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Abstract
A commonly-used model of the global radiative budget assumes that the radiative response to forcing, R, is proportional 
to global surface air temperature T, R = �T  . Previous studies have highlighted two unresolved issues with this model: first, 
the feedback parameter � depends on the forcing agent; second, � varies with time. Here, we investigate the factors control-
ling R in two atmosphere–slab ocean climate models subjected to a wide range of abrupt climate forcings. It is found that R 
scales not only with T, but also with the large-scale tropospheric stability S (defined here as the estimated inversion strength 
area-averaged over ocean regions equatorward of 50◦ ). Positive S promotes negative R, mainly through shortwave cloud and 
lapse-rate changes. A refined model of the global energy balance is proposed that accounts for both temperature and stability 
effects. This refined model quantitatively explains (1) the dependence of climate feedbacks on forcing agent (or equivalently, 
differences in forcing efficacy), and (2) the time evolution of feedbacks in coupled climate model experiments. Furthermore, 
a similar relationship between R and S is found in observations compared with models, lending confidence that the refined 
energy balance model is applicable to the real world.
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1 Introduction

The response of the climate system to external forcing is 
often interpreted using the global top-of-atmosphere energy 
balance framework

(Gregory et al. 2002), which states that the net radiative 
imbalance N equals the sum of the effective radiative forc-
ing F (Sherwood et al. 2015) and the radiative response R, 
which is assumed to scale with the global surface air tem-
perature anomaly T. We define downward fluxes as positive, 
and the anomalies are relative to an unperturbed equilib-
rium state with N = F = 0 . Our sign convention implies 
that the proportionality constant � , denoted the feedback 

parameter, must be negative in a stable climate system, so 
that R opposes F.

The global energy balance (1) is widely used to quan-
tify forcing, feedbacks, and climate sensitivity in climate 
model experiments, historical observations, and paleocli-
mate data (see Knutti et al. 2017, and references therein). 
While simple and powerful, the relationship (1) also suf-
fers from known limitations. First, the value of � (i.e., the 
magnitude of the climate feedbacks) depends on the forcing 
agent (Joshi et al. 2003; Hansen et al. 2005; Forster et al. 
2007; Modak et al. 2016), leading to difficulties in interpret-
ing the energy budget in the historical period, where multi-
ple forcing agents drove climate change (e.g., Marvel et al. 
2016; Medhaug et al. 2017). Second, � can also vary in time; 
large variations in � occurred during the historical period 
(Gregory and Andrews 2016; Zhou et al. 2016; Andrews 
et al. 2018), and in most coupled climate models, climate 
feedbacks evolve towards more positive values over time 
under CO2 forcing (e.g., Murphy 1995; Senior and Mitch-
ell 2000; Winton et al. 2010; Andrews et al. 2012; Armour 
et al. 2013; Andrews et al. 2015; Proistosescu and Huybers 
2017; Ceppi and Gregory 2017). These issues suggest that 
the radiative response may depend on variables other than 
just global surface temperature.

(1)N = F + R = F + �T
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Recent studies have explained the time dependence of � 
in terms of sea surface temperature (SST) patterns and their 
impacts on tropospheric stability, with increasing stability 
favoring more negative cloud and lapse-rate feedbacks (Zhou 
et al. 2016; Ceppi and Gregory 2017; Andrews and Webb 
2018). Tropospheric stability has long been recognized as 
a key control on low cloud amount (e.g., Klein and Hart-
mann 1993; Wood and Bretherton 2006), and has been used 
to make quantitative predictions of low cloud responses to 
external forcing (e.g., Qu et al. 2015b; Myers and Norris 
2016; Brient et al. 2016). Such predictions have generally 
been restricted to low-cloud subsidence regions, however, 
and in the absence of a quantitative understanding of how 
large-scale stability changes affect the global energy budget, 
we are unable to account for the “pattern effect” in the 
energy balance relationship (1). Furthermore, it is unclear 
whether SST patterns can also be invoked to explain the 
dependence of � on forcing agent.

Here we propose an improved energy balance relation-
ship that helps interpret the two aforementioned issues in 
a consistent way. We perform experiments with two global 
climate models to demonstrate that the dependence of � 
on forcing agent and time can be explained by a common 
dependence of the radiative response on the large-scale sta-
bility of the troposphere, independent of the forcing agent or 
time scale. This allows us to quantitatively account for the 
radiative impact of SST patterns, via changes in stability, in 
the energy balance relationship.

2  The equilibrium radiative response 
to a range of forcing agents

In this section we demonstrate the dependence of the climate 
feedback parameter on the forcing agent in the perturbed 
equilibrium that is reached by the climate system if there is 
no change in ocean heat transport. We use two atmospheric 
models, CAM4 (Neale et al. 2010) and HadAM3 (Pope 
et al. 2000). These models are run either with prescribed 
SSTs and sea ice concentration, or coupled to a mixed-layer 
“slab” ocean, which simulates sea surface conditions. Where 
necessary, we refer to the atmosphere–slab ocean models 
as CAM4-SOM and HadSM3, respectively. For brevity, we 
will refer to the experiments with prescribed sea surface 
conditions as “atmosphere-only”, while the atmosphere–slab 
ocean experiments will be denoted “slab” for brevity.

2.1  Models

CAM4 is run at a latitude/longitude resolution of 1.9◦ × 2.5◦ 
with 24 vertical levels, while HadAM3’s horizontal resolu-
tion is 2.5◦ × 3.75◦ with 19 levels. The slab ocean models’ 
energy budget includes a prescribed monthly climatology 

of ocean heat flux convergence, mimicking the effect of 
ocean heat transport, to maintain a realistic spatiotempo-
ral distribution of SST. The depth of the slab is set to 50 
m everywhere in HadSM3, whereas it varies spatially in 
CAM4-SOM, being determined from a reference coupled 
atmosphere-ocean simulation.

