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Abstract
Vector wind plays a crucial role in shaping regional climate through transferring energy and moisture. In this study, we 
evaluate 37 Coupled Model Intercomparison Project Phase 5 (CMIP5) models and multi-model ensembles (MME) in terms 
of the climatological mean state, annual cycle, and interannual variability of vector winds in the Asian-Australian monsoon 
(A-AM) region. Unlike most previous studies those assessed meridional and zonal wind separately, we treat vector wind as 
a whole by employing a recently developed vector field evaluation method. The results are summarized as follows: (1) MME 
exhibits the best performance in reproducing the climatological mean of vector winds, followed by CESM1-CAM5 and three 
MPI-ESM models. However, models still show significant biases characterized by overestimated lower level vector winds 
and its spatial variation. The biases are mainly rooted in the anomaly components of vector winds and are observed in the 
regions with complex topography. (2) CMIP5 models can well simulate the annual cycle of upper-tropospheric vector winds, 
especially in the extratropical regions, but show large biases and dispersion over complex terrains in the lower troposphere. 
(3) MME still outperforms individual model for the simulation of interannual variance of vector winds, although most 
CMIP5 models overestimate the strength of vector wind variability in the lower troposphere. (4) Model skills in simulating 
climatological means, annual cycle, and interannual variability are positively correlated with each other to a certain degree 
over the A-AM region, suggesting an improvement in climatological mean may lead to a better simulation in the annual 
cycle or interannual variability of vector winds.
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1  Introduction

The Asian-Australian monsoon (A-AM) is an integral com-
ponent of the Earth’s climate system, involving complex 
interactions among the atmosphere, hydrosphere and bio-
sphere. The A-AM covers more than one-third of the global 
tropics from roughly 40°E to 160°E (Wang et al. 2001), and 
home to more than half of the world’s population. A-AM 
climate is characterized by strong seasonality as well as 
interannual variability in vector winds and precipitation (Lin 

and Wang 2002; Wang et al. 2001). A-AM system includes 
several sub-monsoon systems, i.e., South Asian, East Asian, 
and Australian monsoons (Wang et al. 2001, 2014). They 
have a far-reaching impact on regional and global climate 
(Webster and Yang 1992). The monsoon circulation trans-
ports abundant water vapor from the Pacific and Indian 
Ocean to the region and greatly affects the monsoon rainfall 
and water budget. The prediction and projection of future 
climate strongly rely on the simulation skills of climate mod-
els. The improvement in model performance with respect 
to simulation of monsoon climate is particularly important 
to the projection of future climate. An accurate forecast of 
monsoon variation enables productive operation of agricul-
ture in the domain and to reduce damage caused by drought 
or flood (e.g., Webster and Jian 2011; Sperber et al. 2013; 
Zhou et al. 2016).

In terms of the evaluation of model performance in simu-
lating the monsoon climate, most previous studies focused 
on scalar variables such as temperature, precipitation, wind 
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speed, and pay little attention to the vector wind fields. 
However, seasonal reversal of vector wind is one of the 
most important features of the monsoon climate. A strong 
Asian summer monsoon circulation usually brings more 
precipitation and vice versa. Therefore, the simulated pre-
cipitation is strongly determined by how well climate mod-
els can simulate atmospheric circulation (e.g., Twardosz 
et al. 2011; Sperber et al. 2013; Zhou et al. 2016; Wei et al. 
2016). In addition to climate studies, the climate-related 
industries, e.g. wind power, agriculture, and ecology, also 
require comprehensive evaluation of model performance 
in simulating wind fields for the purpose of adaptation to 
future climate change (Pryor et al. 2005; Fitch and Moore 
2007; Hout et al. 2008; Pryor and Barthelmie 2011; Ras-
mussen et al. 2011; Barthelmie and Pryor 2014). Efforts 
have been made to evaluate monsoon circulation by assess-
ing the monsoon winds of climate models, but most of 
them focus on the zonal or meridional wind component 
(e.g., Zveryaev 2002; Chen et al. 2012; Sperber et al. 2013; 
Kawatani et al. 2016). For example, Zveryaev (2002) inves-
tigated the decadal–interdecadal variabilities of zonal winds 
in the Asian monsoon region. However, it is known that the 
meridional wind also plays a crucial role in transferring 
moisture and shaping the regional climate, especially for 
the East Asian monsoon. Likewise, Sperber et al. (2013) 
evaluated the effect of meridional gradient of zonal wind 
anomalies on interannual variability of rainfall in the East 
Asia region, but did not consider the vector nature of winds, 
either. Evaluating meridional and zonal wind separately 
may lose some important information or get one-sided eval-
uation of modeled wind field. A few studies also evaluated 
climate models in terms of vorticity or divergence fields, 
which take both the zonal and meridional wind components 
into account (Mitovski et al. 2010; Seiler and Zwiers 2016). 
However, as the secondary variables computed from the 
vector wind field, the vorticity and divergence have some 
limitations in representing the vector field accurately. For 
instance, same vorticity or divergence field may correspond 
to different vector wind fields due to the partial derivative 
algorithm. Thus, an accurate simulation in vorticity or 
divergence field may not necessarily indicate an accurate 
simulation in vector wind fields.

