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Abstract
Subseasonal forecast of Arctic sea ice has received less attention than the seasonal counterpart, as prediction skill of dynami-
cal models generally exhibits a significant drop in the extended range (> 2 weeks). The predictability of pan-Arctic sea ice 
concentration is evaluated by statistical models using weekly time series for the first time. Two statistical models, the vec-
tor auto-regressive model and the vector Markov model, are evaluated for predicting the 1979–2014 weekly Arctic sea ice 
concentration (SIC) anomalies at the subseasonal time scale, using combined information from the sea ice, atmosphere and 
ocean. The vector auto-regressive model is slightly inferior to the vector Markov model for the subseasonal forecast of Arctic 
SIC, as the latter captures more effectively the subseasonal transition of the underlying dynamics. The cross-validated forecast 
skill of the vector Markov model is found to be superior to both the anomaly persistence and damped anomaly persistence 
at lead times > 3 weeks. Surface air and ocean temperatures can be included to further improve the forecast skill for lead 
times > 4 weeks. The long-term trends in SIC due to global warming and its polar amplification contribute significantly to 
the subseasonal sea ice predictability in summer and fall. The vector Markov model shows much higher skill than the NCEP 
CFSv2 model for lead times of 3–6 weeks, as evaluated for the period of 1999–2010.

1  Introduction

The trans-Arctic shipping routes are projected to be more 
and more navigable as the Arctic sea ice shrinks due to 
global warming and Arctic amplification (i.e., the Arctic 
has shown much more warming than lower latitudes in the 
past few decades, e.g., Smith and Stephenson 2013). The 
longer opening season in the Arctic will also stimulate more 
social activities such as transpolar shipping, tourism, and 
natural resources (e.g., O’Garra 2017; Petrick et al. 2017). 
All these economic activities call for better understanding of 
the Arctic sea ice predictability, especially over subseasonal 
time scales.

Subseasonal variability of Arctic sea ice concentra-
tion (SIC) is usually predicted using two types of models: 
dynamical (or numerical) and statistical models. For day to 

day SIC variability, dynamical forecasts are usually skillful 
in the short to medium range (1–10 days; e.g., Smith et al. 
2016), whereas statistical forecasts are often only skillful for 
longer lead times (e.g., Wang et al. 2016b). However, Wang 
et al. (2016b) only examined the summer predictability of 
daily SIC variability, and further attempts revealed poor skill 
in other seasons with similar settings (not shown). Also, 
daily forecasts beyond 2 weeks seem to lack adequate skill 
and necessity in general. Therefore, it might be better to 
study weekly-mean, instead of daily, SIC variability in the 
subseasonal range, as week-3 and 4 forecasts receive increas-
ing attention (e.g., Robertson et al. 2015). Based on the local 
correlation with SIC, oceanic and atmospheric information 
will be used in addition to SIC itself to improve the forecast 
skill, following Yuan et al. (2016).

Weekly Arctic SIC time series show large variability over 
marginal seas, particularly in the Barents Sea (Fig. 1a; note 
that the total variability includes contributions from long-
term trends and variability over all smaller time scales), 
and a visible reduction in variability can be seen after 
long-term linear trends are removed (Fig. 1b). Although 
relatively small in total variability, sea ice in the Chukchi 
Plateau regions has the largest contribution from long-term 
trends, up to one-third to the total variability (red regions 
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in Fig. 1c). The SIC variability varies significantly in sea-
sons following the retreat and advance of ice edge (Fig. 1d, 
g, j, m). During the retreat seasons (summer and fall), the 
SIC variability is highest in the marginal seas including the 
Beaufort, Chukchi, East Siberian, Laptev, Kara, and Barents 
Seas (Fig. 1d, g). On the other hand, during the advance 
seasons (winter and spring), the SIC variability is largest 
over the Barents, Greenland, Labrador, and Bering Seas, 
as well as the Sea of Okhotsk (Fig. 1j, m). The large contri-
bution of long-term trends in the Chukchi Plateau regions 
seen in Fig. 1c mainly occurs in summer and fall (Fig. 1f, i). 
The Barents Sea appears to be the only area that has large 
variability in all seasons, consistent with Yang et al. (2016).

Observational data and statistical models used in this 
study are described in Sect.  2, which also includes the 
cross-validation methods used to evaluate model skill. The 
skill of the take-1-year-out cross-validated and retrospec-
tive forecasts is presented in Sects. 3 and 4, respectively. 
The statistical model skill is also compared with that of a 
dynamical model in Sect. 5, followed by the summary and 
discussion in Sect. 6.

2 � Data and method

The Arctic SIC comes from the 1979–2014 satellite data pro-
vided by the National Snow and Ice Data Center (NSIDC). 
This SIC data set has been generated using the Bootstrap 
Algorithm (Comiso 2010). The daily SIC data are combined 
into 4 weeks per month, i.e., days 1–7 as the first week, days 
8–14 as the second, days 15–21 as the third, and the rest of 
the month as the fourth. This definition of weeks makes it 
easier to calculate anomaly and organize training data than 
using the traditional weeks. The SIC is resampled from the 
original 25 × 25 km to the 100 × 100 km grids (with a sam-
ple size of 2033 grids) to reduce the spatial dimension of 
the data.