2.2  Control parameter values and aerosol 
treatment

The default parameter values used in our simulations are 
summarized in Table 1. CAM4 uses prescribed aerosol 
mixing ratios, set to an 1850 monthly climatology (Neale 
et al. 2010); the aerosol forcing experiments described in the 
next section use perturbations relative to this climatology. 
HadAM3 uses an idealized representation of aerosols, with 
prescribed uniform vertical distributions over land and ocean 
(Cusack et al. 1998).

2.3  Forcing agents

The slab models are subjected to a variety of forcing agents, 
including greenhouse gases ( CO2 , CH4 ), solar irradiance 
( S0 ), tropospheric sulphate aerosol ( SO4 ), black carbon 
aerosol (BC), volcanic aerosol (VOLC), ocean heat uptake 
(OHU), and idealized, uniform surface forcings (UNIF). The 
forcing agents and magnitudes, as well as the experiment 
names, are listed in Table 2. Additional details are listed 
below for the VOLC, OHU, and UNIF experiments.

– For VOLC we use the January 1992 aerosol loading, near 
its peak following the Pinatubo eruption in June 1991. 
Because volcanic forcing typically lasts for a few years 
only, we assess the response to volcanic forcing using 
a 20-member ensemble of 2-year simulations, with the 
ensemble members initialized from successive years of 
the respective control simulations.

– The OHU forcings are taken from the multi-model mean 
of the CMIP5 abrupt4xCO2 experiment, averaged over 
years 1–20 and 21–150. For practical reasons, they are 
applied jointly with a 4 × CO2 forcing; we find that OHU 
in isolation causes a runaway “snowball earth” response 
in CAM4 (Rugenstein et al. 2016a), owing to the large 

Table 1  Control parameter values used in CAM4 and HadAM3. We 
only list those parameter values that are perturbed in our experiments

ppmv parts per million by volume, ppbv parts per billion by volume

Parameter CAM4 HadAM3

Solar constant S
0
 ( Wm−2) 1360.9 1365.0

CO
2
 concentration (ppmv) 284.7 290.0

CH
4
 concentration (ppbv) 791.6 793.0
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negative forcings near the sea ice margins. The details of 
the OHU calculation are provided in “Appendix”.

– Finally, the uniform surface forcings are prescribed as 
extra terms in the surface energy budget. These “ghost” 
forcings (Hansen et al. 1997; Alexeev et al. 2005; Ceppi 
and Shepherd 2017) are applied separately in the tropics 
(equatorward of 30◦ ; UNIFT , Table 2) and in the extra-
tropics (poleward of 30◦ ; UNIFET ), covering half of the 
Earth’s area in each case. The local forcing magnitude 
is set to ±7 Wm−2 , yielding a global effective forcing 
comparable to that of a doubling of CO2 (Table 2).

Note that some forcing cases have not been run for both 
models (Table 2). Namely, the representation of aerosol in 
HadAM3 is too limited to allow us to run the SO4 and BC 
cases, and we found that CAM4-SOM quickly enters a snow-
ball Earth–type runaway response in negative forcing experi-
ments such as 0.5 × CO2 , −1.5%S0 or −UNIFET.

2.4  Experimental design

All forced slab simulations are branched from the same 
date in the reference control experiment with the forcing 
switched on at the start of the simulations and held con-
stant thereafter. The simulations are run to steady state, 
which is typically reached within 20 years (Fig. 1). These 

simulations are run for 50 years in total, and the new equi-
librium climate is calculated as the climatology of years 
31–50, except for VOLC where the response is calculated 
from the ensemble-mean year 2 climate. The control cli-
matology is also based on a 20-year average.

For any variable X, we denote the slab control climatol-
ogy as Xctl , while the perturbed climatology is Xpert . The 
total response of that variable in the forced slab runs is 
then ΔXcpl = Xpert − Xctl . This total response can be decom-
posed into an SST-mediated component, ΔXSST , and a fast 
adjustment, ΔXadj (Hansen et al. 1997). The adjustment is 
regarded as part of the forcing (Gregory and Webb 2008; 
Sherwood et al. 2015), whereas we are interested in the 
SST-mediated component, which drives the radiative 
response.

We therefore perform additional atmosphere-only simula-
tions to separate the fast adjustments from the SST-mediated 
response. These atmosphere-only simulations are run for 
a minimum of 20 years with the same set of forcings as 
the slab runs, but keeping SSTs and sea ice fixed to their 
slab control climatologies. Although the sea surface condi-
tions are the same as for the slab control, the removal of 
coupled feedback means that the atmosphere-only control 
state (without forcing agents) differs slightly from the slab 
control. Therefore we also run an atmosphere-only control 
experiment.