Recently, Xu et al. (2016) defined a set of statistical 
quantities to measure the feature of vector fields and in turn 
devised a vector field evaluation (VFE) diagram. The VFE 
diagram can summarize multiple aspects of model perfor-
mance in simulating vector fields, which can be regarded as 
a generalized Taylor diagram (Taylor 2001). In this study, 
we carry out an in-depth evaluation on the vector winds in 
the A-AM region simulated by the Coupled Model Intercom-
parison Project-5 (CMIP5) models with the support of the 
VFE method. We intend to assess the CMIP5 model skills 
in reproducing the spatial pattern and temporal variations 

of vector wind fields from the viewpoint of vector field 
evaluation. The evaluation helps to understand the errors 
of CMIP5 models and potentially support improvement of 
climate models.

In Sect. 2, we briefly introduce the models and data used 
in this study as well as the VFE method. Section 3 reports 
the performance of the models with regard to spatial pattern 
of climatological mean vector winds and the simulated tem-
poral variation of vector winds including annual cycle and 
interannual variability. Section 4 investigates the interrela-
tionship of model performances in simulating climatological 
mean, annual cycle and interannual variability. Conclusions 
are presented in Sect. 5.

2 � Data and methodology

2.1 � Data

The model data used are the first ensemble run of historical 
experiment from 37 CMIP5 models during the period of 
1979–2005 (Table 1). The historical experiment was forced 
by observed natural and anthropogenic forcings with some 
of the models including time-evolving land cover (Taylor 
et al. 2012). Detailed model information can be obtained 
from http://cmip-pcmdi​.llnl.gov/cmip5​.

The data used to validate the models are from six rea-
nalysis datasets, i.e., the National Centers for Environment 
Prediction (NCEP)-Department of Energy (DOE) Atmos-
pheric Model Inter-comparison Project II reanalysis data 
(NCEP2), the National Centers for Environmental Predic-
tion/National Center for Atmospheric Research Reanalysis 
Project (NNRP), the European Centre for Medium-Range 
Weather Forecasts Reanalysis-40 (ERA40), the European 
Centre for Medium-Range Weather Forecasts Interim Rea-
nalysis (ERA-I), the Japan Meteorological Agency and the 
Central Research Institute of Electric Power Industry Rea-
nalysis-25 (JRA-25) and Reanalysis-55 (JRA-55). We can 
take observational uncertainty into account by using multi-
ple reanalysis datasets as validation data.

We examine the performance of 37 CMIP5 models by 
comparing the monthly mean vector winds in the Asian-
Australian monsoon region (40°E–160°E, 30°S–45°N) 
from the first ensemble run of historical simulations against 
ensemble mean of six reanalysis data sets during the period 
from 1979 to 2005. All model results and reanalysis products 
are regridded to a common grid of 2.5° × 2.5°. To avoid 
the unrealistic values caused by data extrapolation, all data 
below the land surface are excluded from the evaluation.

http://cmip-pcmdi.llnl.gov/cmip5
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Table 1   CMIP5 models used in this study

Number Model Institution Model horizon-
tal resolution

1 ACCESS1-0 Commonwealth Scientific and Industrial Research Organisation, Australia and Bureau of 
Meteorology (Australia)

1.88° × 1.25°

2 BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration (China) 2.81° × 2.81°
3 BNU-ESM College of Global Change and Earth System Science, Beijing Normal University (China) 2.81° × 2.81°
4 CanESM2 Canadian Centre for Climate Modelling and Analysis (Canada) 2.81° × 2.81°
5 CCSM4 NCAR (National Center for Atmospheric Research) Boulder (USA) 1.25°× 0.94°
6 CESM1-CAM5 National Science Foundation, Department of Energy, National Center for Atmospheric 

Research (USA)
1.25° × 0.94°

7 CMCC-CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici (Italy) 3.75° × 3.75°
8 CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici (Italy) 1.88° × 1.88°
9 CNRM-CM5-2 Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Forma-

tion Avancees en Calcul Scientifique (France)
1.41° × 1.41°

10 CNRM-CM5 Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Forma-
tion Avancees en Calcul Scientifique (France)

1.41° × 1.41°

11 CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organization in collaboration with 
Queensland Climate Change Centre of Excellence (Australia)

1.88° × 1.88°

12 EC-EARTH EC-EARTH consortium (European community) 1.13° × 1.13°
13 FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS, Tsing-

hua University (China)
2.81° × 3.05°

14 FGOALS-s2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences (China) 2.81° × 1.41°
15 GFDL-CM2p1 NOAA Geophysical Fluid Dynamics Laboratory (USA) 2.50° × 2.00°
16 GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory (USA) 2.50° × 2.00°
17 GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory (USA) 2.50° × 2.00°
18 GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory (USA) 2.50° × 2.00°
19 GISS-E2-H NASA Goddard Institute for Space Studies (USA) 2.50° × 2.00°
20 GISS-E2-R NASA Goddard Institute for Space Studies (USA) 2.50° × 2.00°
21 HadCM3 Met Office Hadley Centre (England) 3.75°× 2.50°
22 HadGEM2-AO Met Office Hadley Centre (England) 1.88°× 1.25°
23 HadGEM2-CC Met Office Hadley Centre (England) 1.88°× 1.25°
24 HadGEM2-ES Met Office Hadley Centre (England) 1.88°× 1.25°
25 inmcm4 Institute for Numerical Mathematics (Russia) 2.00° × 1.50°
26 IPSL-CM5A-LR Institut Pierre-Simon Laplace (France) 3.75° × 1.88°
27 IPSL-CM5A-MR Institut Pierre-Simon Laplace (France) 2.50° × 1.25°
28 IPSL-CM5B-LR Institut Pierre-Simon Laplace (France) 3.75° × 1.88°
29 MIROC-ESM-CHEM Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute 

for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology 
(Japan)