Atmospheric and oceanic data from ERA-Interim rea-
nalysis (Dee et al. 2011) for the same period (1979–2014) 
are used to improve the forecast skill on top of SIC. The 
variables used here include sea surface temperature (SST), 
surface air temperature (SAT), 300 hPa geopotential height 
(Z300) and winds (UV300), following Yuan et al. (2016). 
The surface temperatures represent the thermal coupling 
between the sea ice and its upper and lower boundaries, 
i.e., air and water, while the upper tropospheric variables 
are used to represent the impact of large-scale and low-fre-
quency atmospheric motions on the sea ice (surface winds 

are often too noisy and vibrant and thus not included). These 
data are spatially sampled on a 2° × 2° grid within 40–90°N, 
where the sample size is 4680 (180 longitudinal grids × 26 
latitudinal grids) for atmospheric data and 2762 for SST 
(number of grids over ocean poleward of 40°N).

The temporal evolution of the coupled ice–ocean–atmos-
phere system is extracted from a multivariate empirical 
orthogonal function (MEOF) space. The oceanic and atmos-
pheric variables are added incrementally on top of SIC in 
the order of + SST, + SAT, + Z300, + UV300, similar to 
Yuan et al. (2016). Such an order is determined by adding 
these variables separately to SIC and evaluating the cor-
responding skill (now shown). Each variable is standard-
ized by its total variability (a single number for both spatial 
and temporal dimensions) before added into the matrix for 
MEOF decomposition. For 3–6-variable cases (starting from 
+ SAT), the SIC is given a weight of 2 to emphasize the 
sea ice variability and all the other variables have a weight 
of 1, according to sensitivity tests (not shown). Too little 
weight for the SIC will reduce the sea ice representation in 
the leading MEOF modes and thus more modes need to be 
included in the statistical model in order to represent enough 
variance for the SIC, whereas too much weight for the SIC 
might underestimate the role of sea ice in the ice–air–sea 
coupling. The weekly climatology is taken out from all vari-
ables before calculating MEOFs, where trends are retained 
in the anomalies of all variables to avoid artificial spikes in 
the SIC time series. The trends are mostly represented by 
the first principal component (PC) of the MEOF analysis. 
Linear weekly trends are removed from PCs before they are 
fed into the statistical models, as the statistical models only 
represent stationary processes. In the evaluation, the forecast 
is made with the residual (detrended) PC time series and the 
trends are added back to the predicted PCs before the PCs 
are converted to the SIC forecast.

Two statistical models are tested for the Arctic sea ice 
subseasonal forecast, the vector autoregressive (VAR) model 
and the vector Markov model. The VAR model has been 
used to predict daily variability of summer Arctic SIC and 
NH atmospheric circulation (Wang et al. 2016a, b), while the 
scaler Markov model has been used for the seasonal forecast 
of Antarctic and Arctic SIC (Chen and Yuan 2004; Yuan 
et al. 2016). The vector Markov model used here can be writ-
ten as �

i
= � ⋅ �

i−1 + �
i
, where xi represents the state vector 

x at the i-th time step and is a linear function of its states 
at the previous time step with the coefficient matrix A plus 
white noises e. The main difference from the scaler Markov 
model used by Chen and Yuan (2004) and Yuan et al. (2016) 
is that they apply the Markov model to individual PCs, i.e. 
each PC is only a function of itself, whereas in the vec-
tor Markov model each PC is a function of all leading PCs 
retained. The scaler Markov model better suits short time 
series, which is the main reason for which it has been used 

Fig. 1   Weekly SIC variability for all seasons, JJA, SON, DJF, and 
MAM [top to bottom with (left) and without (middle) trends, and the 
portion of the trends to the total variability (right)]. The color scales 
indicate the standard deviation of SIC anomalies (in fraction)

◂
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for the seasonal forecast of sea ice by Chen and Yuan (2004) 
and Yuan et al. (2016). In contrast, the vector Markov model 
requires much longer records to train but may achieve better 
skill than the scaler version, as to be shown in this study.

The VAR model and the vector Markov model differ 
in their assumptions on the transition matrix A, i.e., the 
underlying dynamics. To make a forecast at the lead time 
of N time steps, the vector Markov model is iteratively 
implemented for N times and a different transition matrix 
A is used at each step. On the other hand, the VAR model 
directly makes the lead-N forecast in one implementation: 
�
i
= � ⋅ �

i−N
+ �

i
, with the main assumption that the under-

lying dynamics are governed by the same processes. The 
VAR model could avoid accumulating errors as the vector 
Markov model might do in the iterations, but might insuffi-
ciently represent the subseasonal transition of the underlying 
dynamics for long lead times. The VAR model seems more 
skillful in predicting the daily fluctuations than the vector 
Markov model (Wang et al. 2016a, b) but has not been tested 
for the weekly (or longer time scales) variability of sea ice.