Table 2  Forcing agents, 
experiment names, global 
effective radiative forcing F 
(in Wm

−2 ), and feedback 
parameter � = R∕T  (in 
W m

−2
K

−1)

The forcing values are derived from atmosphere-only experiments as in Hansen et al. (1997). The � values 
are those plotted in Fig. 3c, d. Experiments that cause a snowball earth response in CAM4 are marked “*”, 
those that were not run are marked “–”

Forcing agent Experiment name F ( Wm
−2) � ( Wm

−2
K

−1)

CAM4 HadAM3 CAM4 HadAM3

CO
2

0.5 × CO
2

* − 3.6 * − 1.34

2 × CO
2

3.5 3.7 − 1.25 − 1.21

4 × CO
2

7.4 7.2 − 1.29 − 1.07

8 × CO
2

– 10.2 – − 0.81

Solar irradiance − 1.5%S
0

* − 4.0 * − 1.57

+ 1.5%S
0

3.0 3.9 − 1.54 − 1.36

+ 3%S
0

6.1 – − 1.50 –
+ 4.5%S

0
9.1 – − 1.51 –

CH
4

3 × CH
4

1.0 – − 1.48 –
10 × CH

4
2.6 – − 1.38 –

SO
4

5 × SO
4

− 1.1 – − 1.27 –
Black carbon 10 × BC 0.6 – − 3.44 –
Volcanic eruption VOLC − 4.1 − 2.8 − 2.75 − 1.69

4 × CO
2
 + ocean heat uptake 4 × CO

2
+ OHU

1−20 4.1 3.9 − 2.05 − 1.68

4 × CO
2
+ OHU

21−150 5.4 5.2 − 1.71 − 1.53

Uniform surface forcing −UNIF
T

− 3.2 − 3.1 − 2.29 − 2.15

+UNIF
T

3.3 3.2 − 2.41 − 2.19

−UNIF
ET

* − 3.2 * − 0.81

+UNIF
ET

3.3 3.1 − 0.81 − 0.69
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Denoting the atmosphere-only perturbed climatology as 
Xatm,pert and its control as Xatm,ctl , we can then write

Note that if X is the net TOA radiative flux N, then Eq. 2 
gives the effective radiative forcing F, while Eq. 3 gives 
the radiative response R. In the remainder of the paper, the 
results will be calculated following Eq. 3 unless otherwise 
noted, and we will drop the subscript SST when referring to 
the SST-mediated responses.

Additional atmosphere-only simulations are performed to 
assess the responses to uniform and patterned SST changes. 
These simulations are based on the atmosphere-only control 
described above and are also run for 20 years. Further details 
on these simulations are provided in Sect. 3 where these 
results are discussed.

2.5  Results

In the energy balance relationship of Eq. 1, the climate 
feedback parameter is � = R∕T  i.e. the radiative response 
normalized by warming. In both models, there is a wide 
range of R/T in the slab experiments, contradicting the 
assumption that � is a constant of the climate system (Fig. 2). 
Although HadSM3 produces less negative R/T than CAM4-
SOM, the two models are generally very similar in terms 
of the dependence of R/T on the forcing agent: for exam-
ple, the UNIFT and VOLC experiments yield more nega-
tive R/T, whereas UNIFET gives less negative values; and 
4 × CO2 + OHU yields more negative R/T than 4 × CO2 

(2)ΔXadj =Xatm,pert − Xatm,ctl

(3)
ΔXSST =ΔXcpl − ΔXadj

= (Xpert − Xctl) − (Xatm,pert − Xatm,ctl).

without OHU. An interpretation for the dependence of R/T 
on forcing agent will be provided in Sect. 5.1.

3  Equilibrium radiative response to uniform 
and patterned SST change

3.1  Radiative response to globally‑uniform SST 
change

The range of R/T that we find in equilibrium climate change 
for a range of forcing agents indicates that the assumption of 
proportionality R ∝ T  is not accurate. However, it explains 
most of the variation of R across the slab experiments 
(Fig. 3a, b; colored symbols). The correlation coefficients 

Fig. 1  Evolution of global-
mean surface air temperature 
anomalies T relative to the 
control climatology in the slab 
experiments. The symbols at 
year 50 denote averages over 
the last 20 years, the period we 
use to calculate responses. For 
VOLC, the circles denote the 
20-member ensemble average 
in year 2 (Sect. 2.4). Here and 
in subsequent figures, open 
symbols indicate CAM4-SOM 
results, while filled symbols 
correspond to HadSM3
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Fig. 2  R/T in CAM4-SOM and HadSM3 slab experiments. The black 
line represents the one-to-one relationship. Because some of the 
experiments were run with only one of the models (Table 2), the full 
set of results is shown in the plot margins for each model
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between R and T are − 0.95 in both CAM4-SOM and 
HadSM3.

The results from a set of atmosphere-only experiments 
with globally uniform SST changes are also included in 
Fig. 3 (black dots), in which global SST perturbations rang-
ing between − 4 and + 10 K in 2-K increments are added to 
the control state while keeping sea ice fixed. The relation-
ship between R and T in these simulations is overall consist-
ent with the results from the slab experiments. (Note that 
the uniform-ΔSST experiment results were corrected for 
the lack of an ice-albedo feedback, for consistency with the 
slab experiments; see the “Appendix”) The uniform-ΔSST 
experiments predict that R/T is roughly constant in CAM4, 
and linearly dependent on temperature in HadAM3 (Fig. 3c, 
d). Thus, the atmosphere-only experiments reveal that even 
for idealized, uniform, SST perturbations, the relationship 
between R and T can be nonlinear (black curve in Fig. 3b). 
A kernel decomposition of the radiative changes, follow-
ing Soden et al. (2008), indicates that the nonlinearity is 

primarily associated with the cloud response (not shown). 
This nonlinearity constitutes one limitation of the classical 
energy balance framework in Eq. 1.