2.81° × 2.79°

30 MIROC-ESM Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute 
for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology 
(Japan)

2.81° × 2.79°

31 MIROC4h Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute 
for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology 
(Japan)

0. 56° × 0.56°

32 MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute 
for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology 
(Japan)

1.41° × 1.40°

33 MPI-ESM-LR Max Planck Institute for Meteorology (Germany) 1.88° × 1.88°
34 MPI-ESM-MR Max Planck Institute for Meteorology (Germany) 1.88° × 1.88°
35 MPI-ESM-P Max Planck Institute for Meteorology (Germany) 1.88° × 1.88°
36 MRI-CGCM3 Meteorological Research Institute (Japan) 1.13° × 1.12°
37 NorESM1-M Norwegian Climate Centre (Norway) 2.50° × 1.89°
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2.2 � Assessment methods

The statistical quantities and VFE diagram devised by Xu 
et al. (2016) are briefly introduced here. The VFE diagram 
is a generalized Taylor diagram (2001), which can evaluate 
the vector fields. The VFE diagram can provide a concise and 
informative evaluation on model performance in terms of three 
statistical quantities, i.e. vector similarity coefficient (VSC), 
root-mean-square vector length (RMSL), and root-mean-
square vector difference (RMSVD):

Here, A and B represent two vector fields, which consist 
of N discrete vectors (in time and/or space). Similar to the 
Pearson correlation coefficient, the VSC measures pattern 
similarity between two vector fields and it ranges from − 1 to 
1. The RMSLs, i.e., LA and LB , measure the mean and vari-
ance of the magnitudes of vector fields A and B, respectively. 
RMSVD describes the overall difference between two vector 
fields similar to the root mean squared difference (RMSD) 
between two scalar fields. These three statistical quantities 
can also be applied to evaluation of anomalous scalar fields. 
Under such a circumstance, the VSC, RMSL, and RMSVD 
become the Pearson correlation coefficient, standard deviation, 
and the root mean squared difference in the Taylor diagram, 
respectively. The VFE diagram can be flexibly applied to the 
full vector fields or vector anomaly fields for different appli-
cations. The centered pattern correlation excludes mean state 
from the statistics and is most commonly used for detection 
studies (Santer et al. 1993; Wigley et al. 2000). In this study, 
we employed the uncentered statistics to take both the mean 
state and anomaly statistics into account.

To quantitatively compare and rank the performance of the 
various CMIP5 models, we calculated the model skill scores 
Sv1 and Sv2 proposed by Xu et al. (2016). Sv1 and Sv2 are similar 
to the model skill scores defined by Taylor (2001) except for 
vector fields. Sv1 and Sv2 are defined as:

(1)VSC =

∑N
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(4)
Sv1 =

4(1 + Rv)
(

LA

LB
+

LB

LA

)2

(1 + R0)

,

where Rv is the vector similarity coefficient between obser-
vation and simulation, and R0 is the maximum similarity 
attainable. Here we assumed that R0 = 1. The value of skill 
score approaches 1 in a perfect simulation. Note that Sv1 and 
Sv2 take both the VSC and RMSL into account. Sv1 places 
more emphasis on the simulation of amplitude of vector 
field. In contrast, Sv2 is more sensitive to the pattern simi-
larity between two vector fields.

3 � Evaluations of vector winds 
in the Asian‑Australian monsoon region

3.1 � Climatological means

The MME of 37 CMIP5 models well capture the main fea-
tures of the Asian-Australian summer monsoon circulation 
against the multi-reanalysis dataset ensemble (MRE). For 
example, MME and reanalysis show highly consistent sum-
mer monsoon circulation pattern, characterized by 850-hPa 
cross-equatorial flow to the east of Africa and maritime con-
tinent, westerly flow over South Asia, and the anticyclonic 
circulation over western Pacific (Fig. 1a, b). The upper trop-
ospheric circulation is dominated by the South Asian anticy-
clonic circulation and north-to-south cross-equatorial flow 
(Fig. 1d, e). The VSCs between MME and reanalysis is 0.98 
(0.99) and the normalized RMSL is 0.97 (0.97) for the 850-
hPa (200-hPa) wind fields. Clearly, the climatological mean 
vector winds simulated by MME are highly consistent with 
those in the MRE in terms of both the spatial pattern and 
the magnitude of vector winds. However, 60–80% of models 
underestimate the strength of Somali low-level jet stream, 
and consequently the wind speed, to the east of Somali, is 
approximately 10% lower in MME than the MRE (Fig. 1c). 
Compared with the MRE, MME shows a stronger southerly 
flow over eastern China, a slightly weaker monsoon trough 
over South Asia (Fig. 1a, c), and a weaker tropical easterly 
flow in the upper troposphere. More than 70% CMIP5 mod-
els underestimate the tropical upper level easterly flow and 
subtropical westerly flow, but overestimate the westerly flow 
around 30°N in Northern Hemisphere and that to the south 
of 10°S (Fig. 1d, f).