Two different cross-validation methods are adopted to 
examine the subseasonal predictability of Arctic SIC. One 
is the commonly used take-1-year-out cross-validation. The 
leading PCs of a single week are first selected as the target 
to predict, i.e., x. The PCs of the corresponding week plus 
the preceding 3 and subsequent 3 weeks in all the other years 
are used to retrieve the coefficient matrix A, which is used 
to make predictions of the target week (i.e., out-of-sample 
forecast). The extra 6 weeks are included to increase the 
training sample size (i.e., the degree of freedom) for a more 
robust retrieval of A. The above routine is repeated for all 
weeks (of all years) to obtain the predicted PCs, which are 
converted back into SIC anomalies at each spatial grid point. 
The predicted SIC is then verified against the observed data. 
Note that the MEOF is not recalculated for each training 
period because of the large trends included in SIC. The other 
method is the much stricter retrospective forecast, which 
uses a fixed period of data to train the model. The MEOF is 
calculated using only 20 years of data (1979–1998) and then 
projected on the SIC anomalies to obtain the PCs. The PCs 
from the training period (1979–1998) are used to estimate 
the coefficient matrix A. and the PCs from the verification 
period (1999–2014) only serve as initial conditions for pre-
dictions. In this way, the validation is done using exclusively 
future (new) data and is thus much stricter than the take-1-
year-out cross-validation. Moreover, the trends in SIC are 
not linear in time and the verification periods have larger 
trends and variability than the training period, making it 
more challenging to predict (Holland and Stroeve 2011).

Two metrics are used to evaluate the forecast skill: the 
anomaly correlation coefficient (ACC) and the root-mean-
square error (RMSE). The observed and predicted anoma-
lies of SIC are both calculated relative to the observed 

climatology. This is a strict criterion because of the trunca-
tion in the MEOF. Since only the leading MEOF modes 
are retained, the predicted SIC would have a slightly dif-
ferent climatology from the observed, even if the PCs were 
perfectly predicted. Such differences in climatology will 
contribute to the total error in SIC. The Fisher’s Z transfor-
mation is used to estimate the statistical significance of the 
difference of ACCs, as the ACC is not an additive quantity 
(see Wilks 1995 for more details). The correlation coef-
ficient r is first transformed to z, which is approximately 
Gaussian, by z = arctanh (r). Then one may use the follow-
ing quantity, zd = |z1 - z2|/sqrt [1/(n1 − 3) + 1/(n2 − 3)], to test 
whether the difference between r1 and r2 is statistically sig-
nificant. n1 and n2 represent the length of time series for r1 
and r2, respectively. The critical value of zd is 1.96 for the 
confidence interval of 95%, or the confidence level of 5%, by 
a two-tailed t test. n1 = n2 = 1728 (number of weeks within 
1979–2014) for all seasons and 432 for individual seasons 
at each grid point. To test the statistical significance in dif-
ferences between two spatially averaged correlation coeffi-
cients, the sample size of spatial grids (denoted as m) needs 
to be taken into account and the critical value of zd reduces 
to 1.96/sqrt (m).

The SIC forecast skills, ACC and RMSE, are compared 
with the climatology and the (damped) anomaly persistence 
at each grid point. The climatology forecast predicts zero 
anomaly and the future state of SIC follows the climato-
logical annual cycle. On the other hand, the anomaly per-
sistence assumes the anomaly constant in time, using the 
current anomaly plus the climatology at the target time as 
an estimate of the future state. The damped anomaly persis-
tence assumes the anomaly dissipative in time following the 
local auto-correlation (r), i.e., the amplitude of the anomaly 
becomes r. r usually vanishes at long lead time and thus the 
damped anomaly persistence gradually approaches the cli-
matology. Note that the (damped) persistence has zero error 
(ACC = 1) at zero lead time and thus not shown in the plots.

The SIC forecast skill is also compared between our sta-
tistical models and the National Centers for Environmen-
tal Prediction (NCEP) Climate Forecast System, version 2 
(CFSv2; Saha et al. 2014) reforecasts, contribution to the 
Subseasonal to Seasonal (S2S) Prediction Project, a recent 
World Meteorological Organization effort (Vitart et  al. 
2017). The sea ice in the NCEP model is simulated by the 
GFDL Sea Ice Simulator (Griffies et al. 2004), as part of the 
ocean component, the Geophysical Fluid Dynamics Labora-
tory (GFDL) Modular Ocean Model Version 4 (MOM4p0). 
MOM4p0 has a horizontal resolution of 0.5° north of 30°N 
and 40 vertical levels. The NCEP SIC output is available on 
a 1.5° × 1.5° grid and the statistical forecast skill is inter-
polated onto this grid for a direct comparison. The NCEP 
reforecasts are available daily from 1999 to 2010 and have 
four ensemble members. The daily SIC reforecasts are 
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converted to weekly format using the same calendar weeks 
as above for observations. The ensemble mean skill is com-
pared with the statistical forecast skill over lead times of 
1–6 weeks as the NCEP forecast length is 45 days.

