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Abstract
Dust aerosols play key roles in affecting regional and global climate through their direct, indirect, and semi-direct effects. Dust 
events have decreased rapidly since the 1980s in East Asia, particularly over northern China, primarily because of changes 
in meteorological parameters (e.g. surface wind speed and precipitation). In this study, we found that winter (December–
January–February) Arctic amplification associated with weakened temperature gradients along with decreased zonal winds 
is primarily responsible for the large decline in following spring (March–April–May) dust event occurrences over northern 
China since the mid-1980s. A dust index was developed for northern China by combining the daily frequency of three types 
of dust event (dust storm, blowing dust, and floating dust). Using the empirical orthogonal function (EOF) analysis, the 
first pattern of dust events was obtained for spring dust index anomalies, which accounts for 56.2% of the variability dur-
ing 1961–2014. Moreover, the enhanced Arctic amplification and stronger Northern Hemisphere annular mode (NAM) in 
winter can result in the anticyclonic anomalies over Siberia and Mongolia, while cyclonic anomalies over East Europe in 
spring. These results are significantly correlated with the weakened temperature gradients, increased precipitation and soil 
moisture, and decreased snow cover extent in the mid-latitude over Northern Hemisphere. Based on the future predictions 
obtained from the Fifth Climate Models Intercomparison Project (CMIP5), we found that the dust event occurrences may 
continually decrease over northern China due to the enhanced Arctic amplification in future climate.
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1 Introduction

Dust aerosols emitted into the atmosphere can affect the 
climate system directly by modifying the radiation budget 
(Sokolik and Toon 1996; Huang et  al. 2006; Fu et  al. 
2009), indirectly by altering cloud microphysical properties 
(Twomey et al. 1984; Ackerman et al. 2000; Sassen et al. 
2003; Andreae and Rosenfeld 2008; Wang et al. 2010), and 
possibly by suppressing rainfall processes (Rosenfeld et al. 
2001; Solmon et al. 2008; Creamean et al. 2013). Dust can 
be transported thousands of kilometers from source regions 
to downwelling areas (Duce et al. 1980; Hsu et al. 2012; 
Huang et al. 2015; Guo et al. 2017; Chen et al. 2018; Ma 
et al. 2019). Once large amounts of dust aerosols are depos-
ited into the oceans, soluble or bioavailable iron from dust 
aerosols can affect biogeochemical processes in the ocean 
(Jickells et al. 2005). On a regional scale, radiative forcing 
by dust aerosols can greatly exceed that due to sulfate aero-
sols and can be comparable to that of clouds, which may 
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adversely affect the water supply by effecting on the temper-
ature, along with the role of aerosols as cloud condensation 
nuclei (Sokolik and Toon 1996; Kaufman et al. 2002). Up 
to now, the radiative forcing and optical properties of dust 
aerosols have been thoroughly investigated using multi-sat-
ellite retrievals (Kaufman et al. 2002; Jin et al. 2014, 2015), 
and ground-based instruments measurements (Huebert et al. 
2003; Li et al. 2010; Wang et al. 2010, 2015a, b, 2018b; Pu 
et al. 2015; Che et al. 2015, 2019; Chen et al. 2018; Wu 
et al. 2018b). In addition, the long-term variations in the 
dust event occurrences related to the meteorological factors 
and global climate have been extensively analyzed based on 
observations (Chiapello et al. 2005; Hara et al. 2006; Fan 
et al. 2017; Ji and Fan 2019) and model simulations (Ginoux 
et al. 2004; Mukai et al. 2004; Mao et al. 2011b).

Dust aerosols primarily originate from dust source 
regions over the globe. Recently, East Asia and surrounding 
areas, which contain several dust source regions, have been 
the focus of much scientific attention. Dust aerosols emitted 
from the Gobi Desert and Taklimakan Desert along with the 
adjacent dust source regions over northern China account for 
70% of the total dust emissions in Asia (Zhang et al. 2003). 
Variations in dust activity in East Asia (e.g., dust events and 
dust transport) are believed to be associated with changes in 
large-scale atmospheric circulation (Husar et al. 1997; Gong 
et al. 2006a), surface wind (Kurosaki and Mikami 2003; 
Wang et al. 2018a), cyclone frequency (Qian et al. 2002; Zhu 
et al. 2008), the intensity of the East Asian monsoon (Wu 
et al. 2010), Northern Hemisphere annular mode (NAM) 
(Yin et al. 2013; Li et al. 2019), or Arctic Oscillation (AO) 
(Mao et al. 2011a, b). Changes in atmospheric circulation 
associated with sand-driving mechanisms are main causes 
in the reduction of dust events. Good correspondence was 
found between the surface wind speed and dust occurrences 
(Kurosaki and Mikami 2003; Zhao et al. 2004). A steady 
decrease in zonal maximum wind speed (up to − 0.95 m/s) 
is largely responsible for the decline in dust event occur-
rences over northern China since the beginning of this cen-
tury (Wang et al. 2018a). Previous researches exhibited that 
an enhanced geopotential height over the Mongolian Pla-
teau and an increase in precipitation over northwest China 
(Ding et al. 2005), along with the reduced cyclone frequency 
over northern China (Qian et al. 2002) and Mongolia (Zhu 
et al. 2008) are closely correlated with the reduction of dust 
events. Moreover, the decline in dust events also interacts 
with large scale climate fields. Researches indicated that the 
spring dust occurrences exhibit an increase during negative 
phases of the AO, by contributing to atmospheric instabil-
ity (Gong et al. 2006a; Lee et al. 2014). Besides the AO, 
interannual variations of the Antarctic Oscillation (AAO) 
play a significant role in dust-related atmospheric circula-
tion during boreal spring (Fan and Wang 2004). Ji and Fan 
(2019) further showed that positive AAO in winter provides 

dynamical conditions, which are conducive to reducing dust 
weather frequency over northern China by affecting atmos-
pheric circulation changes. Furthermore, indirect effect of 
the ocean process (e.g. the interdecadal variability and sea 
ice retreat) can’t be ignored. Gong et al. (2006b) showed that 
there are fewer dust aerosols in East Asia during the warm 
phase of the Pacific decadal oscillation (PDO), because of 
air-sea interactions between the global westerly belt and sea 
surface temperature (SST) in the North Pacific. In negative 
AO phase years, frequency of dust events shows a signifi-
cant increase in the years of El Niño compared with those 
in the years of La Niña (Lee et al. 2014). Moreover, Fan 
et al. (2017) found that decreased winter sea ice cover in the 
Barents Sea leads to an increased frequency of dust events 
during the period of 1996–2014 over North China. These 
results provide us with an understanding of variations in dust 
events in East Asia from changes in climate.

