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1  Introduction

Lack of consistency between observed sea ice extent trends 
and those simulated by complex climate models has gar-
nered significant public and scientific attention in recent 
years. This interest is partly driven by the radiative proper-
ties of sea ice which amplify climate change as well as the 
implications of sea ice change for local communities and 
ecosystems. Yet simulations from the latest Coupled Model 
Intercomparison Project (CMIP5) continue to exhibit vari-
ous biases in their mean state, particularly during winter 
months (Stroeve et  al. 2012; Turner et  al. 2013), as well 
as in the magnitude and even sign of hemispheric trends 
(Flato et al. 2013).

Such model biases in recent historical sea ice can 
broadly be attributed to two sources of uncertainty: firstly, 
internal variability arising due to the chaotic nature of cli-
mate, and secondly, structural uncertainty arising from 
incomplete knowledge of and inability to represent the 
complete physics of the climate system (Hawkins and Sut-
ton 2009). Parametrizations of complex processes may 
reduce spatially or temporally evolving variables to a sin-
gle constant value or approximate a number of processes 
by some non-physical constant. Uncertainty in parameter 
values has previously been quantified by constructing large 
perturbed physics ensembles, where parameters are varied 
within physically reasonable ranges to construct a range 
of climatologies (Murphy et  al. 2004; Stainforth et  al. 
2005). Sea ice parameter uncertainty can be larger than that 
expected from natural variability (Ridley et  al. 2007) and 
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from inter-model spread (Hodson et  al. 2013), motivating 
its reduction.

Recent years have seen the development of methods for 
automated parameter optimization (Severijns and Hazel-
eger 2005; Tett et al. 2013; Zhang et al. 2015). These are 
motivated by the time-consuming and subjective nature of 
manual parameter tuning, whereby selected parameters are 
perturbed in a number of simulations to find a configura-
tion which improves the specified focus of the modeller 
(Mauritsen et al. 2012; Voosen 2016; Hourdin et al. 2016). 
New automatic optimization software has been developed 
that uses cost function type methods to calculate the com-
bination of parameters required to reduce the difference 
between model simulation and target observations for user-
specified variables, whilst accounting for their non-linear 
dependence on parameters. Due to the high computational 
cost involved in many of the methods proposed, automated 
parameter optimization has only been tested on atmos-
phere-only [eg. Zhang et al. (2015)] or very low-resolution 
[eg. Gregoire et al. (2011)] models thus far.

The innovation of this paper is to apply an automated 
parameter tuning method to a widely-used global, fully-
coupled climate model in order to investigate whether 
targeting sea ice extent can improve its consistency with 
observations. Changes to the model must use physically 
allowed parameter values, account for internal variability 
and not compromise other climate variables. We imple-
ment the Tett et  al. (2013) method for automated tuning, 
discussing optimization input in Sect.  2.2 and parameters 
in Sect. 3 to ensure these criteria are satisfied, and evaluate 
the results in Sect. 4 by comparison to observations.

2 � Methods

Most data in this study comes from global climate model 
simulations, which are discussed below. Observational data 
is from the HadISST set of satellite sea ice concentrations 
(Rayner et  al. 2003) and the Pan-Arctic Ice Ocean Mod-
eling and Assimilation System sea ice volume reanalysis 
[PIOMAS, Schweiger et al. (2011)]. We show HadISST sea 
ice extents from 1941, but note that data is derived from 
hand-drawn charts, with limited Antarctic sources, before 
the beginning of satellite observations in 1978 (Rayner 
et al. 2003).

2.1 � Model

The model used in this study is the Hadley Centre Coupled 
Model version 3 (HadCM3) (Gordon et al. 2000), a global 
model with full coupling between the ocean, atmosphere 
and sea ice components. The ocean component has a hori-
zontal resolution of 1.25° × 1.25° with 20 vertical levels 

and the atmosphere component has a lower resolution of 
3.75° × 2.5° with 19 vertical levels.