To measure the spread of 37 CMIP5 models, we calcu-
lated the root mean square vector difference between indi-
vidual model and MME at each grid as:

(5)Sv2 =
4(1 + Rv)

4

(
LA

LB
+

LB

LA

)2

(1 + R0)
4

,
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where N equals 37. VCMIP5,i and V̄MME represent the vector 
wind of i-th CMIP5 model and the ensemble mean of CMIP5 
models, respectively. The primary inter-model spread of 
vector winds occur in the Asian summer monsoon region 
between 5°N and 30°N with the maximum spread located in 
the Somali jet stream region, northern India, and Southeast 
Asian-western Pacific region (Fig. 1b). Conversely, the inter-
model spread is very small in the upper stream of Asian-
Australian summer monsoon circulation, i.e. the southern 
Indian Ocean and Australia (Fig. 1e). The large spread of 
vector winds in the Asian summer monsoon region indicates 

(6)
𝜎v =

√√√√ 1

N

N∑

i=1

(
VCMIP5,i − V̄MME

)2
=

√√√√ 1

N

N∑

i=1

(uCMIP5,i − ūMME)
2
+ (vCMIP5,i, − v̄MME)

2
,

that models may not able to accurately describe coupling 
between precipitation and circulation, since a great spread 
of the simulated precipitation climatology is also observed 
where models have large discrepancy in reproducing the 
wind fields (not show). The inter-model spread of 200-hPa 
vector winds mainly occurs in the East Asian sub-tropical 
westerly jet stream regions. In addition, South Asian anticy-
clonic circulation also shows large spread among 37 CMIP5 
models over the south of the Tibetan Plateau and the eastern 
Africa.

In winter, the MME can also realistically reproduce the 
circulation patterns of Asian-Australian winter monsoon, 

Fig. 1   The climatological 
mean 850-hPa and 200-hPa 
vector winds in summer (June–
July–August) for a, d multi-
reanalysis dataset ensemble 
(MRE) and b, e MME during 
1979–2005. The shading in b, 
e represents the inter-model 
spread defined by the standard 
deviation of vector winds across 
37 CMIP5 models. c, f The 
difference of vector wind fields 
between MME and MRE. The 
shaded area in c, f represents 
the percentage of models with 
greater-than-MRE wind speed 
to total number of models. The 
unit is m s−1 for the vector wind 
and their inter-model spread
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with a VSC of 0.96(0.99) and a normalized RMSL of 
1.1(1.0) at lower (upper) troposphere in comparison with 
the MRE. The typical characteristics of monsoon circula-
tion in the region can be captured by the MME, such as the 
north-to-south cross equatorial flow over Indonesia and the 
subtropical westerlies jet in the upper troposphere (Fig. 2a, 
b, d, e). However, MME overestimates the strength of the 
monsoon trough over Indonesia and the upper westerlies 
over the Tibetan Plateau and western Pacific where also 
experience a large inter-model spread (Fig. 2b, c, e, f). The 
center of inter-model spread of vector winds tends to appear 
in the regions where models show poor performance. Simi-
lar conclusion also reported in previous study in terms of 
precipitation (Lee et al. 2010).

To quantitatively summarize the performance of CMIP5 
models in simulating climatological mean vector winds, 
Fig. 3 illustrates multiple statistics of modeled vector winds 

in the VFE diagram. The statistics, i.e. VSC, RMSL, and 
RMSVD, of 6 reanalysis data sets are very close to each 
other over the A-AM region (blue marks in Fig. 3), indicat-
ing that the difference among reanalysis products is fairly 
small. Thus, the observational uncertainty is negligible in 
our model evaluations. In the remaining analyses, we take 
the ensemble mean of six reanalysis datasets (MRE) as 
observational data. MME generally outperforms individual 
models in the simulation of vector wind climatology in 
terms of both the amplitude and spatial pattern. The VSCs of 
various CMIP5 models range from 0.75 to 0.96, suggesting 
great differences of CMIP5 models’ ability in reproducing 
the spatial pattern of vector winds. The normalized RMSLs 
are generally greater than 1 in spring, autumn, and winter, 
which indicates that CMIP5 models systematically overes-
timate the magnitude of 850-hPa vector winds in the A-AM 
region. Models generally show better statistics in the upper 

Fig. 2   Same as in Fig. 1 except 
for winter (December–January–
February)
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troposphere than the lower troposphere (Fig. 3). The out-
standing performance of upper winds is possibly due to the 
simple atmospheric circulation patterns.

In order to clarify the extent to which the overall RMSVD 
is attributed to bias in the mean vector winds and how much 
is due to the poor simulation in anomaly field, we computed 

the RMSVD from the mean vector field and the anomaly 
vector field, respectively. The vector anomaly fields can 
roughly account for 41–100% of the RMSVD in the vec-
tor full fields (the proportion for RMSVD of mean state 
is less than 59%), impling the simulation of the anomaly 
component is the predominant error source in climatological 

Fig. 3   Normalized VFE diagram of climatological mean 850-hPa 
and 200-hPa vector winds in the Asian-Australian monsoon region 
(40E°–160°E, 30°S–45°N) for spring, summer, autumn, and winter. 
MME and each model are denoted by green point and red numbers, 

respectively. The blue marks denote the reanalysis datasets. All data 
are compared with the reference data (REF) that is the ensemble 
mean of six reanalysis datasets

Fig. 4   Skill score Sv1 (upper left 
triangle) and Sv2 (lower right 
triangle) represent the perfor-
mance of CMIP5 models in 
reproducing the climatological 
mean 850-hPa, 500-hPa, 200-
hPa vector winds in different 
seasons
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means. In other words, the area-mean vector wind is better 
reproduced than the spatial pattern of vector wind by the 
models.