Accelerated Arctic warming over the past decades has 
led to a large retreat of Arctic sea ice (Comiso 2002; Boé 
et al. 2009; Overland and Wang 2010; Cohen et al. 2014). 
The changes in surface albedo associated with melting snow 
and ice will exacerbate warming in the Arctic (Holland and 
Bitz 2003; Serreze and Francis 2006), especially in win-
ter (Screen and Simmonds 2010a; Serreze and Barry 2011; 
Kim and Kim 2018; Dai et al. 2019). Winter Arctic warming 
has been enhanced by increasing oceanic heat loss, which is 
likely the combination of the direct response to reductions in 
the fall/winter ice cover, and the indirect response to summer 
sea ice loss and increased summer ocean heating (Screen 
and Simmonds 2010b). In addition, other mechanisms also 
partially contribute to the accelerated warming of the Arctic, 
including local forcing and feedbacks (Goosse et al. 2018; 
Stuecker et al. 2018), increased water vapor and clouds (Bin-
tanja et al. 2011; Taylor et al. 2013; Pithan and Mauritsen 
2014; Burt et al. 2016), increased poleward energy transport 
(Cai 2005; Gong et al. 2017), and the other thermodynamic 
processes (Chylek et al. 2009; Yoo et al. 2011; Screen et al. 
2012; Ding et al. 2014; Franzke et al. 2016; Screen and Fran-
cis 2016; Yoshimori et al. 2017). Observations indicated 
that diminishing sea ice is the major driver of Arctic ampli-
fication (Serreze et al. 2009; Screen and Simmonds 2010a; 
Crook et al. 2011; Taylor et al. 2013; Yim et al. 2016). The 
Arctic amplification caused by the increase in outgoing long-
wave radiation and heat flux in the new open sea occurs only 
over areas where sea ice is significantly reduced, thus the sea 
ice retreat is necessary for large amplification happening in 
the Arctic (Dai et al. 2019). Here, “Arctic amplification” 
refers to surface warming over the Arctic, which has been 
nearly twice as large as warming over the rest of the globe in 
recent decades (Rigor et al. 2000; Polyakov et al. 2002; Ser-
reze and Francis 2006; Graversen et al. 2008; Serreze et al. 
2009; Screen and Simmonds 2010a, b). The loss of Arc-
tic ice cover may affect large-scale atmospheric circulation 
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patterns (Jaiser et al. 2013; Pedersen et al. 2016), and thus 
influence northern mid- and high-latitude climate (Deser 
et al. 2007, 2010; Petoukhov and Semenov 2010; Liu et al. 
2012; Li and Wang 2013, 2014; Mori et al. 2014). Therefore, 
there is an urgent need to explore the impact of winter Arctic 
amplification on the remarkable decline in spring dust event 
occurrences over northern China.

Until now, meteorological parameters and climate tele-
connections have been used individually to investigate long-
term variations in dust event occurrences. However, thermo-
dynamic processes related to the connection of spring dust 
event occurrences with winter Arctic amplification still need 
to be performed. The remainder of this paper is organized 
as follows. Section 2 presents the data and methods used in 
the research. In Sect. 3, firstly the Arctic amplification is 
described in detail, then we use the Empirical orthogonal 
function (EOF) analysis to investigate the temporal and spa-
tial variations of spring dust index over northern China (70° 
E–140° E, 30° N–55° N). Then, atmospheric circulations 
and climate conditions connected winter Arctic amplifica-
tion with decline in spring dust events over northern China 
for 1961–2014 are presented. Finally, we explore that the 
change in dust event occurrences over northern China related 
to Arctic amplification in the future by using the Fifth Cli-
mate Models Intercomparison Project (CMIP5) models. 
The conclusion and discussion is presented in Sect. 4. We 
believe that results presented here provide a comprehen-
sive and detailed analysis of the thermodynamic processes 
involved in reduction of spring dust events over northern 
China with winter Arctic amplification, and help advance 
in climate models on dust aerosol. It should be noted that 
winter (December–January–February) appearing in the fol-
lowing study is in the winter of 1960–2013, and spring is in 
the spring (March–April–May) of 1961–2014.

2  Data and methods

2.1  Datasets

Datasets of daily dust event occurrences (dust storm, blow-
ing dust, and floating dust) during the period of 1961–2014 
are derived from surface meteorological observations over 
mainland China. The Dust (storm) Subject Databases (V1.0) 
is provided by the National Meteorological Center of China. 
The three types of dust events have been identified by several 
previous studies (Wang et al. 2005, 2008, 2018a; Kang et al. 
2016). Briefly, the dust storm is defined as large quantities 
of dust particles transported in the atmosphere (Visibil-
ity < 1 km), whereas floating dust is defined as suspended 
dust derived from upwind sources (Visibility < 10 km) on a 
given day. The definition of blowing dust is similar to that of 
floating dust, but for dust that is emitted from local sources. 

Dust events frequently occur in spring over northern China 
(Zhou and Zhang 2003), related to strong winds, thermal 
instability, and dust sources. The Dust (storm) Subject Data-
bases contains information for more than 2400 sites (basic, 
benchmark weather stations and general weather stations) 
in China. The datasets of dust event occurrences, visibil-
ity, daily maximum wind speed, and wind direction contain 
observations from ground stations beginning in January 
1954. The climatic threshold value or allowable value check, 
internal consistency check, and spatial consistency check 
are applied to control the weather phenomena and visibil-
ity data. The valid data of every element is > 98%, and the 
correct rate of the dataset is close to 100%, so the dataset is 
considered to be of high quality. Additionally, to minimize 
the uncertainties of data, apart from the quality control of 
the dataset itself, a series of stringent quality controls is in 
place before using the product. (1) If missing days in record 
at a site are greater than 10 days in a certain month, this 
month is omitted. (2) If missing months in record at a site 
are equal or greater than one month in a certain year, this 
year is omitted. (3) After the step (1) and (2), sites with the 
annual statistics for less than 40 of years during 1961–2014 
are excluded. We have reduced a handful of poor-quality 
sites based on the above quality control steps, and 1506 sta-
tions are remained in the 1613 stations within the latitude 
more than 30° N over northern China finally.

A dataset of sea ice concentration for 1979–2014 from 
the National Aeronautics and Space Administration (NASA) 
Scanning Multichannel Microwave Radiometer (SMMR) 
and the Special Sensor Microwave/Imager (SMM/I) (Cava-
lieri et al. 1999), which is obtained from the National Snow 
and Ice Data Center (NSIDC; http://nsidc .org/data) is used 
in this work. Sea-ice extent (SIE) is defined as the total area 
with at least 15% sea-ice concentration. The Arctic SIE 
index is calculated as the area-averaged SIE in the region 
north of 70° N in fall (September–October–November). The 
snow cover data used in this paper is obtained from the Rut-
gers University Global Snow Lab (Robinson et al. 1993), 
and can be downloaded freely from https ://clima te.rutge 
rs.edu/snowc over/docs.php?targe t=datar eq. The original 
data are mapped on the 89 × 89 cell Northern Hemisphere 
grids from October 1966 to the present, with cell resolution 
ranging from 10,700 to 41,800 km2, which is interpolated to 
a 2.5° × 2.5° resolution here.