The sea ice component is described in Cattle et  al. 
(1995) and we summarize the main features here, noting 
that it is a simple model. Sea ice is advected with the top 
ocean current � and mixed laterally by unresolved wind 
and ocean drags, with magnitude determined by coefficient 
of turbulent diffusion AH. Hence the time evolution of ice 
thickness gi is given by

where the Heaviside step function prevents ice convergence 
once it has reached a depth of 4 m. Sea ice forms in the 
ocean when the sea surface temperature reaches a freezing 
temperature Tf = −1.8◦C. For thermodynamic changes, ice 
and snow are treated as a single layer, though which heat 
conduction HI is given by

where �i and �s are the thermal conductivities of ice and 
snow, hi and hs are the ice and snow layer thicknesses, and 
TS is the temperature of the top surface. The heat flux from 
the ocean into the bottom of the ice Ho is given by

where � and cw are the density and specific heat capacity 
of sea water, the first ocean layer has temperature To and 
depth d = 10 m and K is the ocean-ice diffusion coefficient. 
To account for leads, sea ice concentration is not allowed 
to exceed cNH

max
= 99.5% in the Arctic and cSH

max
= 98.0% in 

the Antarctic. The model assumes constant salinity (0.6%) 
and a linear temperature profile in the ice. Albedo is line-
arly parametrized, with a warm ice albedo of �w = 0.5 at an 
ice temperature of 0 °C which increases linearly to a cold 
ice albedo of �c = 0.8 at the defined cold-ice temperature 
of T�c = −10 °C and below. In the ocean, horizontal eddy 
mixing of tracers such as salinity and temperature is para-
metrized. In particular, along-isopycnal diffusion is para-
metrized by a single diffusion constant D.

In contrast to HadCM3, state-of-the-art sea ice models 
represent sea ice using multiple thickness categories and 
multiple ice and snow layers (Hunke et al. 2010). They use 
rheologies such as the non-linear viscous plastic model 
(Hibler 1979). The sea ice albedo may depend on snow and 
ice thickness and spectral properties, and melt ponds are 
calculated explicitly (Hunke et al. 2010). While the repre-
sentation of sea ice, as well as other processes, in HadCM3 
is much more limited, it was included in CMIP5 and is still 
widely used for research and impact studies. Its low com-
putational cost makes it an ideal choice for this study.

(1)
�gi

�t
= ∇.(�giΘ(4 − g)) + AH∇

2gi + Δthermogi

(2)HI =
�s(Ts − Tf )

hs + (hi�s∕�i)

(3)Ho =
�cw

0.5d
K(To − Tf )
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In this study, ‘control’ refers to model experiments under 
pre-industrial conditions where all external forcings are as 
observed in 1850. All model runs started from initial con-
ditions taken from a 5505 year-long control run. The first 
year after the 5505-year control simulation is model year 
one. For parameter perturbation experiments, the parameter 
change is implemented after model year twenty. While the 
adjustment period for HadCM3 can be around 350 years 
(Banks et al. 2007), this timescale is not feasible for us to 
gauge parameter sensitivity. We observe that initial drifts in 
sea ice extent following individual diffusion coefficient per-
turbations relax after approximately ten years (see Fig. 1). 
Therefore model years 31–40 are used to select parameters. 
Model years 31–170 are used to examine long-term model 
climatology and estimate internal variability. The choice of 
a 140-year period arose from CO2 doubling experiments 
which will be written about elsewhere. We assume that 
internal variability is unaffected by forcings and calculate it 
from the standard deviation of relevant decadally-averaged 
observables from the 140 years.

‘Forced’ runs include a package of observationally-
based forcings including greenhouse gases, aerosols and 
volcanoes from Schurer et al. (2014). The forced run began 
in model year zero with forcings starting as in AD800 and 
was branched into four ensemble members at AD1400 
(model year 600). Post 2000, forcings follow the A2 emis-
sions scenario. Any sea ice data from the forced standard 
model shown is the mean of four ensemble members cor-
responding to the forcing year.

2.2 � Optimization

Previous optimization studies [eg. Severijns and Hazeleger 
(2005); Zhang et  al. (2015)] have used the downhill sim-
plex method, which Wright (1996) has suggested is often 
unreliable. We instead employ a classical Gauss-Newton 
approach. A simple summary of this optimization tech-
nique is provided here and readers are referred to Tett et al. 
(2013) and Tett et  al. (2017) for a fuller description. The 
aim is to reduce the root mean square error F between a 
vector of simulated observables � and a vector of target 
observables �, with F2 = ||� −�||2. This is a problem in 
n-dimensional parameter space for n chosen parameters 
which are allowed to vary within some n-dimensional 
boundary N. Beginning with the model default parameter 
values, the algorithm automatically executes the following 
steps:

1.	 Runs the model n times in parallel. For each run, one 
parameter is perturbed individually by +10% of its 
allowed range away from the starting point.