3 � Take‑1‑year‑out cross‑validated forecast 
skill

The forecast skill depends on the number of MEOF modes 
retained in the statistical models. The more modes are 
included, the more variance the forecasts represent. The 
forecast skill usually increases with the number of modes 
included. However, higher modes tend to be less persis-
tent than the leading PCs and become unpredictable (i.e., 
become noises) to degrade the forecasts. Therefore, there 
exists an optimal number of modes to be included in each 
statistical models for any given lead time. In Fig. 2 we 
show the pan-Arctic (SIC variability > 0.05) mean fore-
cast skill (ACC and RMSE) as a function of the number 

of modes, averaged over lead times from 5 to 12 weeks. 
This range of the lead time is chosen because the persis-
tence of SIC is pretty high over short leads (i.e., there 
is much less need for prediction) and the skill drops to 
too low and is no longer useful for lead times longer 
than 12 weeks. The vector Markov model shows highest 
ACC for 30 modes and the MEOF of SIC + SST + SAT 
and lowest RMSE for 34 modes (green curves in Fig. 2a, 
b). Since the RMSE is roughly the same between 30 
and 40 modes, the optimal number of modes is chosen 
as 30 for the vector Markov model. The VAR model 
shows highest ACC and lowest RMSE for 23 modes of 
SIC + SST + SAT (green curves in Fig. 2c, d). Although 
SIC + SST shows slightly higher ACC for 20 modes (blue 
curve in Fig. 2c), the corresponding RMSE is much larger 
(blue curve in Fig. 2d). Therefore, we choose 23 as the 
optimal modes for the VAR model. It is also worth not-
ing that SIC + SST + SAT + Z300 can reach the similar 
level of skill with more modes included (orange curves in 
Fig. 2). Given the large spatial (m = 2033 grid points) and 
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Fig. 2   Pan-Arctic mean ACC (left) and RMSE (right) of the Markov (upper) and VAR (lower) models, evaluated with all seasons within 1979–
2014 by take-1-year-out cross- validation
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temporal (n = 1728 weeks for all seasons) sample sizes, a 
0.002 difference in the pan-Arctic mean ACC is considered 
statistically significant at the 95% confidence interval.

The vector Markov and VAR models show very similar 
forecast skill for all lead times. The vector Markov model 
shows slight higher ACC and lower RMSE over marginal 
seas (Fig. 3) where variability is relatively large (Fig. 1). 
The difference between the two models is much smaller for 
short leads (week-3–4; Fig. 3a, b) than that for long leads 
(week-5–12; Fig. 3c, d). The ACC difference over most 
grid points is less than the critical value of 0.06 for the 95% 
confidence interval for all seasons. Given the small differ-
ence between these two models, only results from the vector 
Markov model are presented hereafter.

The forecast skill shows significant seasonal depend-
ence (Fig.  4). The pan-Arctic mean ACC is higher in 
summer and fall than in winter and spring by about 0.1 
(blue curves in Fig. 4). The (damped) anomaly persistence 

shows similar seasonal differences as anomaly persistence 
(red and black curves in Fig. 4). The vector Markov model 
starts to be superior to the (damped) anomaly persistence 
from week-3 in summer and spring (Fig. 4a, d) but from 
week-2 in fall and winter (Fig. 4b, c). The skill in summer 
and fall is above 0.5 at the 4-week lead, higher than in win-
ter and spring. On the other hand, the RMSE follows the 
seasonal variations of SIC variability (compare Fig. 4e–h 
with Fig. 1). The RMSE is largest in SON, but the model 
skill improvements over the (damped) anomaly persistence 
and climatology are also larger than all the other seasons 
(Fig. 4f). The damped anomaly persistence is most skillful 
among the three skill references. The vector Markov model 
significantly reduces RMSE from the damped persistence 

Fig. 3   Maps of a ACC and b 
RMSE differences between 
the Markov and VAR models 
(Markov–VAR) averaged for 
lead times of week-3–4. c, d 
Same as a, b but for lead times 
of week-5–12
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at 3-week and longer lead times for all seasons. The RMSE 
reduction is larger in summer and fall than in winter and 
spring. In general, the vector Markov model is skillful for 
the week-3–4 range in all seasons. Recently, the weather 
forecast community has focused on improving the forecast 
skill at the week-3–4 lead time (e.g., Vitart et al. 2017). 
The vector Markov model delivers promising skill for sea 
ice prediction at this prediction range.