The GISS surface temperature analysis (GISTEMP) data-
set is an estimate of global surface temperature change with 
a resolution of 2° × 2° from the NASA Goddard Institute for 
Space Studies (GISS) from 1880 to the present day (Hansen 
et al. 2010), and is available at https ://data.giss.nasa.gov/
giste mp/. The precipitation dataset used in this study is the 
Global Precipitation Climatology Center (GPCC) monthly 
precipitation dataset (Schneider et al. 2018), with a spatial 
resolution of 2.5° × 2.5°, from 1891 to 2016, and is available 

http://nsidc.org/data
https://climate.rutgers.edu/snowcover/docs.php?target=datareq
https://climate.rutgers.edu/snowcover/docs.php?target=datareq
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
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at https ://opend ata.dwd.de/clima te_envir onmen t/GPCC/
html/fulld ata-month ly_v2018 _doi_downl oad.html. The soil 
moisture data is from the Climate Prediction Center (CPC) 
of the National Oceanic and Atmospheric Administration, 
at a 0.5° × 0.5° resolution from 1948 to the present (Dool 
et al. 2003; Mitchell and Jones 2005). The data is available 
at https ://www.esrl.noaa.gov/psd/data/gridd ed/data.cpcso 
il.html. It is interpolated to a 2.5° × 2.5° resolution for our 
study.

The reanalysis data employed in this study are from the 
National Centers for Environmental Prediction-National 
Center for Atmospheric Research (NCEP/NCAR), which 
is achieved by combining a fixed global data assimilation 
system and model, along with a comprehensive database 
of land surface, radiosonde, pibal, ship, aircraft, satellite, 
and other data. It includes analyses of the atmosphere at 17 
pressure levels at a resolution of 2.5° × 2.5° from 1948 to the 
present, and is available at https ://www.esrl.noaa.gov/psd/
data/gridd ed/data.ncep.reana lysis .html (Kalnay et al. 1996; 
Kistler et al. 2001). We use the monthly mean fields of wind, 
sea level pressure (SLP) and geopotential height in the win-
ter and spring during the period of 1961–2014.

The historical simulations during 1961–2005 and future 
predictions for Representative Concentration Pathways 
(RCPs) RCP4.5 and RCP8.5 during 2006–2099 are obtained 
from the Fifth Climate Models Intercomparison Project 
(CMIP5) used in this study. The datasets of dust emission 
flux, temperature, precipitation, snow cover, and soil mois-
ture content were statistically simulated by 49 models from 
the CMIP5, which are interpolated to 1° × 1° spatial reso-
lution. Moreover, we only selected the first ensemble run 
from all these models (Taylor et al. 2012). There are only 
14 out of 49 models simulate dust emission flux, while only 
5 models simulate all climatic factors related to Asian dust 
occurrences in this study. However, we found that the dis-
crepancy due to inconsistent multi-model ensemble for dif-
ferent climatic factors can be neglected for the projections. 
Pierce et al. (2009) exhibited that the ensemble mean of 
model simulation is superior to individual model. Therefore, 
we prefer to analyze the results based on the ensemble mean 
of the relevant models for each climatic factor in this study. 
The relative models used in this study are shown in Table 1, 
and are available at https ://cera-www.dkrz.de/WDCC/ui/
ceras earch /q?query =cmip5 &page=0&rows=15.

2.2  Calculation of dust index

Previous studies have explored dust events and have found 
significant differences in their relative concentrations (Qian 
et al. 2002; Shao and Wang 2003; Zhu et al. 2008). Niu 
et al. (2001) found that the mass concentration of the dust-
storm category is almost three times greater than that of 
blowing dust, and nine times greater than that of floating 

dust. Therefore, Wang et al. (2008) developed a new dust 
index based on the daily frequency of dust storm, blowing 
dust, and floating dust at four observational stations near 
dust sources (e.g. Gobi Desert and Taklimakan Desert). The 
dust index can better characterize the regional statistically 
and large-scale nature of dust events. In this study, the dust 
index is estimated using the following equation described 
by Wang et al. (2008):

where FD, BD, and DS represent the total days of floating 
dust, blowing dust and dust storm on a given month at a site, 
respectively. It is worth noting that the value of 1 represents 
the normalized mass weight of dust aerosols for each float-
ing dust episode, while three and nine represent the rela-
tive mass weight of dust aerosols for blowing dust and dust 
storm, respectively. Based on the above equation, we can 
estimate the spring dust index by calculating the regional 
average of dust index for 1506 sites over northern China 
from March to May for 1961–2014. The dust index used in 
this study can represent the intensities of all kinds of dust 
events over northern China. The combination of regional sta-
tions used here effectively represents the large-scale nature 
of the dust events.

2.3  Calculation of the surface temperature gradient

To understand large-scale atmospheric circulation dynamics 
caused by the winter Arctic amplification and their impact 
on climate in mid-latitude areas, we calculate the tempera-
ture gradient using the method defined by Soon and Legates 
(2013), who modified the method used by Jain et al. (1999) 
and Karamperidou et al. (2012) for gradients that exist in the 
meridional direction only, so the areal weighting is removed 
in the method. The temperature gradient is calculated as:

where �
i
 is the latitude and T

i
 is the temperature of the ith 

zonally averaged grid box (n total boxes) and the overbar 
indicates a hemispheric/latitudinal band average. Each 
latitudinal band is averaged in the zonal direction and the 
temperature gradient is equivalent to the unweighted regres-
sion slope of these zonal averages. The gradient used in this 
study is calculated from 0°N to 80° N within the longitude 
range 30° E–120° E based on the GISTEMP monthly aver-
age data in winter and spring for 1961–2014, in units of 
°C per latitude. The temperature gradient indices calculated 
from the GISTEMP data here are anomalies from the aver-
age temperature gradient. Because the polar temperature is 
typically lower than that at the equator, the average tem-
perature gradients are strongly negative generally. Hence, 

(1)Dust index = FD × 1 + BD × 3 + DS × 9,

(2)Temperature gradient =

∑n

i=1
(T

i
− T̄)

�

𝜃
i
− �̄�

�

∑n

i=1
(𝜃

i
− �̄�)2

,

https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
https://cera-www.dkrz.de/WDCC/ui/cerasearch/q%3fquery%3dcmip5%26page%3d0%26rows%3d15
https://cera-www.dkrz.de/WDCC/ui/cerasearch/q%3fquery%3dcmip5%26page%3d0%26rows%3d15
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positive temperature gradient anomalies in this study rep-
resent a weakened temperature gradient, whereas negative 
values indicate an enhanced temperature gradient.