Although a smaller RMSVD generally represents better 
correspondence between model results and observation, the 
RMSVD does not decrease monotonically as the improve-
ment of model performance (Xu et al. 2017). We therfore 
computed the model skill scores Sv1 and Sv2, which satify the 
monotonic relationship with model performance. Figure 4 
summarizes and ranks model performance in simulating 
the vector wind climatology in various levels and seasons. 
The MME exhibits the best performance with the CESM1-
CAM5 model and three MPI-ESM models follow closely 
behind. An evidently improved model skill from the lower 
level to the upper level is observed (Figs. 3, 4), indicating 
that it is more challenging to simulate low-level vector winds 
than the upper-level ones.

3.2 � Annual cycle

The annual cycle of monsoon circulation, characterized by 
seasonal reversal of vector wind, is one of the key features 
of monsoon climate. As interpreted in Sect. 2, the model 
skill score Sv2 is more sensitive to the pattern similarity of 
vector winds than Sv1, which can measure how well the mod-
eled vector winds resemble the observed one. We therefore 
computed Sv2 at each grid with monthly mean climatology 
of vector winds between individual model and MRE. Under 
such a circumstance, the Sv2 at each grid represents how 
well the model can reproduce the annual cycle of vector 
winds. Generally, the annual cycle of vector winds are bet-
ter captured in the upper troposphere than the lower tropo-
sphere (Fig. 5). The overall Sv2 averaged across 37 CMIP5 
models is generally greater than 0.8 in the areas with strong 
low-level monsoon circulation, such as the southern Indian 
Ocean between 10 °S and 25 °S, northern Indian Ocean, and 
South China Sea (Fig. 5a). Sv2 is greater than 0.9 in the extra-
tropical regions in the upper troposphere. In these regions, 
models can well reproduce the observed annual cycle of 

vector winds (Fig. 5b). Sv2 appears to be small in the vicini-
ties of the Tibetan Plateau in the lower troposphere and the 
tropical regions in both the lower and upper troposphere, 
suggesting a relative larger bias in the modeled annual cycle 
in these regions. Note that the inter-model dispersion of 
Sv2 also tends to appear in regions with lower Sv2, e.g., the 
Tibetan Plateau, Iranian Plateau, and maritime continent in 
the lower troposphere and tropics in the upper troposphere. 
Thus, models are difficult to capture the annul cycle of vec-
tor winds and show large inter-model spread around complex 
terrains in lower troposphere and the equatorial India ocean 
in lower, middle and upper troposhere. This indicates that 
the topography effects on monsoon circulation may not be 
well captured by the climate models.

To compare the performance of various CMIP5 models 
in reproducing annual cycle of vector winds in the A-AM 
region, the VFE diagram illustrates multiple statistics calcu-
lated with the three-dimensional (time, latitude, longitude) 
vector winds within the A-AM region (Fig. 6). The statis-
tics measure the overall performance of a climate model 
in reproducing the annual cycle of vector winds within the 
A-AM region. The normalized RMSLs in the VFE diagram 
are generally greater than 1, which indicates the CMIP5 
models generally overestimate the amplitude of annual cycle 
of 850-hPa vector wind (Fig. 6). In contrast, the annual cycle 
of 200-hPa vector winds are well simulated by CMIP5 mod-
els characterized by smaller RMSVD for all models. Note 
that MME still outperforms any individual models in repro-
ducing the annual cycle of vector winds.

By computing the RMSVD of the mean field and the 
anomaly field of vector winds, we find that the anomaly 
fields account for 35–81%, with a typical value of 63%, 
errors of vector winds in A-AM. The skill scores, Sv1 and Sv2, 
computed based on the three-dimensional vector winds show 
that MME still outperforms any individual CMIP5 models 
in reproducing the annual cycle of vector winds. The com-
parison of Fig. 4 with Fig. 7 suggests that models those can 
well reproduce the climatological means, e.g., the MME, 
CESM1-CAM5 and three MPI models, also show good 

Fig. 5   Sv2 averaged over 37 
CMIP5 models measuring the 
overall ability of CMIP5 models 
in simulating the annual cycle 
of climatological mean vector 
wind. Contour denotes the 
standard deviation of Sv2 repre-
senting the inter-model spread 
of CMIP5 models in simulating 
annual cycle of vector winds
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performance in simulating annual cycle of vector winds. Sv1 
and Sv2 also reveal an improvement of model skills from the 
lower level to the upper level (Fig. 7), indicating the models 
have diffculty to simulate the annual cycle of lower tropo-
spheric vector winds.