2.	 Constructs the error F from each of the n runs, and then 
calculates a finite-difference Jacobian, which describes 
how the error evolves under parameter changes.

3.	 Uses the Gauss-Newton equations to find the sequence 
in parameter space which converges towards a station-
ary point for F and defines a search direction 𝐤̂.

4.	 Carries out a line-search at 20, 70 and 100% of the vec-
tor 𝐤̂ in parameter space and runs the model at these 
points in parallel.

5.	 Calculates the error and:

(a)	 Uses the point with the smallest error as the start 
point for the next iteration, or

(b)	 Terminates if it has been unable to reduce the 
error from the start point.

The resulting simulation therefore uses the configuration 
of constant parameter values which minimize the error F 
within the boundary of allowed parameter values. Comput-
ing resources will dictate the number of model runs that 
can be carried out in parallel and hence limit parameter 
dimensionality, which in our case is four.

The algorithm requires: (1) a vector of target observa-
tions; (2) parameters which have an impact on the simu-
lated observables and their allowed range; and (3) a simula-
tion design. Below we outline these choices.

Simulated variables for comparison with observations 
are calculated from sea ice concentration during the first 
decade where satellite observations are available: 1981 to 
1990. Monthly sea ice concentration is averaged over these 
ten years and then a 15% ice extent cutoff is applied. Due 

Fig. 1   The maximum sea ice extent each year in the Southern Hemi-
sphere during the first twenty years after a parameter perturbation is 
individually perturbed to a high or low value. Colours and linestyles 
are defined in the legend to the right of the plot and parameters are 
described in Table 1



54	 L. A. Roach et al.

1 3

to the high scientific interest in sea ice extent extrema, we 
tune the maximum and minimum of the monthly sea ice 
extent cycle in each hemisphere, giving four tuning vari-
ables. We choose the maximum and minimum regardless 
of which month they fall in, as HadCM3’s Northern Hemi-
sphere maximum does not always fall in the same month 
(see Fig.  2). Equivalent target observations are calculated 
from the HadISST1 set of satellite sea ice concentrations 
(Rayner et al. 2003) (inadvertently) over 1980 to 1990, but 
differences between the mean over 1981 to 1990 and over 
1980 to 1990 are smaller than model internal variability 
(Fig.  3). Differences between different observational data 
sets are considerable (Bunzel et al. 2016) but we choose to 
neglect this for simplicity.

Tuning is only applicable to models where the differ-
ence between the standard model and observations is larger 
than that expected due to model noise (Notz 2015). We find 

that the differences between our target and observations are 
indeed larger than internal variability (Fig. 3).

Internal variability will magnify any minute differences 
between simulations, so multiple experiments are required 
to confirm that the stationary point located is not due to 
chance, thus avoiding selection bias. While ten years may 
be sufficient for fast adjustment of sea ice extent to individ-
ual parameter perturbations, as discussed above, variation 
of multiple parameters may require a longer adjustment 
period. We therefore trial two approaches: the first uses 
a spin-up period of ten years, requiring a total model run 
length of twenty years to calculate the observables in each 
of the two steps per iteration (case OPT1) and the second 
uses spin-up period of twenty years, requiring a total model 
run length of thirty years (case OPT2). Computational 
expense limits further trials. Model runs include observa-
tionally-based forcings from Schurer et al. (2014).

We expect that multiple stationary points exist, with 
different parameter combinations resulting in the same or 
similar error functions. Issues of equifinality are explored 
in Tett et  al. (2013). We do not examine these here, and 
instead choose to start from the default model parame-
ter values and investigate the first stationary point that is 
encountered.

3 � Parameter selection

A literature review justified variation of eight of the param-
eters described in Sect.  2.1: K, D, �m, �c, T�c , c

NH
max

/cSH
max

, 
�i and AH. Many values are adopted from Brierley et  al. 
(2010) and Murphy et  al. (2004), who consulted with 
HadCM3 experts to identify physically reasonable ranges 
for K, D, �m and T�c, but we make some changes as fol-
lows. See Table  1 for a summary of extreme values and 
justifications.