3.2  Radiative response to SST patterns of change

The radiative responses in some of the slab experiments 
depart substantially from the relationship expected from the 
uniform-ΔSST experiments; for a given T, the deviations 
amount to several W m−2 in some experiments. The differ-
ences between the slab and uniform-ΔSST experiments are 
much more striking when considering R/T (Fig. 3c, d). In the 
slab experiments, R/T is not constant but shows no obvious 
monotonic dependence on T. To the extent that the radiative 
responses can be linearly decomposed into mean and pattern 
components of the SST change (as will be demonstrated 
later, Sect. 3.3), the deviations must be associated with the 
SST pattern (Andrews et al. 2015; Gregory and Andrews 
2016; Zhou et al. 2016; Ceppi and Gregory 2017). Since the 
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Fig. 3  Top row: R versus T in a CAM4 and b HadAM3. Bottom row: 
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results from the slab simulations, while the black circles are from 

atmosphere-only simulations with uniform SST changes in 2-K incre-
ments. The black lines represent linear or quadratic fits to the uni-
form-ΔSST results
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classical energy balance framework (Eq. 1) assumes that the 
radiative response scales with mean temperature only, this 
“pattern effect” constitutes a second, arguably more funda-
mental, limitation of the classical framework.

3.3  Combination of the radiative responses 
to uniform and patterned SST change

We will next demonstrate that the radiative responses in 
the slab experiments can be partitioned into mean and pat-
tern components of the SST response, and that these com-
ponents of the radiative response are governed by distinct 
physical processes. In Fig. 4a we compare the actual R from 
the slab experiments with Rm + Rp , which is the sum of the 
mean SST-driven component Rm (predicted from the linear 
or quadratic fits in Fig. 3a, b) and the pattern component 
Rp , obtained from a separate set of atmosphere-only experi-
ments. For these experiments, we calculate the SST anoma-
lies in the equilibrium slab climatology for each month and 
gridpoint, subtract the global-mean SST anomaly to form 
a pattern which has zero global mean by construction, and 
add this pattern to the control atmosphere-only climatology, 
keeping sea ice fixed.

The relationship in Fig. 4a is generally close to the one-
to-one line, although errors are larger in HadAM3, which 
tends to produce SST patterns of larger amplitude compared 
with CAM4. In Fig. 4b, the results from panel (a) are nor-
malized by the total temperature anomalies taken from the 
slab experiments. The predicted R/T values are within 15% 
of the actual values, with the exception of the −UNIFET 
case in HadAM3, which features an anomalously positive 
albedo feedback (not shown). Overall, however, the sum of 
the mean and pattern responses accurately predicts R and 
R/T. Similar linearity of the responses was documented in 
previous work with the CAM5 model (Zhou et al. 2016, 

2017). We can therefore separately investigate the responses 
to mean and pattern SST changes in order to understand the 
full radiative responses.

We have already explained the radiative responses to 
changes in mean SST, Rm , in terms of global-mean temper-
ature (Fig. 3). In the pattern experiments, the global-mean 
temperature changes are small by construction (the standard 
deviations across experiments are 0.04 and 0.26 K in CAM4 
and HadAM3, respectively), so Rp cannot be explained in 
terms of Tp . Instead, we propose that the radiative impact 
of the SST patterns comes through changes in near-global 
tropospheric stability, S (in K). Here we define S as the area-
average change in estimated inversion strength (EIS; Wood 
and Bretherton 2006) over ocean areas between 50◦ S and 
50◦ N. S in our definition is therefore not strictly global, 
but we find a stronger relationship between S and R if the 
high latitudes are excluded. We speculate this is because 
large stability changes occur at high latitudes in association 
with changes in sea ice extent, but these changes are not 
reflected in the processes controlling radiation—primarily 
cloud cover, as discussed below.

The relationship between radiative response and stability 
is demonstrated in Fig. 5 for the pattern experiments (colored 
symbols). In both models, the relationship is negative, and 
remarkably linear. That increasing stability promotes a nega-
tive radiative response is consistent with the findings of Zhou 
et al. (2016), Ceppi and Gregory (2017), and Andrews and 
Webb (2018), who ascribed the stability effect to the cloud 
and (to a lesser extent) lapse-rate feedbacks. We confirm 
these findings by performing a kernel decomposition of Rp 
(Fig. 6), which reveals that the stability effect is dominated by 
shortwave (SW) cloud feedback, with some cancellation by 
the longwave (LW) cloud feedback, and a smaller contribu-
tion from the lapse-rate feedback. SW cloud feedback also 
explains the stronger sensitivity of R to S in CAM4 relative 
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to HadAM3, likely a consequence of different cloud param-
eterizations. It is worth noting here that low cloud amount in 
CAM4 is an explicit function of lower-tropospheric stability 
(Neale et al. 2010).

The negative cloud-radiative response occurs primar-
ily because increased stability favors more low cloud in 
the global mean (Fig. 7). On local scales, this relationship 
between low cloud fraction and tropospheric stability is very 
well established observationally (Klein and Hartmann 1993; 
Wood and Bretherton 2006), and is present in most global 
climate models, even though models tend to underestimate 
the magnitude of the cloud response (Qu et al. 2015b; Myers 
and Norris 2016). A novel aspect of our results is to relate 
the global responses of tropospheric stability and radiation 
in a quantitative way; to our knowledge, so far this had only 
been done locally. The relatively large radiative responses to 
stability variations (Fig. 5) reflect the key importance of low 
clouds for the global radiative budget and climate sensitivity 
(Bony and Dufresne 2005; Webb et al. 2013).

In principle, we do not expect the radiative responses to 
stability variations to be spatially uniform. For example, the 
latitudinal dependence of insolation means that even under 
the assumption of a uniform dependence of cloud cover on 
S, the radiative response would be largest in the tropics. We 
therefore expect that spatial variations in the dependence of 
R on stability are implicit in the regression slope in Fig. 5.

4  A refined energy balance model

Motivated by our findings, we propose a simple refinement 
of the energy balance relationship (1) to address both the 
deficiencies that we have demonstrated. We postulate that 
the radiative response can be formulated as

(4)R = �T + �S,

where � and � are both in units of W m−2 K−1 . If � and � 
are constants, R depends linearly on T and S, but in general 
� = �(T) and � = �(S) , as discussed later in this section.