3.3 � Interannual variability

The A-AM climate shows a very large interannual variabil-
ity. An accurate simulation and prediction of the variabil-
ity is still one of the most challenging tasks (Sperber and 
Palmer 1996; Wang et al. 2008; Boo et al. 2011; Song and 
Zhou 2014). The change of variability is considered more 

Fig. 6   Same as in Fig. 3 except for annual cycle

Fig. 7   Same as in Fig. 4 expect 
for annual cycle of climatologi-
cal mean vector winds
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important than the change of mean state to the detection of 
extreme events and the design of model experiments (Katz 
and Brown 1992). Besides, the interannual variabilities of 
precipitation and temperature are closely related to that of 
the vector winds. Thus, assessing the variation of vector 
winds should be helpful for understanding the variation of 
monsoon rainfall and temperature. The amplitude of inter-
annual variability of vector winds is defined as the standard 
deviation of the vector wind:

where Vj and V̄ represent the seasonal mean vector wind 
of the j-th year and the climatological mean vector wind, 
respectively. N equals to 27, representing the number of 
years from 1979 to 2005. The standard deviation of vector 
wind field measures the extent of vector wind fluctuation 
from its mean vector in terms of both magnitude and direc-
tion. The calculating method of the vector wind interannual 
variability resembles that of the inter-model spread that is 
defined by the root mean square difference between MME 

(7)

𝜎v =

√√√√ 1

N

N∑

j=1

(
Vj − V̄

)2
=

√√√√ 1

N

N∑

j=1

(uj − ū)2 + (vj − v̄)2,

and individual model result. It should be noted that the inter-
annual variability analyzed here is based on the time dimen-
sion, as the anomaly field is obtained by removing its own 
climatological means from the time dimension, while the 
spread of models measures the overall difference between 
individual model and the MME.

The maximum interannual variability of 850-hPa vec-
tor winds in summer occurs in the southern and northern 
sides of the Western Pacific subtropical high (WPSH) due 
to interannual variation of WPSH (Fig. 8a). Models can 
capture these variabilities but underestimate the amplitude 
by 20%, approximately. On the other hand, models clearly 
overestimate the interannual variability of 850-hPa vector 
winds over the Bay of Bengal and maritime continent by 
approximately 30% (Fig. 8a, b). In winter, the MRE shows 
maximum interannual variability in the tropical zone of 
0°–15°S (Fig. 8d). The MME of the standard deviation 
of vector winds can still reasonably reproduce the over-
all spatial pattern of the interannual variability of vector 
winds but overestimates the amplitude over the Indo-China 
peninsula, the southern edge of the Tibetan plateau, cen-
tral China and the northwestern Pacific by approximately 
30–50%. (Fig. 8d, e). The tropical variability of 850-hPa 

Fig. 8   Interannual variability 
of 850-hPa vector winds of the 
a, d MRE, b, e MME and c, f 
the inter-model spread of 37 
CMIP5 models in summer (JJA) 
and winter (DJF). The interan-
nual variability is defined by the 
temporal standard deviation of 
vector winds over the period of 
1979–2005
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vector winds in the MME appears to be linked with the 
Intertropical Convergence Zone (ITCZ) and its seasonal 
march. For example, similar to the ITCZ, the maximum 
variability of vector winds also shows a clear northward 
migration from the Southern Hemisphere in winter to the 
Northern Hemisphere in summer (Fig. 8a, b, d, e). The 
inter-model spread for interannual variability is measured 
by the inter-model standard deviation. Models disagree 
with each other mostly in the tropical western Pacific as 
well as the regions with high topographies in summer, 
such as the vicinities of the Tibetan and Iranian plateaus, 
Ethiopian Highland, and maritime continent (Fig. 8c). In 
winter, the spatial pattern of inter-model spread of 850-
hPa vector winds variability resembles that in summer, 
except shifting from the northern Indian Ocean-northwest-
ern Pacific to the tropical Indian Ocean-maritime continent 
(Fig. 8c, f). This indicates the insufficient ability of models 
in simulating interannual variability of low-level vector 
winds in regions with complex terrain.

The 200-hPa vector winds show strong variability over 
the subtropical westerly zones in both hemispheres in sum-
mer, as well as the westerly jet regions and the Austral-
ian region in winter (Fig. 9a, d). MME can successfully 

capture the spatial pattern of the variability but under-
estimate the magnitude of both the maximum and mini-
mum (Fig. 9b, e). For example, MME overestimates the 
vector wind variability by 40% in East Asian-Pacific 
region and fails to capture the minimum over the Indo-
Pacific region, overestimating the variability by a factor 
of 10–20% (Fig. 9b). In winter, MME clearly underesti-
mates the vector wind variability over the west Australia 
by approximately 10–30% (Fig. 9e). The maximum inter-
model spread of 200-hPa vector winds variability occurs 
over the western Indian Ocean and tropical western Pacific 
region in summer, as well as the equatorial Indian Ocean 
and maritime continent in winter (Fig. 9c, f).

VFE diagrams indicate that CMIP5 models can well 
simulate the spatial pattern of interannual variability of 
vector winds (Fig. 10). The VSCs are about 0.95 for most 
models and can approach 0.99 for the MME. However, most 
models overestimate the strength of interannual variability 
of 850-hPa vector winds in the A-AM region especially in 
autumn and winter. Conversely, a few models, e.g., GISS-
E2-H, GISS-E2-R, and inmcm4, underestimate the strength 
of interannual variability of 850-hPa vector winds. In the 
upper troposphere, CMIP5 models generally exhibit better 

Fig. 9   Same as in Fig. 8 except 
for 200-hPa vector winds
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statistics than the lower troposphere in terms of the interan-
nual variability characterized by closer relationship to the 
reanalysis in both spatial pattern and magnitude.