2.4  Calculation of the NAM index

To further analyze the impact of Arctic climate on dust event 
occurrences over northern China, we also provide the North-
ern Hemisphere annular mode (NAM), which represents the 
“seesaw” phenomenon of air quality between mid-latitude 
and high-latitude. The NAM is the dominant atmospheric 
variability in the extratropical regions of Northern Hemi-
sphere (Limpasuvan and Hartmann 2000; Kerr 2001). It 
can affect the near-surface climate in the mid-high latitudes 
including China and even in some tropical regions (Kerr 
1999; Gong et al. 2001; Thompson and Wallace 2001; Li 
et al. 2008; Wu et al. 2009). Therefore, the variation in NAM 
is perhaps one of the major linkages between climate change 
over Arctic and reduce in dust event occurrences over north-
ern China.

In this study, the NAM index is calculated as the differ-
ence in the normalized monthly zonal-mean SLP 35° N and 
65° N, which was firstly defined by Li and Wang (2003):

the index is obviously superior to that based on the empiri-
cal orthogonal function firstly proposed by Thompson and 
Wallace (1998) in characterizing the spatial pattern of NAM 
(Angell 2006; Gao et al. 2010). Furthermore, the variations 
in NAM in Northern Hemisphere were widely performed to 
investigate the recent climate by previous studies (Angell 
2006; Merzlyakov et al. 2009; Gao et al. 2010; Wu et al. 
2012).

3  Results

3.1  Arctic amplification

Arctic amplification is a distinguishing feature of warm-
ing over the period 1961–2014 in the GISTEMP dataset 
(Fig. 1). The maximum Arctic warming is found north of 
70° N (Fig. 1a), with a more distinct warming trend (up to 
0.7 °C/decade) north of 60° N in winter (Fig. 1b), as noted 
by Huang et al. (2016). It has been suggested that the Arc-
tic region underwent strong warming because of changes 
in cloud cover (Schweiger et al. 2008), increase in atmos-
pheric water vapor (Francis and Hunter 2007), increased 
atmospheric heat transport from lower latitudes (Graversen 
et al. 2008) and declining sea ice (Serreze et al. 2007; Stro-
eve et al. 2007; Comiso et al. 2008; Screen and Simmonds 
2010a). Previous studies have indicated that diminishing sea 

(3)I
NAM

= P35◦N − P65◦N,

ice has played a leading role in recent Arctic temperature 
amplification (Screen and Simmonds 2010a; Dai et al. 2019), 
by contributing to an increase in Arctic SST through positive 
feedback processes related to the decrease of Arctic sea ice 
(Screen and Simmonds 2010a, b, 2013; Screen et al. 2013). 
Figure 2a shows the areas covered with sea ice concentra-
tions accounting for 80% in fall season during the period 
of 1979–2014. Arctic sea ice decreased dramatically over 
this period in the Barents and Kara Seas, northern Europe, 
and the Bering Sea in the North Pacific, which is consistent 
with numerous past studies (Petoukhov and Semenov 2010; 
Inoue et al. 2012; Jaiser et al. 2012; Cohen et al. 2014). 
Since the 1980s, Arctic SIE decreased rapidly, at a rate of 
− 5.1 × 104 km2 per year in the fall during 1979–2014. In 
addition, a better correlation between the fall SIE and winter 
surface air temperature is found in the Arctic (70° N–90° N; 
R of − 0.72), compared with that in the region (0° N–70° N; 
R of − 0.47) (Fig. 2b).

3.2  Spatiotemporal variations in dust index

Long-term variations in dust event occurrences in East Asia 
have been investigated by many previous studies (Fan and 

Fig. 1  a Linear trend of annual surface air temperature (units:   °C 
 decade−1) during 1961–2014. The dotted regions represent correla-
tions required for significance at the 95% level. b The zonally aver-
aged linear trends (units:  °C  decade−1) of annual (black) and winter 
(DJF, December–January–February; red) mean surface air tempera-
tures from 1961–2014. The dots represent correlations required for 
significance at the 95% level
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Wang 2004; Ding et al. 2005; Gong et al. 2006a). However, 
these studies mainly concentrate on the long-term varia-
tions of dust storm associated with relative climatic factors 
before 2005, which potentially ignored the climate effects of 
blowing dust and floating dust (Zhao et al. 2004; Gong et al. 
2006a; Mao et al. 2011a, b). As illustrated by Wang et al. 
(2018a), dust events—not only dust storm, but also floating 
dust and blowing dust—have decreased dramatically since 
the beginning of this century. However, how winter Arctic 
amplification in influencing spring dust activities remains 
unknown. To investigate the thermodynamic processes of 
the dust events reduction over northern China, a dust index 
combining dust storm, blowing dust and floating dust over 
northern China is developed in this study, which also been 
performed by previous studies (Wang et al. 2008; Kang et al. 
2016). The climatology in spring dust index (Fig. 3a) shows 
a similar pattern to that in spring dust occurrence (Fig. 3b) 
at 1506 stations. In addition, the temporal variability shows 
a striking decrease between dust index and dust occurrence 
compared with three types of dust events (dust storm, float-
ing dust and blowing dust) over northern China since 1980s 
(Fig. 3c), which is consistent with the previous study by 

Wang et al. (2018a). It indicated that the dust index is an 
advanced indicator to present the spatial–temporal evolu-
tion and long-term variability of dust events, which is also 
applied in Tibet Plateau by Kang et al. (2016).

Figure  4 shows the spatiotemporal patterns of dust 
index anomalies in spring during the period of 1961–2014 
over northern China by applying EOF analysis. The EOF 
analysis can reveal anomaly patterns averaged over the 
entire period of the study. The first EOF mode (EOF1) 
accounts for 56.2% of the variability of dust index, and 
reflects uniform reduction over northern China. Signifi-
cant decreases are found in the Xinjiang’s Taklamakan 
Desert and the Inner Mongolian’s Gobi Desert (Fig. 4a). 
This pattern is consistent with that of Wang et al. (2018a), 
who found reductions in dust storm, blowing dust, and 
floating dust of 76.7%, 68.5%, and 64.5%, respectively, in 
2000–2014 compared with the period of 1960–1999 over 
China. The normalized first principal component (PC1) 