The decomposition of the radiative response into temper-
ature and stability components is not equivalent to decom-
posing into mean SST and SST pattern components. This is 
because uniform SST perturbations cause changes in both T 
and S (Fig. 8; see also Qu et al. 2015a). However, the rela-
tionship (4) can be used to interpret the radiative impacts of 
mean and pattern SST changes, as follows. We have shown 
that R = Rm + Rp , to a good approximation, so we formulate 
both components in terms of temperature and stability:

where Sm is the stability change induced by the uniform 
change in SST. Note that since the SST pattern in isolation 
causes negligible changes in global-mean temperature, T is 
included only in Eq. 5 and is not subscripted. We parameter-
ize the stability response to mean SST changes as a linear 
function of temperature:

The relationship seems closer to quadratic in the case of 
CAM4 (Fig. 8), but the linear approximation suffices for 
our purposes: the correlation coefficient between Sm + Sp 
and S (combining all experiments and models) is 0.96. We 
can then rewrite (5) as

and defining

we obtain

(5)Rm = �T + �Sm,

(6)Rp = �Sp,

Sm(T) = �T .

Rm = �T + ��T

(7)�m ≡ � + �� ,

(8)Rm = �mT .
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By taking the sum of (6) and (8), we obtain an alternative 
formulation of (4) which allows us to directly relate R to 
the decomposition into mean SST change and SST pattern 
discussed in Sect. 3.3:

We calculated �m , � , and � from our mean and pattern exper-
iments using the fits in Figs. 3, 5, and 8. We then derived 
� using Eq. 7. The values of these parameters are listed in 
Table 3. Note that the quadratic fit in Fig. 3b suggests that �m 
(and hence also � ) is itself a linear function of T in HadAM3.

As a simple test of the refined energy balance model, we 
plot the actual radiative responses in the slab experiments 
against those predicted by Eq. 9 (Fig. 9). Consistent with the 
results in Fig. 4, the prediction tends to be slightly less accu-
rate for HadAM3, but overall the relationship accurately pre-
dicts the range of R and R/T values in our experiments for both 
models. Note that the � and � parameters are independent of 
the results we are predicting, since they are derived from the 
atmosphere-only mean and pattern SST experiments, while 
the predicted values are from slab runs. Although not shown, 
the prediction based on Eq. 4 performs equally well.

Our revised energy balance model helps to interpret the 
results of Dessler et al. (2018), who proposed a variant 
of the classic model where the radiative response scales 
with 500 hPa temperature ( T500 ) rather than with surface 
air temperature T. Their finding that R correlates better 

(9)R = �mT + �Sp.

with T500 than with T reflects the fact that mid-tropospheric 
temperature responds to changes in both T and S. An 
advantage of the model proposed here is that the relation-
ship between R and climate sensitivity is straightforward 
(since the model is based on global surface temperature), 
and furthermore additional physical insight is gained by 
considering the distinct processes associated with mean 
warming versus stability changes.

5  Implications of the refined model

We now discuss the significance of our refined energy bal-
ance model for three issues: the dependence of the feed-
back parameter on the forcing agent, the time variation 
of the feedback parameter, and the interpretation of the 
observed global radiative budget. These issues are dis-
cussed in turn in the next three subsections.

5.1  Dependence of the feedback parameter 
on forcing agent

The value of the classical feedback parameter � (Eq. 1) 
is known to depend on the forcing agent (cf. Fig. 3c, d); 
equivalently, this dependence can also be interpreted in 

Table 3  Values of � , �
m

 , � , and � derived from the atmosphere-only simulations. �
m

 and � are taken from the uniform-ΔSST simulations (Figs. 3, 
8), � is calculated from the pattern experiments (Fig. 5), and � is calculated using Eq. 7

Model � ( Wm
−2

K
−1) �

m
 ( Wm

−2
K

−1) � ( Wm
−2

K
−1) � (K K −1)

CAM4 −1.58 −1.82 −5.29 0.05
HadAM3 0.06T − 0.91 0.06T − 1.44 −3.71 0.14
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Fig. 9  a R in the slab experiments, versus the value predicted using Eq. 9 and the values in Table 3. b Same for R/T. The black lines denote the 
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terms of differences in forcing efficacy, the global temper-
ature response per unit (effective) radiative forcing, T/F, 
relative to that of CO2

1 (Joshi et al. 2003; Hansen et al. 
2005; Forster et al. 2007; Winton et al. 2010; Rose et al. 
2014; Marvel et al. 2016; Modak et al. 2016; Rugenstein 
et al. 2016a). Understanding the cause for differences in 
efficacy among forcing agents has been a long-standing 
question in climate dynamics.

Here we demonstrate that, at least for the climate mod-
els and forcing agents considered here, the forcing agent 
dependence of the feedback parameter can be explained in 
terms of the stability response to different forcings. Dividing 
Eq. 4 by T yields

indicating that the classical feedback parameter, � = R∕T  , 
should be a linear function of the stability response per unit 
warming. If � is a linear function of T rather than a constant, 
as is the case in HadAM3, we can substitute � = (�1T + �0)T  
in Eq. 4 before diving by T, yielding

For HadAM3, �1 = 0.06 Wm−2 K−2 and �0 = −0.91 
Wm−2 K−1 (Fig. 3b).

We confirm this by plotting R/T (Fig. 10a) and R∕T − �1T  
(Fig. 10b) against S/T for the slab experiments. In this rep-
resentation, the intercept of the linear fit represents � (or 

(10)
R

T
= � + �

S

T
,

(11)
R

T
= �1T + �0 + �

S

T
.