MME shows best performance in reproducing the inter-
annual variability of vector winds in both the lower and 

upper troposphere. This is also confirmed by the ranking 
of Sv1 and Sv2 (Fig. 11). CMIP5 models generally dis-
play better performance in reproducing the interannual 
variability in the upper troposphere than the lower tropo-
sphere. It is noteworthy that the CNRM-CM5, MIROC5 

Fig. 10   Same as in Fig. 3 except for interannual variability of vector winds

Fig. 11   Same as Fig. 4 except 
for interannual variability of 
vector winds
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and BCC-CSM1-1 rank top 3 out of 37 CMIP5 models 
in terms of the interannual variability of vector winds. 
However, MIROC5 and BCC-CSM1-1 rank outside the 
top 10 of 37 models when it comes to the simulation of 
climatological mean and annual cycle (Figs. 4, 7). This 
suggests that the model performance in simulating the 
vector wind interannual variability may not directly link 
to model abilities in mean state and annual cycle.

4 � Interrelationship of model performances 
in simulating climatological mean, annual 
cycle and interannual variability

The climatological mean, annual cycle and interannual vari-
ability are computed based on the same set of data repre-
senting three aspects of modeled vector winds. These three 
aspects may link to each other to a certain degree or not. If 
they do so it suggests that the improvement in climatologi-
cal mean may lead to an improvement in annual cycle or 
interannual variability. If they do not so it may indicate that 
different processes govern these aspects.

Previous studies demonstrated that the interannual vari-
ability of monsoon in a coupled model is closely correlated 
to its simulation of mean features (e.g., Fennessy et al. 1994; 
Sperber and Palmer 1996; Kang et al. 2002; Lee et al. 2010). 
Similarly, the decadal variability of wind field also can be 
well captured by models with improved mean-state of sea 
surface temperature (Kajtar et al. 2017; McGregor et al. 
2018). Moreover, the skill for individual coupled model in 

predicting the interannual variability is positively correlated 
with its performances of prediction of the annual cycle (Lee 
et al. 2010). Investigating the relationship of model perfor-
mance in simulating climatological mean, annual cycle, and 
interannual variability may help to understand the sources 
of errors in models and guide the improvement of climate 
models. For example, Ham and Kug (2015) introduced a 
methodology to improve the simulated interannual vari-
ability by correcting the climatological bias based on the 
relationship between the inter-model diversity of interan-
nual variability and mean state. Correcting general circula-
tion model (GCM) mean bias can also help to improve the 
downscaled temperature variability to a certain agree (Xu 
and Yang 2012, 2015). Notably, the aforementioned stud-
ies focused on the scalar variables of monsoon, such as the 
sea surface temperature and precipitation. The relationship 
between model performances in reproducing climatological 
mean, annual cycle, and interannual variability were not yet 
assessed in terms of vector winds.

Figure 12 shows the correlation coefficients of model 
skill scores across 37 models describing the interrelationship 
between climatological mean, annual cycle, and interannual 
variability. There are 51 out of 144 correlation coefficients 
reaching the significant level of 0.01, which suggests that 
the ability of climate models in simulating climatological 
mean, annual cycle, and interannual variability do link with 
each other to a certain degree. The positive correlations of 
model skills between climatological means and annual cycle 
are distinguished from other comparisons, especially in the 
whole A-AM region. Instead, the model performances in 

Fig. 12   Correlation coefficients between model skill scores (aver-
age of Sv1 and Sv2) in simulating the climatological means (CM), 
annual cycle (AC), and interannual variability (IV). The skill 
scores are computed in the Asian-Australian monsoon region 
(A-AM: 40°E–160°E, 30°S–45°N), South Asian monsoon region 

(SAM: 50°E–100°E, 0°–25°N), East Asian monsoon region (EAM: 
100°E–140°E, 0°–45°N) and North Australian monsoon region 
(NAM: 100°E–140°E, 0°–15°S) for different vertical levels and sea-
sons, respectively. The correlation coefficients at the significance 
level of 0.01 are shown in red font
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reproducing the vector wind climatology and interannual 
variability are not always well correlated. For example, only 
5 of 48 correlation coefficients between these two aspects 
reach the significant level of 0.01. Note that the climato-
logical mean of vector winds is better correlated with its 
annual cycle for all monsoon regions, especially in summer 
and autumn for A-AM region with the significant correla-
tion coefficients range from 0.84 to 0.9. This suggests if one 
model can well simulate climatological mean states of vec-
tor winds, it can usually well reproduce the annual cycle of 
vector winds. We also noted that the model performances in 
simulating climatological means are closely correlated with 
each other between different seasons. In another word, if 
one model shows good performance in simulating the spring 
climatology of vector winds, it also tends to better reproducs 
the summer, autumn and winter climatology.

5 � Discussions and conclusions

We assess the CMIP5 models performance in reproducing 
the spatial pattern and temporal variations of vector wind 
fields in the Asian-Australian monsoon. In our evalua-
tion, the wind field is treated as a two-dimensional vector 
field, which is different from most previous evaluations in 
those the wind field was treated as one or two scalar fields. 
As known that both wind speed and direction are of great 
importance in shaping regional climate. Therefore, our stud-
ies are expected to provide a more comprehensive and rea-
sonable evaluation on the CMIP5 models performance in 
reproducing monsoon circulation.