Fig. 2  a Distribution of areas with sea ice concentrations account-
ing for 80% in the fall (SON, September–October–November) for the 
period 1979–2014. b Time series of fall sea-ice extent (SIE; green) 
over Arctic for 1979–2014, and winter (DJF) surface air tempera-
ture (SAT) anomaly relative to the 1961–1990 annual mean in Arc-
tic (north of 70° N; red) and in the latitude range 0° N–70° N (blue) 
for 1961–2014. The correlation coefficient between sea ice and sur-
face air temperature in Arctic (in the latitude range of 0° N–70° N) is 
− 0.72 (− 0.47) for 1979–2014, statistically significant above the 99% 
confidence level

Fig. 3  a The climatology of spring (MAM, March–April–May) dust 
index at 1506 stations over northern China during 1961‒2014. b 
Same as a but for spring dust occurrence (units: day) at 1506 stations. 
c Time series of spring dust index (red), dust occurrence (black), dust 
storm occurrence (DS; purple), blowing dust occurrence (BD; blue) 
and floating dust occurrence (FD; green) in northern China from 
1961 to 2014
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is basically consistent with the normalized original dust 
index, and describes a negative linear trend with a distinct 
decline beginning in the 1980s (Fig. 4b). Moreover, an 
Arctic Amplification index (AAI) is defined in this study 
to measure the intensity of Arctic amplification. The AAI 
is the difference between mean surface air temperature 
(SAT) anomaly in Arctic (north of 70° N) and mean SAT 
anomaly in the globe. It found that the PC1 of spring dust 
index and winter AAI exhibit a strong negative correlation. 
The correlation is − 0.54 during the period of 1961–2014, 
exceeding the 99% significant level, but the linear cor-
relation for 1961–1986 (− 0.39, only exceeding the 95% 
significant level) is lower than that during the period of 
1987–2014 (− 0.65, exceeding the 99% significant level). 
These results show that the enhanced Arctic amplification 
in winter caused by global warming is likely to be one of 
the dominant factors to influence dust events reduction in 
spring over northern China since the mid-1980s. Previous 
study showed that the warming around Lake Baikal has 
reduced the occurrences of spring dust storm over north-
ern China (Zhu et al. 2008). However, the winter Arctic 
amplification in affecting spring dust events over north-
ern China under global warming is unknown. The detailed 
mechanisms still need to be explored.

3.3  Thermodynamic processes

To further investigate the relationship between Arctic 
amplification and spring dust index over northern China, 
the spatiotemporal evolution of the temperature gradient in 
winter and spring for 1961–2014 is shown in Fig. 5. Positive 
temperature gradient anomalies occur in the areas of 30° 
N–60° N, with maximum values above 0.075 °C/latitude in 
winter (Fig. 5a). In spring, temperature gradient anomalies 
exist basically positive in the middle latitudes of Northern 
Hemisphere since the mid-1980s (Fig. 5b), which indicates 
that the temperature gradient is weakened (warmer pole and 
colder equator). Moreover, temperature gradient anomalies 
undergo consistently increasing trend between 40° N and 70° 
N in winter and spring, that is, the temperature gradient is 
weakened (Fig. 5c). In Northern Hemisphere, the interaction 
of the rapidly warming Artic and sea ice retreat along with 
other polar thermodynamic processes makes the warming 
of Artic areas more remarkable under conditions of global 
warming (Yoo et al. 2011; Taylor et al. 2013; Ding et al. 
2014; Yoshimori et al. 2017; Goosse et al. 2018; Dai et al. 
2019). The magnitude of temperature gradient anomalies 
is larger in winter than those in spring due to the enhanced 

Fig. 4  a The spatial pattern of the first leading EOF of spring dust 
index anomalies for 1961–2014. b The time series of normalized 
first principal component (PC1; blue), spring dust index (black dot-
ted line) over northern China and winter Arctic amplification index 
(AAI; red; units:  °C) for 1961–2014. The * and ** represent correla-
tion required for significance at the 95% and 99% level, respectively

Fig. 5  a, b The left column is the evolution of the temperature gradi-
ent anomalies (units:  °C (latitude)−1) at bins of 6 latitudes from 0 to 
80° N within the longitude range 30° E–120° E in winter (DJF) and 
spring (MAM) for 1961–2014, respectively. The right column is the 
linear trends of temperature gradient anomalies during 1961–2014 
for the corresponding latitude band. c The time series of surface tem-
perature gradient anomalies between 40° N and 70° N in winter (DJF; 
red) and spring (MAM; blue)
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Arctic amplification in winter. However, the linear trends 
of temperature gradient anomalies in spring between 40° 
N and 70° N are much larger than that in winter during the 
period of 1961–2014 (Fig. 5a, b). That indicates that the 
temperature gradient becomes weakened more significantly 
in spring over Northern Hemisphere, thereafter, leads to a 
significant decline of westerly wind in the mid-high latitudes 
as a whole (Deser et al. 2015; Screen et al. 2018; Vavrus 
2018; Li et al. 2019).

To investigate the relations between the atmospheric circu-
lation associated with winter Arctic amplification and spring 
dust events since the 1960s, we perform the linear regression 
analysis using the wind fields at 200 hPa and 850 hPa in 
winter and spring on normalized AAI during the period of 
1961–2014, respectively (Fig. 6). According to the enhanced 
Arctic amplification, the wind speed in winter is substantially 
larger in upper layer in middle latitudes (30° N–50° N), while 

lower in high latitudes (60° N–80° N) (Fig. 6a). Compared 
with Fig. 6a, there is no remarkable reduction of wind speed 
between 40° N and 60° N in spring over East Asia (Fig. 6b). 
Generally speaking, the wind speed on lower-level over the 
middle-low latitudes becomes obviously weakened in winter 
and spring under the stronger Arctic amplification, especially 
over northern China in spring (Fig. 6c, d). As a result, the 
winter Arctic amplification can obviously impact the sur-
face wind fields in spring in Northern Hemisphere. To fur-
ther analyze the possible mechanisms of the decreased wind 
speed, we also demonstrated the latitude-height cross-section 
linear trends of wind fields within the longitude range of 73° 
E–120° E during the period of 1961–2014 in Fig. 7. In win-
ter, the subtropical westerly jet strengthens significantly and 
westerly wind in high latitudes weakens markedly on upper-
level (Fig. 7a), and then the changes weaken in the following 
spring (Fig. 7b). On the contrary, changes in wind are more 

Fig. 6  a, b Linear regression of 200 hPa wind speed (units: m/s  sd−1) 
in winter (DJF) and spring (MAM) on normalized AAI during 1961–
2014, respectively. c, d Same as a, b but for 850  hPa wind speed 

(units: m/s  sd−1). The dotted regions represent correlations required 
for significance at the 95% level. The boxes (75–120° E, 30–50° N) 
represent the study areas
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obvious on lower-level in spring. The significant reduction of 
westerly wind is located over the mid-latitude (20° N–45° N) 
below 400 hPa (Fig. 7b), and the north wind weakens in the 
whole layer between 50° N and 60° N in spring (Fig. 7d). The 
changes of wind in the lower troposphere indicate a north-
ward route of cold air and correspond to the reduction of cold 
front activities over East Asia. Therefore, the atmospheric 
circulation changes provide dynamical conditions which are 
conducive to reducing occurrences of dust event in spring 
over northern China, as described by Wang et al. (2018a).