The advantage of the vector Markov model skill over 
the damped anomaly persistence exhibits pronounced spa-
tial variation (Fig. 5 for week-3– 4), following the seasonal 
shifts of ice edges. In summer, the modeled ACC shows 
the most pronounced advantage over the Laptev Sea, East 
Siberian Sea, and Beaufort Sea (Fig. 5a), where correla-
tion increases by 0.1–0.2 (any correlation difference > 0.1 
is generally significant at the 95% confidence interval for 
individual seasons). On the other hand, the model’s RMSE 
has an advantage over much broader regions (Fig. 5b). The 
advantageous regions moved more towards continents 
(lower latitudes) in fall and winter (Fig. 5c–f). The vec-
tor Markov model skill is almost identical to the damped 
anomaly persistence in the spring (Fig. 5g, h). The advan-
tageous regions are similar with much larger amplitudes 
for longer lead times (Fig. 6 for week-5–2). The ACC 
improvements are most significant (up to 0.5) at the Beau-
fort and Laptev Seas in summer (Fig. 6a), whereas the 
RMSE decreases most in the Kara Sea in summer and at 
the Beaufort Sea in summer and fall (Fig. 6d). The spring 
skill shows some visible improvements over the damped 
anomaly persistence at the coastal regions of the Hud-
son Bay, Baffin Bay, Sea of Okhotsk, and Chukchi Sea 
(Fig. 6g, h). In summary, the vector Markov model starts 
to be superior to the damped anomaly persistence in week-
3–4, and the advantage becomes much more significant in 
week-5–12 for summer, fall, and winter. The advantageous 
regions follow the seasonal evolution of ice edges.

Since the model skill shows considerable spatial vari-
ations, it is natural to examine the spatial distribution of 
the skill boost by adding SST and SAT. The model with 
SIC + SST + SAT does not improve but slight degrade 
the week-3–4 skill over most of the Arctic except for the 
Beaufort Sea in summer, the Hudson Bay in fall, the Sea of 
Okhotsk in winter (left column of Fig. 7). The skill boost by 
SST + SAT is more visible for longer lead times (right col-
umn of Fig. 7). The pan-Arctic mean RMSE of the SIC-only 
model is about 0.02 larger than that of the SIC + SST + SAT 
model for the week-5–12 lead (Fig. 2b). However, the local 
differences can be more than 0.02, about 1/5 of the skill 
improvements over the damped anomaly persistence (com-
pare right columns of Figs. 6 and 7; note the different color 
scales). The skill boost by SST + SAT is most significant 
over the Beaufort and East Siberian Seas in the melting 
seasons (summer and fall; Fig. 7b, d). The Chukchi Sea 

and Laptev Sea RMSEs are slightly degraded in summer 
(Fig. 7b), as well as the Laptev Sea and Kara Sea in fall 
(Fig. 7d). The winter skill is improved mainly over the Bar-
ents Sea, Hudson Bay, and Baffin Bay (Fig. 7f). SST + SAT 
has a minor impact on the spring skill (Fig. 7h).

The pronounced decreasing trend in the SIC since the 
1990s has been shown to explain a significant portion of the 
seasonal forecast skill, especially for long leads (e.g., Yuan 
et al. 2016). It also applies to the subseasonal SIC predict-
ability. After removing the linear weekly trends at each grid 
point for both observations and forecasts, the detrended skill 
is much lower than the full skill and the reduction in skill 
increases with lead time (Fig. 8a–d). The most pronounced 
reduction occurs in summer and is almost up to 0.2 in the 
pan-Arctic mean ACC (Fig. 8a). On the other hand, the mod-
el’s RMSE seems not sensitive to the trends, whereas the 
damped anomaly persistence is significantly reduced without 
trends (Fig. 8e–h).

4 � Retrospective forecast skill

The robustness of the vector Markov model skill can be 
tested in the retrospective forecast experiments. Different 
from the take-1-year-out cross-validation experiments shown 
in Sect. 3, here we choose 1979–1998 as the training period 
and the 1999–2014 data are used for forecast verification. 
That is, no future data enters the training processes, includ-
ing EOF decomposition, model construction, and retrieval. 
This procedure is a much stricter validation method than 
the take-1-year-out cross-validation, and thus the forecast 
skill is usually lower than that of the latter. Furthermore, 
one particular challenge for the Arctic sea ice is that the 
long-term trend and inter-annual variability are both much 
larger in the verification period than in the training period, 
due to accelerated ice melting in response to climate change. 
Therefore, the optimal number of variables increases to four, 
with 300 hPa geopotential height added, for lead times of 
week-5–12 (orange curves in Fig. 9c, d). For the short lead 
of week-3–4, SIC only gives the best forecast skill (black 
curves in Fig. 9a, b), although just slightly better than other 
combinations. The optimal number of modes for lead times 
of week-5–12 is 23 for four variables, which corresponds to 
the highest ACC and lowest RMSE (Fig. 9c, d).