�0 ), while the slope corresponds to � . The points lie close 
to the predicted relationships based on Eqs. 10 and 11. Our 
results therefore suggest that forcing agents cause different 
feedbacks, i.e. vary in efficacy, because they induce differ-
ent SST patterns, and hence different stability responses per 
unit warming.

Among the forcing agents studied here, a good predic-
tor of the variation in � = R∕T  is the ratio of tropical to 
global effective forcing (Fig. 11): forcings that are more 
focused on the tropics tend to yield more negative � , i.e.  
have lower efficacy ( r = − 0.92 if excluding the two outlier 
CAM4 experiments BC × 10 and VOLC, discussed below). 
Compared with uniform forcings, tropical forcings tend to 
cause enhanced free-tropospheric warming per unit global 
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Fig. 11  Values of R/T, taken from the slab runs, versus the ratio of 
tropical to global effective forcing, calculated from atmosphere-only 
simulations with fixed SST and sea ice. The forcing ratio is defined 
so that a value of 1 means that the forcing is entirely in the tropics, 
where the tropics include the area between 30◦ S and 30◦ N. The 
global effective forcing values are listed in Table 2

1 The link between � and T/F can be understood by setting N to 0 in 
Eq. 1, and solving for T/F, yielding T∕F = −1∕� . Hence, more posi-
tive � (in our sign convention) corresponds to higher efficacy.
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surface warming (higher S/T), because the tropics are gener-
ally close to neutral moist stability, and therefore well cou-
pled with the free troposphere through convection, relative 
to other parts of the world. This interpretation is consist-
ent with Zhou et al. (2017) and Andrews and Webb (2018), 
who showed that increasing SSTs in tropical ascent regions 
excites a negative global radiative response (consistent with 
positive S), while warming away from ascent regions mostly 
causes positive radiative changes.

The results in Fig. 11 provide a physical basis to inter-
pret the low efficacy of solar and volcanic forcings (Fig. 11; 
Hansen et al. 2005; Marvel et al. 2016; Modak et al. 2016; 
Gregory et al. 2016), which are more focused on the tropics 
relative to CO2 . They also account for the high efficacy of 
ocean heat uptake and other extratropical forcings (Win-
ton et al. 2010; Rose et al. 2014; Rose and Rayborn 2016; 
Rugenstein et al. 2016a; Liu et al. 2018). We note, however, 
that two CAM4 experiments, BC × 10 and VOLC, have 
substantially lower R/T than expected given the meridional 
structure of these forcings. The VOLC experiment is not run 
to equilibrium (Sect. 2.4), which likely affects the pattern of 
the SST response (and therefore the change in S), since the 
SST pattern is likely to evolve in time. The BC × 10 forcing 
is mainly characterized by a pattern of land-sea contrast, 
rather than by a meridional contrast (not shown), and we 
speculate that this land-sea contrast causes a large stability 
response that is not captured by our simple index. In support 
of this reasoning, Qu et al. (2015a) found that land warm-
ing could cause a decrease in coastal stratocumulus cloud 
via the stability mechanism. We therefore conclude that the 
meridional structure of the forcing is an important but not 
the sole factor controlling forcing efficacy.

5.2  Apparent time dependence of the feedback 
parameter

Previous studies have proposed that large-scale stability 
changes are responsible for time variations in � in the his-
torical period (Zhou et al. 2016) and in CO2-forced model 
simulations (Ceppi and Gregory 2017; Andrews and Webb 
2018). Here we demonstrate that these variations can be 
accounted for quantitatively by using the energy balance (4).

We begin with historical variations in � . Following 
Gregory and Andrews (2016) and Andrews et al. (2018), we 
define � as the least-squares slope of R versus T, � = �R∕�T . 
We assess the evolution of � by calculating �R∕�T  over slid-
ing 30-year windows in the amip-piForcing experiment, 
where our two atmosphere models are forced with histori-
cal observed SSTs from 1871 to 2012 while keeping forcing 
agents at pre-industrial levels. Note that for both models, 
the results are averages over four ensemble members. Since 
there is no forcing, in these runs we can readily diagnose R 

as R = N . If the refined energy balance (4) holds, then we 
should be able to predict the time evolution of �R∕�T  using

and

which is Eqs. 10, 11 rewritten in differential form. Compar-
ing the actual �R∕�T  with the predicted values, we find that 
Eqs. 12, 13 predict the time evolution well, despite an overall 
negative bias in CAM4 (Fig. 12). The results show that dur-
ing the historical period, the stability response generally led 
to more negative feedbacks (more negative � , lower climate 
sensitivity) compared to a case with no stability changes 
(Fig. 12, dashed lines) or compared to the expected response 
to CO2-only forcing (dotted lines).
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Fig. 12  Time evolution of �R∕�T  , the regression slope of R versus T, 
calculated over 30-year sliding windows in amip-piForcing simula-
tions (Andrews et al. 2018) with a CAM4 and b HadAM3. For both 
models, the results are averages over four ensemble members. Black 
curves are the actual �R∕�T  values; solid red curves denote the values 
predicted from Eqs. 12, 13 using the values in Table 3; dashed lines 
also indicate predictions based on Eqs. 12, 13, but omitting the stabil-
ity term; and dotted lines show R/T obtained from the atmosphere–
slab ocean 4 × CO2 simulations
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Next we turn to the problem of increasing climate sen-
sitivity over time under CO2 forcing. Figure 13a, b shows 
N versus T in simulations with atmosphere–ocean general 
circulation models (including a three-dimensional dynamical 
ocean model rather than a slab model), where the models are 
subjected to an abrupt 4 × CO2 forcing. In this configura-
tion, we refer to our models as CESM-CAM4 and HadCM3. 
The simulations are 250 years long and 100 years long in 
CESM-CAM4 and HadCM3 respectively. To minimize 
noise, we use ensemble averages. For CESM-CAM4 the 
experiment contains 12 ensemble members over the first 100 
years, then 5 members over the remaining 150 years; for 
HadCM3 there are 7 members over the whole experiment. 
The CESM-CAM4 and HadCM3 abrupt4 × CO2 ensembles 
are described in more detail in Rugenstein et al. (2016b) and 
Andrews et al. (2015), respectively.