To investigate the impacts of the stronger Arctic amplifica-
tion in winter on the rapid reduction in dust occurrences in 
spring over northern China since the mid-1980s, we analyzed 
the changes in wind and geopotential height fields around 
1987. The composite fields of 200 hPa and 850 hPa wind in 
winter and spring separately, for 1987–2014 minus those in 
1961–1986 are shown in Fig. 8. Results illustrate that west-
erly wind enhances significantly in mid-latitude at 200 hPa 
(Fig. 8a), which is consistent with that in Fig. 7a. The south 
wind anomaly is shown in the mid-high latitudes, indicat-
ing the north wind becomes weakened, especially in spring 
(Fig. 8b, d). Compared with the wind anomaly for 850 hPa in 
winter (Fig. 8c), there is a stronger divergent wind in Mon-
golia and a weaker convergence wind over the East European 
Plain on lower level (850 hPa) in spring (Fig. 8d).

Moreover, we also show the composite fileds of SLP and 
500 hPa geopotential height in winter and spring separately, 
for 1987–2014 minus those in 1961–1986 (Fig. 9). The lower 
SLP is substantially associated with an anomalous cyclonic 
circulation over Europe, while higher SLP is related to an 
anomalous anticyclonic circulation over Mongolia and north-
ern China after 1980s (Fig. 9a, b). Thence, sea ice reduces in 
the Barents Sea by warm moisture is transported from north 
Atlantic and Norwegian Sea to the Barents Sea and Europe 
due to the anomalous cyclonic circulation, then enhanc-
ing the Arctic amplification phenomenon (Fan et al. 2017). 
Moreover, the 500 hPa geopotential height anticyclonic 
anomaly over the Mongolian Plateau and central Siberia, and 
the cyclonic anomaly over the East European Plain and Scan-
dinavian Peninsula in winter (Fig. 9c), persist and appear a 
stronger anticyclonic anomaly in the ensuing spring (Fig. 9d). 
This is accompanied with the divergent wind in Mongolia 
and the convergence wind over the East European Plain on 
lower troposphere in winter and spring (Fig. 8c, d). As a 
consequence, the 500-hPa geopotential height anticyclonic 
anomaly over the Mongolian Plateau and central Siberia con-
tribute to the weakened surface northwesterly wind and the 
increased rainfall in northwest China (Ding et al. 2005; Liu 
and Ding 2007; Li et al. 2019). These are conducive to the 
decline of spring dust events over northern China.

Fig. 7  a, b Latitude-height cross-section linear trend of zonal wind 
speed (units: m/s  decade−1) in winter (DJF) and spring (MAM) dur-
ing 1961–2014 respectively, within the longitude range 73° E–120° 
E. c, d Same as a, b but for the meridional wind speed. The black 
contours indicate the baseline climatology during 1961–2014, the 

solid line is west wind and the dotted line is east wind in a, b while 
the solid line is south wind and the dotted line is north wind in c, d. 
The crossed regions represent correlations required for significance at 
the 95% level
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We perform the linear regression analysis using the 
SLP and 500 hPa geopotential height on normalized NAM 
index in winter and spring during the period of 1961–2014, 
respectively (Fig. 10). The zonally symmetric pattern asso-
ciated with a lower SLP in high latitudes and a higher SLP 
in middle latitudes is remarkable in winter and spring over 

the Northern Hemisphere, which indicates that the NAM 
has been enhanced (Fig. 10a, b). The result indicates that a 
positive phase of NAM is found in the late twentieth cen-
tury, which is consistent with the previous studies (Miller 
et al. 2006; Allen and Zender 2011; Mao et al. 2011a, b). 
Moreover, the NAM in winter is stronger than that in spring. 

Fig. 8  a, b Composite analysis of wind (units: m/s) for 200 hPa in winter (DJF) and spring (MAM) during 1987–2014 minus those in 1961–
1986, respectively. c, d Same as a, b but for 850 hPa. The boxes (75–120° E, 30–50° N) represent the study areas

Fig. 9  a, b Composite analysis of sea level pressure (SLP; units: hPa) 
in winter (DJF) and spring (MAM) during 1987–2014 minus those 
in 1961–1986, respectively. c, d Same as a, b but for 500 hPa geo-

potential height (HGT; units: gpm). The boxes (75–120°E, 30–50°N) 
represent the study areas
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Previous studies pointed out that the winter NAM can impact 
climate change over the East Asia (Gong et al. 2001; Liu and 
Ding 2007; Yin et al. 2013; Li et al. 2019). The similar pat-
terns to SLP are also shown in 500 hPa geopotential height 
fields in winter and spring (Fig. 10c, d). There is a higher 
geopotential height associated with an anticyclonic anomaly 
in the Mongolia region, while a lower geopotential height is 
dominated by a cyclonic anomaly in the East Europe in win-
ter and spring (Fig. 10c, d). These changes can reduce the 
Mongolian cyclone frequency, and weaken the surface west-
erly wind over northern China (Ding et al. 2005; Liu and 
Ding 2007; Mao et al. 2011a, b). Thus, the decline in cold 
air activity from higher latitudes into the dryland regions of 
northwestern China causes a decline in convective activity 
in these areas. This process may result in a reduction of the 
dust event occurrences in these regions (Taklimakan Desert 
and Gobi Desert), and thus reduces the transmission of dust 

aerosol to the upper and middle troposphere due to a weak-
ened westerly wind in upper-level over northern China. As 
a result, dust events have been reduced throughout northern 
China since 1980s.

3.4  The role of climatic factors

A below-normal Eurasian snow cover area in winter persists 
in the ensuing spring, resulting in a 500 hPa geopotential 
height anticyclonic anomaly over the Mongolia and Sibe-
ria and a cyclonic anomaly over the East European Plain 
in spring (Kang and Wang 2005; Gong et al. 2007), which 
have an impact on the cold air activities in East Asia and 
affect the atmospheric circulation related to occurrences of 
dust event over northern China. In addition, previous studies 
have shown that warmer surface air temperatures in winter 
are favorable for less spring dust weather (Zhu et al. 2008; 

Fig. 10  a, b Linear regression of SLP (units: hPa  sd−1) on normal-
ized northern Hemisphere annular mode (NAM) in winter (DJF) and 
spring (MAM) during 1961–2014, respectively. c, d Same as a, b but 

for 500 hPa HGT (units: gpm  sd−1). The dotted regions represent cor-
relations required for significance at the 95% level. The boxes (75–
120° E, 30–50° N) represent the study areas
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Ji and Fan 2019). Over northern China, warm anomaly in 
winter can lead to a thinner frozen soil layer, when a warmer 
temperature in following spring, resulting in slighter deser-
tification compared with a deeper frozen soil layer caused 
by cold anomalies, and less sandy soil provides a fewer dust 
source for dust weather. Additionally, more precipitation 
and higher soil moisture in spring over northern China also 
reduces dust sources.