The retrospective forecast skill with 23 modes of four var-
iables also shows significant seasonal dependence (Fig. 10). 
The pan-Arctic mean ACC is still fairly skillful in summer 
compared with the (damped) anomaly persistence for lead 
times longer than 5 weeks (Fig. 10a) but is only slightly 
higher or comparable in the other seasons (Fig. 10b–d). Note 
that the fall skill is much higher than the counterpart in the 
take-1-year-out cross-validation experiments (compare 
Fig. 10b with Fig. 4b), as the damped anomaly persistence is 
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Fig. 5   Maps of JJA, SON, DJF, 
and MAM (top to bottom) 
ACC (left) and RMSE (right) 
differences between the Markov 
model and the damped anomaly 
persistence averaged for lead 
times of week-3–4. Positive 
values in ACC and negative val-
ues in RMSE indicate that the 
Markov model is superior to the 
damped anomaly persistence
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Fig. 6   Same as Fig. 5 but aver-
aged for lead times of week-
5–12

ACC                                  RMSE
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Fig. 7   RMSE differences 
between the Markov model with 
SIC + SST + SAT and the model 
with SIC only in JJA, SON, 
DJF, and MAM (top to bottom), 
averaged for lead times of week-
3–4 (left) and week-5–12 (right)

3~4-Week Lead 5~12-Week Lead
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much greater in the later period. In contrast, the pan-Arctic 
mean RMSE of the vector Markov model is still quite skill-
ful compared with the climatology and (damped) anomaly 
persistence in most seasons (Fig. 10e–h), with advantage 
reduces only slightly compared with the take-1-year-out 
cross-validation experiments (compare Fig. 10e–h with 
Fig. 4e–h). From the RMSE perspective, the much stricter 
retrospective forecast is still able to make a skillful forecast 
for long leads (> 4 weeks).

The ACC advantage of the retrospective forecast skill 
over the damped anomaly persistence is fairly limited in 
some regions of the central Arctic and part of the Laptev 
Sea for week-3–4 (red regions in Fig. 11a) and expands to a 
much broader area in longer leads (red regions in Fig. 11c 
for week-5–12). On the other hand, the advantageous region 
for RMSE covers most of the high variability regions (i.e., 

marginal seas), even starting from week-3–4 (blue regions 
in Fig. 11b, d). When evaluated with ACC, the damped 
anomaly persistence shows better skill in a fair amount of 
regions (blue regions in Fig. 11a, c). However, most of these 
regions have comparable RMSEs by the damped anomaly 
persistence and the vector Markov model, as shown by in 
white and light blue at corresponding regions in Fig. 11b, d 
(such as the Greenland Sea, Bering Sea, and the Canadian 
Arctic Archipelago). Therefore, the pan-Arctic mean of ACC 
might over-emphasize these regions and underestimate the 
vector Markov model’s skill. The pan-Arctic mean of RMSE 
is thus a better representation of the forecast skill.

5 � Comparison with a dynamical model

The 1999–2010 NCEP ensemble mean reforecasts skill is 
compared with that of both the take-1-year-out and retro-
spective cross-validated forecasts by the vector Markov 
model. The pan-Arctic mean ACC for the NCEP model is 

Fig. 8   The pan-Arctic mean ACC for the Markov model with (blue) 
and without trends (red) in a JJA, b SON, c DJF, and d MAM. The 
panels in e–h are the same as a–d but for RMSE

◂
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Fig. 9   Pan-Arctic mean ACC (left) and RMSE (right) for lead times of week-3–4 (upper) and week-5–12 (lower), evaluated with all seasons 
within 1999–2014 using a 20-year training period of 1979–1998
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poorer than the (damped) anomaly persistence for all sea-
sons and lead times (red vs. black curves in Fig. 12). In con-
trast, the vector Markov model shows comparable ACC with 
the (damped) anomaly persistence starting from the 3-week 
lead time and better skill for 5–6-week lead times. Note 
that, for this shorter period, the critical value of seasonal 
correlation differences is about 0.01 for pan-Arctic mean 
and is about 0.16 at each grid point at the 95% confidence 
interval. In particular, the take-1-year-out ACC (blue curves 
in Fig. 12) is better than the (damped) anomaly persistence 
from week-4 in spring and from week-3 in the other three 
seasons. The retrospective ACC (green curves in Fig. 12) 
is lower than the take-1-year-out skill but is close to the 
(damped) anomaly persistence for week-3 and 4 and higher 
the latter for longer lead times in summer, fall, and winter. 
The NCEP skill is generally lowest among all compared 

ACCs except for week-1 and 2 in summer (Fig. 12a) and 
shows increasing disadvantage with lead time. The skill for 
individual members of the NCEP model is slightly poorer 
than the ensemble mean (not shown), indicating that either 
a much larger ensemble size might be necessary to obtain 
satisfying forecast skill or the coupling between the atmos-
phere, ocean, and sea ice might not be well represented. The 
summer Markov model skill shows noticeable increases with 
lead time (blue and green curves in Fig. 12a) because the 
starting time is fixed to accommodate the NCEP reforecasts. 
This is different from previous pan-Arctic mean ACC plots 
where the target time is fixed. For long lead times, the target 
time in Fig. 12a extends to fall when the persistence is higher 
than that in summer. Note that the RMSE is not compared 
here because the NCEP model has different climatology than 
the observed.