Since the forcing is abrupt and therefore constant, we can 
consider N instead of R, and we use � = �N∕�T  . As high-
lighted by the red least-squares fits in Fig. 13a, b, �N∕�T  
becomes less negative as time passes. We calculate the � 

evolution as above, except that we use a sliding 1.2 K win-
dow (as in Rugenstein et al. 2016b) rather than a fixed time 
window; this maintains an adequate signal-to-noise ratio 
throughout the time series and yields cleaner results towards 
the later part of the runs, where T and N evolve very slowly 
in time.

The sliding regressions over the 4 × CO2 simulations 
again indicate that the refined energy balance predicts the 
evolution of � well (Fig. 13c, d). The predictions look noisier 
towards the beginning of the runs, possibly due to residual 
noise in the results despite the use of ensemble averages, 
because there are fewer years in a given T interval at the 
start of the experiment. In HadAM3, part of the increase in 
� over time is associated with the temperature dependence 
of � (dashed line in Fig. 13d), but changes in stability mostly 
explain the � evolution.

It is interesting to note that although CESM-CAM4 and 
HadCM3 produce similar feedback values under 4 × CO2 
forcing, they achieve these values through very different 
combinations of the uniform-SST and pattern responses. In 
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Fig. 13  Top: N versus T in fully-coupled atmosphere-dynamical 
ocean 4 × CO2 simulations. Black circles denote individual years. The 
simulations are 250 years long in CESM-CAM4 (a) and 100 years 
long in HadCM3 (b). For both models, the results are ensemble aver-
ages (see text). The red lines show the least-squares fits of N versus 
T over 1.2 K windows, for the first and last windows available in the 
time series. The lines are solid over the 1.2 K window used to calcu-

late the fit and dotted elsewhere. Bottom: time evolution of �N∕�T  , 
the regression slope of N versus T, calculated over 1.2 K sliding win-
dows. The thick solid red curves show the actual �N∕�T  values, the 
thin solid red curves indicate the predicted �N∕�T  based on Eqs. 12, 
13, and the dashed lines also correspond to predictions based on 
Eqs. 12, 13 but excluding the stability term
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CESM-CAM4, the normalized stability response, �S∕�T  , 
is near zero or negative, while it is substantially positive 
in HadCM3 (compare the thin solid and dashed lines in 
Fig. 13c, d, and recall R ∝ −S ). This indicates that the two 
models produce substantially different patterns of SST 
response to CO2 forcing, highlighting the need for con-
straints on future patterns of SST change in response to 
forcing.

5.3  Observations of the Earth’s radiation budget

Having demonstrated the relationship between stability and 
radiative budget in climate models, we now verify whether 
our findings apply to the real world. We use global satel-
lite observations of net top-of-atmosphere radiative flux, N, 
based on the Clouds and the Earth’s Radiant Energy System 
(CERES) Energy Balanced and Filled (EBAF) version 4.0 
data product (Loeb et al. 2018). We analyze deseasonalized 
monthly data for the period March 2000–February 2017. 
We estimate R as N − F , where F is based on the IPCC 
AR5 forcing time series, revised and extended by Dessler 
and Forster (2018). Estimates of T and S are obtained from 
ERA5 reanalysis data (Hersbach and Dee 2016).

R is negatively correlated with S on monthly timescales, 
and this relationship is statistically significant (Fig. 14a). By 
comparison, T is a poor predictor of monthly variations in R 
( r = −0.14 , not statistically significant; not shown). Since T 
and S tend to covary in monthly observations ( r = 0.44 ), the 
relationship in Fig. 14a could include a response to T; how-
ever, we obtain a nearly identical result if the effect of T is 
regressed out from both S and R (Fig. 14b). Meanwhile, the 
relationship between R and T remains weak if S is regressed 

out ( r = 0.15 ; not shown). It therefore appears that tropo-
spheric stability is a key control on the global energy budget 
in the real world.

An implication of this result is that previous observational 
estimates of � based on Eq. 1 (e.g., Gregory et al. 2002; 
Forster and Gregory 2006; Roe and Armour 2011; Otto 
et al. 2013; Kummer and Dessler 2014; Lewis and Curry 
2015, 2018; Resplandy et al. 2018) may have been biased 
by not accounting for the role of stability variations. Our 
results also support the findings of Andrews et al. (2018), 
who showed that accounting for the impact of SST patterns 
(which we show to be mediated by stability) increases previ-
ous observational estimates of climate sensitivity, making 
them consistent with model-based estimates.

6  Conclusions

The radiative response to forcing is commonly assumed 
to follow a simple linear dependence on global surface air 
temperature, R = �T  . Using two global climate models, we 
demonstrate that a better model of the radiative response is 
obtained by including the effect of large-scale tropospheric 
stability S, quantified as the estimated inversion strength 
(EIS, in K): R = �T + �S . All other things being equal, 
positive S causes a negative R (a cooling effect), because of 
(a) increased low cloud cover (a negative shortwave cloud 
feedback), and (b) increased longwave emission to space 
from the upper troposphere (a negative lapse-rate feedback). 
The importance of the stability term in the refined energy 
balance model results from the fact that low clouds are a 
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Fig. 14  R versus S in observations (CERES-EBAF version 4.0) and 
reanalysis data (ERA5) during March 2000–February 2017. Black 
circles denote individual months; black lines are least-squares fits. 
The confidence intervals for the regression slopes ( � ) are for a 95% 
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leading cause of differences in radiative feedback across cli-
mate models and forcing agents.

