represent the PCs that are computed by projecting the 
observed rainfall onto the spatial distribution of the MSN EOF2. R 
represents the correlation coefficient between the solid red line and 
the solid black line and R1 represents the averaged correlation coef-
ficient among ensemble members



2770 S. Dong et al.

1 3

Fig. 9  Averaged pattern correlation coefficients of EOFs (left panel, 
a, d), averaged correlation coefficients of PCs (middle panel, b, 
e), averaged correlation coefficients of MSN PCs (right panel, c, f) 

between different ensemble member and the ensemble mean of rain-
fall over the Indo-Pacific regions on 30–60-day time scale. The thin 
black straight line represents the 95% confidence level

Fig. 10  Regressions of observed a SST, b 850-hPa winds, c OLR, and d 200-hPa winds against ensemble-mean PC1 at LD0 in winter on 30–60-
day time scale. Scattered dot areas in a, c and shaded areas (yellow for 90%) in b, d represent the 95% confidence level
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activity on the predictable patterns during the summer 
half of the year.

5  Summary and discussion

In this study, we have depicted the most predictable pat-
terns of the Indo-Pacific rainfall, by applying a maximized 
signal-to-noise empirical orthogonal function analysis, on 
MJO and QBWO time scales. We have also investigated 
the seasonality of these most predictable patterns and dis-
cussed the differences in the patterns and their seasonal 
features between the MJO and QBWO modes. The vari-
ations of large-scale atmospheric circulation associated 
with the rainfall features have been examined as well.

The most predictable patterns on 30–60-day time scale 
during boreal winter and spring both show a tropical zonal 
dipole associated with the eastward propagation of MJO, 
while the most predictable patterns during summer and 
autumn show a meridional dipole, which mainly implies a 
northward propagation of boreal summer ISO. The NCEP 
CFSv2 well predicts the most predictable patterns for all 
seasons but with a relatively low skill of about 20 days for 
summer, which may be associated with the influence of 
summer monsoon activity. Better skills can be found with 
lead time around 30 days in winter and the transitional 
seasons. The zonal dipole for the boreal winter half of 
the year exhibits opposite distributions over the tropical 
IO and the surrounding oceanic areas of the MC. This 
dipole changes into the feature of uniform variation at long 
leads, characterized by a consistent distribution over the 
MC and the nearby areas especially in winter. The shift of 
predictable patterns during the boreal winter half of the 

year mainly results from the relatively high spread among 
ensemble members. For the summer half of the year, the 
meridional dipole shows opposite features between the 
tropical belt covering the Arabian Sea, the BOB, the SCS, 
and the western Pacific and the equatorial belt covering 
the equatorial IO and the MC.

On 30–60-day time scale, the most predictable patterns 
during the boreal winter half of the year are associated with 
the eastward propagation of MJO, while the most predict-
able patterns during the summer half of the year associated 
with the northward propagation of the boreal summer ISO. 
Atmospheric drive on the oceans plays an important role in 
the pattern distribution, and the corresponding wind fields 
at both upper and lower levels are consistent with the Gill 
response in winter and spring. The related circulation dur-
ing the winter half of the year emphasizes the influence of 
the evaporation-wind feedback mechanism on subseasonal 
convective activity. During the summer half of the year, 
air-sea interaction is still important when the predominant 
cold SST distribution at all leads favors the land-sea thermal 
contrast associated with monsoon intensity. Both upper- and 
lower-level winds exhibit the features of monsoon circula-
tion, which exerts a profound influence on the meridional 
movement of subseasonal convective activity.

The 10–20-day convective activity shows a relatively 
smaller contribution to the total variance and is mainly con-
fined to the subtropical regions along the 10°-30° latitudi-
nal band. However, large variance of QBWO can still be 
found in the Asian summer monsoon region (Kikuchi and 
Wang 2009; Wang and Zhang 2018). Figure 12 shows the 
most predictable patterns on 10–20-day time scale during 
summer. Convective centers are located over the western 
North Pacific, the SCS, and the BOB. Unlike the 30–60-day 

Fig. 11  Same as Fig. 10 but for summer
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Fig. 12  Same as Fig. 3 but for lead days of 0, 3, 6, and 9 in summer and on 10–20-day time scale
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patterns, a meridional dipole can be found over the IO and 
the western Pacific in all seasons (figures not shown), but 
is most obvious in summer, associated with the QBWO and 
monsoon activity. Compared with the most predictable pat-
terns on the 30–60-day time scale, the patterns on 10–20-day 
time scale exhibit conspicuously smaller variance and the 
skills of its prediction drop quickly with increasing lead time 
(Fig. 13). Particularly, the NCEP CFSv2 presents the worst 
skill in summer (with around 10 days) on the 10–20-day pre-
dictions for both the most predictable pattern and the second 
most predictable pattern. In winter and the transitional sea-
sons, the 10–20-day predictions show scattered features and 
weaker link to large-scale climate variations. In short, higher 
frequency signals, namely the 10–20-day prediction, provide 
more challenges compared with the 30–60-day prediction 

for subseasonal prediction by models, and the 10–20-day 
regressions of climatic variables during summer show fea-
tures of monsoon circulations at both upper and lower levels, 
consistent with the result of Chen and Chen (1993) and of 
Kikuchi and Wang (2009). 
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