The summer week-6 ACC of the take-1-year-out fore-
cast by the vector Markov model is fairly high over most 
of the Chukchi, Kara, and Barents Seas, as well as in 
the Hudson and Baffin Bays (Fig. 13a), while the NCEP 
reforecasts are only skillful in a small portion of these 

Fig. 10   The pan-Arctic mean ACC for the Markov model with 23 
leading PCs of the 4-variable MEOF case in a JJA, b SON, c DJF, 
and d MAM, evaluated during 1999–2014. The panels of e–h are the 
same as a–d but for RMSE

◂

Fig. 11   a ACC and b RMSE 
differences between the Markov 
model and the damped anomaly 
persistence during 1999–2014, 
averaged for lead times of week-
3–4. c, d Same as a, b but for 
lead times of week-5–12
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regions (Fig. 13b). The red regions in Fig. 13c represent 
the advantage in summer ACC of the vector Markov model 
over the NCEP model (any correlation difference > 0.16 
is significant at the 95% confidence interval at each grid 
point). The week-6 forecast skill in fall is highest among 
all seasons for both the vector Markov and NCEP models, 
whereas the former shows even greater advantage than 
the latter compared with summer (Fig. 13f). The winter 
and spring predictability is much lower than the other sea-
sons, due to much lower SIC variability. However, the 
vector Markov model is still fairly skillful over part of 
the Chukchi Sea, Kara Sea, and Hudson Bay in winter 
(Fig. 13g), as well as over part of the Bering Sea, Sea of 
Okhotsk, Barents Sea, Greenland Sea, and Baffin Bay in 
spring (Fig. 13j). The NCEP model is, on the other hand, 
much less skillful over most regions (Fig. 13h, k; see also 
the differences in Fig. 13i, l).

6 � Summary and discussion

With increasing demands from social activities in the 
Arctic, the seasonal forecast of Arctic sea ice has been a 
popular topic in recent years, and the scientific community 
has made significant progress on it. In contrast, the sub-
seasonal forecast of Arctic sea ice is still fairly challenging 
for most dynamical models, as most dynamical models 
show insufficient prediction skill beyond a few weeks. This 
study evaluated two statistical models for the subseasonal 
predictability of 1979–2014 weekly Arctic sea ice con-
centration, with integrated information from the sea ice, 
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Fig. 12   The pan-Arctic mean 1999–2010 ACC for the take-1-year-
out and retrospective cross-validation by the Markov model and the 
NCEP S2S reforecast with starting time in a JJA, b SON, c DJF, and 
d MAM. The take-one-year-out experiment uses 3 variables and 30 

leading PCs, while the retrospective experiment uses 4 variables and 
23 leading PCs, respectively. The ACC is averaged over grid points 
where weekly sea ice variability is at least 0.05 in the corresponding 
season of 1999–2010

Fig. 13   1999–2010 JJA, SON, DJF, and MAM (top to bottom) ACC 
of the Markov model with 3 variables and 30 leading PCs using take-
1-year-out cross-validation (left), NCEP S2S reforecast (middle), and 
their differences (Mkv-NCEP right) at the 6-week lead. Skill is only 
shown at grid points where weekly SIC variability is at least 0.05

◂



4969Subseasonal forecast of Arctic sea ice concentration via statistical approaches﻿	

1 3

Mkv          NCEP   Mkv - NCEP

 150
o W 

 1
20

o W
 

09
oW

  60 oW
 

  30 oW 
   0o   30

o E 
  6

0
o E 

  9
0o E

 

 120 oE 

 150 oE 

 180oW 

 150
o W 

 1
20

o W
 

09
oW

  60 oW
 

  30 oW 
   0o   30

o E 

  6
0

o E 
  9

0o E
 

 120 oE 

 150 oE 

 180oW 

 150
o W 

 1
20

o W
 

09
oW

  60 oW
 

  30 oW 
   0o   30

o E 

  6
0

o E 
  9

0o E
 

 120 oE 
 150 oE 

 180oW 

 150
o W 

 1
20

o W
 

09
oW

  60 oW
 

  30 oW 
   0o   30

o E 

  6
0

o E 
  9

0o E
 

 120 oE 

 150 oE 

 180oW 

 150
o W 

 1
20

o W
 

09
oW

  60 oW
 

  30 oW 
   0o   30

o E 
  6

0
o E 

  9
0o E

 

 120 oE 
 150 oE 

 180oW 

 150
o W 

 1
20

o W
 

09
oW

  60 oW
 

  30 oW 
   0o   30

o E 

  6
0

o E 
  9

0o E
 

 120 oE 

 150 oE 

 180oW 

 150
o W 

 1
20

o W
 

09
oW

  60 oW
 

  30 oW 
   0o   30

o E 

  6
0

o E 
  9

0o E
 

 120 oE 
 150 oE 

 180oW 

 150
o W 

 1
20

o W
 

09
oW

  60 oW
 

  30 oW 
   0o   30

o E 

  6
0

o E 
  9

0o E
 

 120 oE 

 150 oE 

 180oW 

 150
o W 

 1
20

o W
 

09
oW

  60 oW
 

  30 oW 
   0o   30

o E 
  6

0
o E 

  9
0o E

 