We also perform a linear regression analysis using 
snow cover, precipitation and soil moisture in winter and 
spring on negative PC1 of spring dust index during the 
period of 1961–2014 (Fig. 11). It is worth noting that the 
decreased dust index is highly consistent with less snow 
cover over Europe in winter (Fig. 11a) and over Eurasia in 
spring (Fig. 11b). Meanwhile, the increased precipitation 
and soil moisture are beneficial to reduce dust emissions 
over northern China in winter and spring (Fig. 11c, f). The 
similar patterns with Fig. 11 are shown in Fig. 12, which 
present the linear regression of these climatic factors on 

AAI. Therefore, the stronger Arctic amplification in win-
ter can decrease snow cover over Eurasia, significantly 
increase precipitation and soil moisture over Asia in spring 
(Fig. 12). In brief, less spring snow cover in Eurasia acts 
as a bridge in the relationship between Arctic amplification 
in winter and dust events in spring over northern China, 
and affects regional and remote atmospheric circulation 
in spring through the snow albedo and hydrology effects 
(e.g., Barenett et al. 1989; Wu and Kirtman 2007; Zuo 
et al. 2012; Yin et al. 2013). Moreover, anomalies in pre-
cipitation and soil moisture in spring related to decreased 
dust index are similar to those identified in winter. Spring 
vegetation cover also increases across northern China 
(not shown) due to increased precipitation and greater 
soil moisture, and this is agreed with result of Zou and 
Zhai (2004). Therefore, the aforementioned changes in 
climate conditions from winter and spring are favorable 
for decreasing dust events over northern China.

Fig. 11  a, b Linear regression of snow cover (units:  sd−1) in winter 
(DJF) and spring (MAM), on negative PC1 of spring dust index dur-
ing 1966–2014, respectively. c, d Same as a, b but for precipitation 

during 1961–2014 (units: mm  sd−1). e, f Same as a, b but for soil 
moisture during 1961–2014 (units: mm  sd−1). The dotted regions rep-
resent correlations required for significance at the 95% level
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3.5  Future projection of dust aerosol emission

To further capture the reasonable linkage between Arctic 
amplification and dust event occurrences over northern 
China, we also investigate the predictions of the future 
dust emission over northern China during the period of 
2006–2099 based on 49 coupled models obtained from the 
Coupled Model Intercomparison Project phase 5 (CMIP5). 
Figure 13 shows the time series of surface air temperature 
over Northern Hemisphere, snow cover over Eurasia (0–180° 
E, north of 30° N), as well as dust emission flux, precipita-
tion and soil moisture content over northern China (75–115° 
E, 35–50° N) for a midrange mitigation emissions scenario 
(RCP4.5) and a high emissions scenario (RCP8.5) during 
2006–2099 relative to 2006–2025 in winter and spring, 
respectively. Results indicated that the winter temperature 
increases much higher than that in spring, especially for 
RCP8.5 experiment. The increasing trend is up to 0.55 °C/
decade, which exceeds the 99% significant level (Fig. 13a, 
b). In the future projection, the dust emission over northern 
China decreases significantly, which is consistent with the 
increased temperature over Northern Hemisphere (Fig. 13c, 
d), with the decreased trend of − 0.1 (g/m2)/decade in spring 

for RCP8.5, exceeding the 99% significant level. Addition-
ally, the snow cover extent remarkably reduces in Eurasia in 
winter and continues into early spring, with the compara-
tive trends of − 0.004 per decade for RCP4.5 and − 0.01 per 
decade for RCP8.5 (Fig. 13e, f). The increased precipita-
tion in spring is more significant than that in winter over 
northern China, with a maximum value of 3.13 mm/decade 
for RCP8.5, exceeding the 99% significant level (Fig. 13g, 
h). The soil moisture content over northern China is signifi-
cantly increased in winter and spring for RCP4.5, while a 
slight decrease for RCP8.5 in spring (Fig. 13i, j). We found 
that soil moisture content increases over northwest China 
for RCP8.5 more obviously than that for RCP4.5, which also 
agree well with the previous study by Cheng et al. (2017). 
Therefore, the increased precipitation and soil moisture 
over northern China both contribute to the increase of local 
vegetation. As a result, the soil became wetter for a warm 
climate, thereafter, disturb to produce less dust emissions.

Finally, the spatial variations of observed dust index, as 
well as simulated dust emission flux in spring for history 
and future projection are given in Fig. 14. Compared with 
observed dust index in Fig. 14a, the models can simulate 
well the long-term trends of dust emissions from CMIP5 

Fig. 12  Same as Fig. 11, but linear regression on normalized AAI
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historical experiment during 1987–2005 minus those in 
1961–1986, especially in the Taklimakan and Gobi Deserts 
over northern China (Fig. 14b). The result is also similar 
with the previous study by Wu et al. (2018a). As shown in 
Fig. 14c, the dust emissions in spring can decrease up to 
− 8 g/m2 in Gobi Desert regions for 2071–2090 relative to 
2006–2025 for RCP4.5 in the future projection. The spring 
dust emissions decrease remarkably by the late 21th century. 
The maximum decline of dust emission is up to − 4 g/m2 
and − 8 g/m2 in Taklimakan and Gobi Desert regions during 
the period of 2071–2090 relative to 2006–2025 for RCP8.5, 
respectively (Fig. 14d).