The stability term �S quantitatively explains the impact of 
diverse SST patterns on the radiative response. By including 
this term, we show that differences in efficacy across a wide 
range of forcing agents are largely due to the associated SST 
patterns, which cause different stability responses. Forcings 
focused on the tropics tend to cause a more positive stability 
response, resulting in lower efficacy, compared with extra-
tropical forcings. This helps to explain previous findings, 
e.g. the low efficacy of solar and volcanic forcing (Hansen 
et al. 2005; Marvel et al. 2016; Modak et al. 2016; Gregory 
et al. 2016), and the high efficacy of ocean heat uptake and 
other extratropical forcings (Winton et al. 2010; Rose et al. 
2014; Rose and Rayborn 2016; Rugenstein et al. 2016a; Liu 
et al. 2018).

Furthermore, the impact of SST patterns on the time evo-
lution of the feedback parameter ( � = �R∕�T  ) can also be 
captured by the stability term in our refined model of the 
radiative response. In periods where the stability response 
per unit warming, �S∕�T  , is more positive, the radiative 
response per unit warming �R∕�T  is more negative, and 
vice versa. This explains both the historical variations in 
�R∕�T  given the observed evolution of SSTs (Gregory and 
Andrews 2016; Zhou et al. 2016; Andrews et al. 2018), and 
the increase in �R∕�T  over time in coupled models under 
CO2 forcing (e.g., Murphy 1995; Senior and Mitchell 2000; 
Williams et al. 2008; Winton et al. 2010; Andrews et al. 
2012; Armour et al. 2013; Andrews et al. 2015; Proistosescu 
and Huybers 2017; Ceppi and Gregory 2017).

Finally, we show that the relationship between S and R 
is qualitatively similar in the real world compared with cli-
mate models. In recent satellite observations of the radia-
tive budget, most of the monthly variations in R are driven 
by S, and the two variables are well-correlated on monthly 
timescales ( r = −0.57 ). Because the stability response will 
affect the estimate of � = �R∕�T  , this implies that the role 
of stability must be taken into account when quantifying cli-
mate sensitivity from historical observations. This could be 
done by diagnosing the two parameters in our refined energy 
balance model using multiple linear regression, an approach 
similar to that followed by low cloud observational studies 
(Klein et al. 2017, and references therein) but extended to 
global scales.
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Appendix

A. Calculation of the ocean heat uptake 
forcing

We assume that the mixed-layer energy budget follows

where �w denotes the density of sea water, cp is the heat 
capacity of water, hML is the the mixed layer depth, Fnet is the 
the net surface energy flux (radiative, latent and sensible), 
∇ ⋅� is the horizontal ocean heat flux divergence, and Q is 
the flux of heat into the deep ocean. Fnet and Q are defined 
as positive downward.

We wish to determine the q-flux to be imposed in our 
slab model to sustain an SST evolution that is consistent 
with the multimodel-mean SST evolution in the CMIP5 
abrupt4xCO2 experiment, using the terms in Eq. 14. To do 
this, it is convenient to define ocean heat uptake (OHU) as 
the sum of the horizontal heat flux divergence and flux into 
the deep ocean, OHU = ∇ ⋅� + Q . This definition allows 
us to calculate OHU using only SST and surface flux data 
from the abrupt4xCO2 experiment, by rearranging Eq. 14:

We calculate OHU following Eq. 15, using multimodel-mean 
monthly surface fluxes and SSTs from the abrupt4xCO2 
experiment in CMIP5. The mixed-layer depth hML is a prop-
erty of the slab model and differs between CAM4-SOM and 
HadSM3 (Sect. 2.1), so OHU is calculated separately for 
the two models. We then form monthly OHU climatologies 
for years 1–20 and 21–150, which we use in experiments 
4 × CO2 + OHU1−20 and 4 × CO2 + OHU21−150 . The follow-
ing 14 models are used in the OHU calculation: ACCESS1.0, 
ACCESS1.3, BCC-CSM1.1, BCC-CSM1.1(m), CNRM-
CM5, GFDL-ESM2G, GISS-E2-R, INMCM4, MIROC5, 
MIROC-ESM, MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-
P, MRI-CGCM3.

(14)�wcphML

�SST

�t
= Fnet − ∇ ⋅� − Q,

(15)OHU = Fnet − �wcphML

�SST

�t
.

http://www.archer.ac.uk
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B. Albedo feedback in the uniform‑1SST 
experiments

Owing to the constraint of fixed sea ice concentrations, the 
uniform-ΔSST experiments lack an ice-albedo feedback. 
Since we are interpreting the slab radiative responses as 
the sum of a uniform-ΔSST component and an SST pattern 
component, R = Rm + Rp (Fig. 4), we need to account for the 
missing ice-albedo feedback in the uniform warming simu-
lations in order to explain the slab responses. We therefore 
use a modified radiative response Rm + �T  , where � is a 
pseudo-ice-albedo feedback. � is estimated by taking the dif-
ference between the mean albedo feedback in the slab runs, 
and the mean albedo feedback in the uniform SST runs, cal-
culated in both cases using CAM5 radiative kernels (Soden 
et al. 2008; Pendergrass et al. 2017). We estimate � to be 
0.30 W m−2 K−1 in CAM4 and 0.20 W m−2 K−1 in HadAM3.
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