 120 oE 

 150 oE 

 180oW 

 150
o W 

 1
20

o W
 

09
oW

  60 oW
 

  30 oW 
   0o   30

o E 

  6
0

o E 
  9

0o E
 

 120 oE 

 150 oE 

 180oW 

 150
o W 

 1
20

o W
 

09
oW

  60 oW
 

  30 oW 
   0o   30

o E 

  6
0

o E 
  9

0o E
 

 120 oE 

 150 oE 

 180oW 

 150
o W 

 1
20

o W
 

09
oW

  60 oW
 

  30 oW 
   0o   30

o E 

  6
0

o E 
  9

0o E
 

 120 oE 

 150 oE 

 180oW 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -1 -0.8-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

(a)                           (b)         (c) 

(d)                                (e)          (f)

(g)                         (h)              (i) 

(j)                         (k)                          (l) 

M
A

M
  

D
JF

   
 

S
O

N
   

JJ
A



4970	 L. Wang et al.

1 3

ocean and atmosphere. Although previously shown to be 
more skillful in predicting summer sea ice daily variability 
(Wang et al. 2016b), the vector auto-regressive model is 
slightly inferior to the vector Markov model for the sub-
seasonal forecast of weekly Arctic sea ice concentration.

The cross-validated forecast skill of the vector Markov 
model is found to be superior to both the anomaly per-
sistence and damped anomaly persistence at a lead time 
of 3 weeks or longer, as revealed by the take-1-year-out 
experiments for the period of 1979–2014. The regions 
where the vector Markov model is more skillful than the 
damped anomaly persistence are usually close to the ice 
edge and shift with seasons. The advantageous regions are 
mainly located in the Laptev Sea, East Siberian Sea, and 
the Beaufort Sea in summer and move slightly southward 
(towards continents) in fall and winter. The spring skill 
of the vector Markov model is fairly close to the damped 
anomaly persistence. Surface air and ocean temperatures 
can help further improve the long-range forecast skill for 
lead times longer than 5 weeks. The vector Markov model 
skill is most significantly enhanced along the Beaufort and 
East Siberian Seas in summer and fall. The winter and 
spring skill remains relatively unchanged.

The global warming and the polar amplification have 
caused pronounced long- term trends in the Arctic sea ice, 
which contribute significantly to the subseasonal sea ice 
predictability in summer and fall. The pan-Arctic mean 
anomaly correlation is reduced by up to 0.2 in summer 
and up to 0.1 in the other seasons when linear trends are 
removed. Since linear trends are quite predictable for the 
subseasonal time scale, the existence of significant long-
term trends in sea ice is not considered a prediction barrier 
but more an opportunity.

The above conclusions are fairly robust in the more 
challenging retrospective forecast experiments using only 
20 years of data (1979–1998) to train the vector Markov 
model. Although the ACC shows much less advantage 
over the damped anomaly persistence, the overall ACC is 
even higher in the period of 1999–2014 as SIC anomalies 
become more persistent than the early period. In addi-
tion, the model’s RMSE for 1999–2014 is slightly higher 
in summer and fall but even lower in winter and spring, 
compared with that in the early period. The advantage in 
the model’s RMSE over the damped anomaly persistence 
also shows only minor decreases compared with the take-
1-year-out cross-validation skill.

The vector Markov model performance is also directly 
compared with the NCEP CFSv2 reforecast skill for the 
period of 1999–2010 for lead times from 1 to 6 weeks. 
The statistical model exhibits much better skill than the 
dynamical model in most cases except for the 1-week lead 
in summer. The NCEP model forecasts quickly become 
unsatisfying after 1 or 2 weeks, indicating that the chaotic 

forecast errors from the atmospheric component con-
taminate the sea ice component shortly and much room 
remains for the NCEP model to improve its representa-
tion of the coupling between these subcomponents of the 
Earth system.

Although the vector Markov model has shown good 
skill in predicting the subseasonal variability of Arctic sea 
ice, there is still room to improve the accuracy and robust-
ness of the predictions. First, the robustness across differ-
ent ice concentration datasets, such as the NASA team SIC 
(Cavalieri et al. 1996), should be examined. Second, our 
study focused on the extended range (i.e., > 2 weeks) but 
the short range skill can be largely improved by includ-
ing more principal components and/or more variables 
in the vector Markov model. The surface winds and sea 
level pressure might be more useful in the near-term sea 
ice forecast to help decision-making processes during 
emergencies such as the RV Akademik Shokalskiy res-
cue operation (e.g., Zhai et al. 2015). Last but not least, 
the vector Markov model can also be applied for regional 
sea ice predictions, where the MEOF modes built for a 
local domain might better represent the physical processes 
that are more relevant to the local sea ice changes. Such 
regional models thus might provide better forecast ability 
than the pan-Arctic model introduced in this study.
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