Our evaluation indicates that CESM1-CAM5 and three 
MPI-ESM models show better performance than other CMIP5 
models in reproducing the climatological mean vector winds 
in the A-AM region (Fig. 4). MME simulation has much bet-
ter skill than any individual CMIP5 models in reproducing 
the climatological mean of vector winds in terms of both the 
pattern similarity and magnitude. However, MME underesti-
mates the strength of summertime 850-hPa Somali jet stream 
and South Asian monsoon trough (Fig. 1). Remarkable inter-
model spread occurs in the South Asian and East Asian mon-
soon region between 5–20°N where precipitation also shows 
greater model spread. This may suggest that models still lack 
of accuracy in describing the coupling process between pre-
cipitation and circulation. In addition, the regions with com-
plex terrains also show large bias and model dispersion. This 
is likely due to the limitation of cumulus parameterization 
schemes in describing the interaction of complex dynamics 
and sharp moisture gradients associated with complex terrains 
(e.g., Ghan et al. 2002; Qian et al. 2010; Mehran et al. 2014). 
To investigate the possible cause for the systematic biases of 
vector winds, we decompose the vector wind into geostrophic 

and ageostrophic components. It turns out that CMIP5 models 
generally overestimate the strength of geostrophic wind as 
well, while the ageostrophic components contribute little to 
the biases. The biases in geostrophic component result from 
models’ deficiency in simulating the gradient of geopotential 
height (figure not shown). Moreover, we find the errors in 
climatological means largely stems from the spatial anomaly 
bias while the models can better capture the area-mean vec-
tor. This indicates that it is difficult to accurately simulate 
the spatial pattern of vector wind for the models. Note that 
previous studies reported that the CMIP5 models show a large 
zonal wind spread in the Indo-China peninsula and a large 
meridional wind spread in the East Asia(Gong et al. 2014). 
Both inter-model spreads can be simultaneously identified by 
the vector field evaluation method in our study (Fig. 2b).

In terms of annual cycle of vector winds in the A-AM 
region, CESM1-CAM5 and three MPI models still rank top 
of the 37 CMIP5 models. Most CMIP5 models overestimate 
the annual cycle amplitude of 850-hPa vector winds. MME 
still exhibits better performance than any individual CMIP5 
models. CMIP5 models can generally well reproduce the 
annual cycle of vector winds in the extratropical regions in 
upper troposphere and strong low-level monsoon circulation. 
In contrast, models show large biases over complex terrains, 
such as the vicinities of the Tibetan Plateau and maritime 
continent in the lower troposphere where models also show 
a large inter-model dispersion.

The models can reasonably capture the temporal variance 
of 850-hPa vector winds in the A-AM region although over-
estimate its strength over the Bay of Bengal and maritime 
continent in summer, as well as the Indo-China peninsula, 
the southern edge of the Tibetan plateau, the central China 
and the northwestern Pacific in winter. In tropical regions, the 
vector winds variability center is closely related to the ITCZ, 
indicating a close coupling between wind and precipitation. 
Models disagree with each other mainly in the northwestern 
Pacific and the regions with high topographies. Investigation 
based on the zonal or meridional wind components failed to 
capture the large inter-model spread over the equatorial region 
(Gong et al. 2014) where is recognized as an area with signifi-
cant climate variability. In contrast, our evaluation by using 
the VFE method can capture this inter-model spread (Fig. 5e).

The models can generally better simulate the climatologi-
cal means, annual cycle and interannual variability of vector 
winds in the upper troposphere than those in the lower tropo-
sphere. Models those can well simulate vector wind clima-
tology can usually well reproduce the annual cycle, and vice 
versa. Hence, the inherent bias in climate models reflected 
by mean states may still be the key for model development.

In general, CMIP5 models shows large bias and inter-
model spread in the vicinities of complex topography, 
which indicates that the topographic effect may not be well 
resolved by the models. Therefore, we further investigate the 
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possible relationship between model resolution and model 
skills by defining an index:

where i and j represent different models. N is the number of 
involved models. Sv2 and r are model skill score and model 
horizontal resolution, respectively. The model horizontal 
resolution r is defined by the number of grid cells. Ir tends 
to be positive if the performances of most models improve 
with the increase in resolution and vice versa. Thus, Ir index 
measures the overall relationship of model skill with model 
resolution. We compute Ir indices with the models from 4 
modelling centers, respectively, and that computed from 37 
CMIP5 models. The Ir indices describe the relationship of 
model resolution and model skill in terms of climatologi-
cal mean, annual cycle, and interannual variability in dif-
ferent seasons and levels (Fig. 13). Clearly, most Ir indices 
appear to be positive, especially for the climatological mean 
and annual cycle of vector winds. This suggests that model 
performance generally improves with the increase in model 
resolution based on the viewpoint of statistics. However, it 
should also be emphasized that the resolution is only one 
of the factors affecting model performance and may not be 
the most important one. Thus, the increase in model resolu-
tion does not guarantee a better model performance. For 
example, MPI-ESM-LR (low resolution) and MPI-ESM-MR 
(medium resolution) show the similar skill score though 
their resolutions are different.

The results reported in this study may provide useful 
information for model development as vector winds plays 
a critical role in the climate system by transporting energy, 

(8)Ir =

∑N−1

i=1

∑N

j=i+1
(ri − rj) ⋅ (sv2, i − sv2,j)

∑N−1

i=1

∑N

j=i+1
�ri − rj�

,

moisture, momentum, and aerosol from one region to 
another. In addition, vector wind is one of the most impor-
tant lateral boundary forcing variables in dynamical down-
scaling simulations. The mean states and interannual varia-
tion of wind in GCM can significantly affect the downscaled 
temperature, precipitation, and extreme events (e.g., Xu 
and Yang 2012, 2015; Bruyère et al. 2013; Xu et al. 2018). 
Therefore, our evaluation can also guide model selections for 
the purpose of dynamical downscaling simulation.
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