To estimate the sensitivity due to multi-model ensem-
ble, we compared the linear trends of ensemble means of 
the relevant models for each climatic factor and that of the 

selected 5 models simulated all climatic factors for histori-
cal experiments during 1961–2005 and future projections 
during 2006–2099 (Fig. 15). We found that the trends are 
consistent for different multi-model ensemble means in win-
ter and spring, especially for future projections (RCP4.5 and 
RCP8.5). Additionally, the trends of different multi-model 
ensemble means are comparative for dust emission flux 
and the relevant climatic factors in spring. It indicated that 
the discrepancy due to inconsistent multi-model ensemble 
for different climatic factors can be neglected for the pro-
jections. As a summary, we found that the above climate 
parameters change more significantly for RCP8.5 than that 
for RCP4.5, especially for temperature, snow cover and 
precipitation. The reduction of dust emission in spring for 
RCP8.5 is larger than that for RCP4.5 in the future as global 

Fig. 13  a, b The time series of surface air temperature (units:   °C) 
over Northern Hemisphere (NH) for CMIP5 RCP4.5 (blue) and 
RCP8.5 (red) in winter (DJF) and spring (MAM) during 2006–2099 
relative to 2006–2025, respectively. c, d Same as a, b but for dust 
emission flux (units: g/m2) over northern China (NC; 75–115° E, 
35–50° N). e, f Same as a, b but for snow cover over Eurasia (0–180° 

E, north of 30° N). g, h Same as a, b but for precipitation (units: mm) 
over northern China. i, j Same as a, b but for soil moisture content 
(units: kg/m2) over northern China. Values shown in figures are linear 
trends (units:/decade) from 2006 to 2099, and the * and ** represent 
correlation required for significance at the 95% and 99% level, respec-
tively
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Fig. 14  a Composite analysis of dust index in spring (MAM) during 
1987–2014 minus those in 1961–1986 based on observation data. b 
Same as a but for dust emission flux (units: g/m2) from CMIP5 his-
torical experiment during 1987–2005 minus those in 1961–1986. 

c Same as b but for CMIP5 RCP4.5 experiment during 2071–2090 
minus those in 2006–2025. d Same as b but for CMIP5 RCP8.5 
experiment during 2071–2090 minus those in 2006–2025. The boxes 
represent the areas: Northern China (75–115° E, 35–50° N)

Fig. 15  a, f The linear trends of surface air temperature (units:   °C/
decade) over Northern Hemisphere (NH) for CMIP5 models for his-
torical experiments (His.) during the period of 1961–2005 and for the 
future projection (RCP4.5 and RCP8.5) during the period of 2006–
2099, in winter (DJF) and spring (MAM) respectively. b, g Same 
as a, f but for dust emission flux (units: g/m2/decade) over northern 
China (NC; 75–115° E, 35–50° N). c, h Same as a, f but for snow 
cover (units:/decade) over Eurasia (0–180° E, north of 30° N). d, i 

Same as a, f but for precipitation (units: mm/decade) over northern 
China. e, j Same as a, f but for soil moisture content (units: kg/m2/
decade) over northern China. The circles and triangles represent the 
linear trends of ensemble means for the relevant CMIP5 models and 
the selected 5 CMIP5 models respectively, and the solid circles and 
triangles represent correlation required for significance at the 99% 
level
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temperatures continue to rise. These results indicated that 
the Arctic amplification could lead a key role in leading the 
decline of dust event occurrences over northern China.

4  Conclusion and discussion

In recent years, changes in weather events in the mid-high 
latitudes of the Northern Hemisphere related to Arctic 
amplification have been receiving ever-increasing attention 
worldwide (Francis and Vavrus 2012; Barnes 2013; Screen 
and Simmonds 2013; Cohen et al. 2014). Dust events in 
spring are regarded among the most severe disasters over 
northern China, and their influence in East Asia grows with 
the population and economy (Wang et al. 2004). However, 
the relationship between long-term variability in dust event 
occurrences in spring over northern China and Arctic ampli-
fication in winter has not been directly investigated in detail.

The purpose of this study is to explore the impact of Arc-
tic amplification in winter related to the retreat of Arctic sea 
ice on the occurrences of dust event in spring over northern 
China in a warming world. We first calculated a dust index 
that accounts for dust storm, blowing dust and floating dust 
over northern China (north of 30° N) based on the defini-
tion of Wang et al. (2008). The first leading pattern of dust 
index anomaly over northern China in spring for 1961–2014 
was obtained by applying the leading empirical orthogonal 
function (EOF) analysis, accounting for 56.2% of variability 
in dust index. Here, we showed that the decline of spring 
dust events over northern China has a strong relationship 
with winter Arctic amplification because of global warm-
ing since the 1980s. As a result of Arctic amplification, 

dust event occurrences have been significantly reduced over 
northern China since the mid-1980s due to weakened merid-
ional temperature gradients and zonal winds over Northern 
Hemisphere. Moreover, positive sea level pressure anoma-
lies associated with the anticyclonic activity in spring over 
East Asia during the positive NAM phase can reduce the 
cold air activities in mid-latitude (Wu and Kirtman 2007). 
The spring dust emission over northern China may continue 
decreasing under the global warming in the future.

The thermodynamic mechanisms between the decline of 
dust events over northern China and Arctic amplification are 
summarized in Fig. 16. It is worth noting that the enhanced 
Arctic amplification and stronger NAM in winter, through 
decline of snow cover in Eurasia, induces the anticyclonic 
anomalies over Siberia and Mongolia and cyclonic anomalies 
over East Europe in spring (Yang et al. 2002). The decreased 
westly wind is dominated by the weakened temperature gra-
dients in the mid-latitude (Yin et al. 2013; Wang et al. 2018a; 
Li et al. 2019). More precipitation and higher soil moisture in 
spring over northern China have an obvious influence on the 
atmospheric circulation (Gong et al. 2007; Kang and Wang 
2005; Wu and Wang 2002). Finally, the decline of cold air 
activities in East Asia and weakened westly winds in the mid-
latitude may contribute to the reduction of dust event occur-
rences in spring over northern China since 1980s.

Although we now have an improved understanding of 
the mechanisms of dust events reduction in spring over 
northern China associated with winter Arctic amplification, 
many potential factors contributing to dust event occurrences 
remain to be explored. Land cover changes, the impact of 
human activities, and other climate teleconnections may 
partly be responsible for the secular decrease in dust event 

Fig. 16  Decline of dust events 
in northern China linking Arctic 
amplification and associated 
impacts related to climate 
indices



1931Impact of Arctic amplification on declining spring dust events in East Asia  

1 3

occurrences over northern China. Thus, future research 
should be done to investigate mechanisms of dust reduction 
related to these factors, and clarify their relative contribu-
tions to the decline of dust events over northern China. Fur-
thermore, researches have shown that spring dust activities 
are closely related to El Niño-Southern Oscillation (ENSO), 
mainly via the variations in dust transport paths rather than 
those in dust occurrences in dust source areas (e.g. Hara 
et al. 2006; Lee et al. 2014). The Pacific decadal oscillation 
(PDO) is linked to variations and deposition of dust aerosols 
not only in the eastern North Pacific and North America but 
also in spring dust source regions over East Asia, with fewer 
dust aerosols during the warm phase of the PDO (Gong et al. 
2006b). Thus, mechanisms connected the interdecadal vari-
ability of dust events over northern China with the variabil-
ity of the SST patterns associated with global warming, as 
ENSO, PDO and Atlantic Multidecadal Oscillation (AMO), 
are expected to be further explored to clarify their relative 
contributions.
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