From four years of field measurements, Perovich and 
Polashenski (2012) find seven steps in albedo evolution. 
They find a cold snow albedo of 0.85 which lasts between 
freeze-up and melt onset and warm snow albedo below 0.5 
and as low as 0.32 during melt pond drainage. Hence we 
extend the albedo range suggested by Murphy et al. (2004) 
to include a lower warm albedo �m of 0.45 and a higher 
cold albedo �c of 0.85.

cmax is a parameter unique to HadCM3 which is based 
on a minimum lead fraction of 0.005 in the Arctic and 
0.02 in the Antarctic. However, Lindsay and Rothrock 
(1995) observe a seasonally-varying lead fraction in the 
central Arctic, between 0.02 in winter and 0.06 in sum-
mer, using a radiometer with a resolution of around 1km. 
Marcq and Weiss (2012) finds that most leads are very 
small (<20 m) and hence unresolvable in satellite data-
sets, which may further reduce sea ice concentrations. 

(a)

(b)

Fig. 2   Sea ice extent calculated using a 15% cut-off from monthly 
sea ice concentration averaged over 1981–1990 in a the Northern 
Hemisphere and b the Southern Hemisphere shown for: the stand-
ard model (black solid line); the resulting optimized simulation from 
OPT1 (blue solid); the resulting optimized simulation from OPT2 
(purple dashed); the simulation with OPT1 parameters started in 
1940 (green dashed) and the HadISST observations over 1981–1990 
(orange dashed) and over 1980–1990 (red dashed). Red and orange 
dashed lines are overlying
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We use the conservative lower estimate of 0.04, so that 
cmax = 0.96, as our extreme value. We could not find a 
comparable observed limiting lead fraction in the litera-
ture for the Antarctic and thus assume the same figure as 
for the Arctic.

Rae et al. (2014) perturb ice conductivity �i in a sensi-
tivity study for a later Hadley Centre model, HadGEM3, 
on the basis of the experimental range summarized by 
Pringle et al. (2007). They perturb only to the high end of 
this range; we additionally perturb to the low end of this 
range.

The very high uncertainty in the standard value of the 
turbulent diffusion coefficient AH—with default values 
ranging from 675 to 2000 m2 s−1—motivated us to reduce 
it to zero. We choose its upper limit according to the study 
where it was originally proposed, Bryan (1969).

Individually perturbing parameters to the extrema of 
their physically reasonable ranges in short control experi-
ments provides a first-order estimate of parameter uncer-
tainty. We select the four parameters that result in the larg-
est changes in our simulated observables when individually 
perturbed, those changes being significantly larger than our 
estimate of internal variability (Fig.  4), and which span a 
variety of different physical processes. The four param-
eters are: the ocean-ice diffusion coefficient K, the along-
isopycnal ocean diffusion coefficient D, the cold-ice tem-
perature (which controls variation of sea ice albedo) T�c
, and the maximum grid cell sea ice concentration cmax. 
Allowed ranges for these four parameters are further tested 
in long control experiments. Evidence of drift in the top of 
atmosphere net flux using the extreme values of D led us to 
refine its allowed range. The four parameters and their final 
allowed value ranges are shown in Table 2.

4 � Results

Both optimizations converged within four iterations, with 
four parameter perturbations and three line-searches 
per iteration plus one standard model run requiring 
(4 × 7 + 1) × 20 = 580 and (4 × 7 + 1) × 30 = 870 years 
of parallel model runs for OPT1 and OPT2 respectively. In 

(a) (b) (c) (d)

Fig. 3   Sea ice extent calculated using a 15% cut-off from monthly 
sea ice concentration averaged over 1981–1990 at a the maximum of 
the Northern Hemisphere annual cycle, b the minimum of the North-
ern Hemisphere annual cycle, c the maximum of the Southern Hemi-
sphere annual cycle and d the minimum of the Southern Hemisphere 

annual cycle. Solid lines show the standard and optimized (OPT1) 
simulations with hatched areas to denote internal variability. Equiv-
alent observations calculated from the HadISST data set are shown 
by dashed lines. We also show the observations averaged over 1980–
1990

(a) (b) (c) (d)

Fig. 4   Sea ice extent calculated using a 15% cut-off from monthly 
sea ice concentration averaged over model years 31–40 (ten years 
after parameter perturbations) of control simulations at a the maxi-
mum of the Northern Hemisphere annual cycle, b the minimum of 
the Northern Hemisphere annual cycle, c the maximum of the South-
ern Hemisphere annual cycle and d the minimum of the Southern 
Hemisphere annual cycle. Lines with markers show simulations 
where one parameter is perturbed to a high or low extreme value, the 
solid line shows the standard model and the grey hatched area shows 
our estimate of internal variability. See Table 1 for a description of 
parameter perturbations
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both cases, most of the error reduction occurred within the 
first iteration, suggesting the optimization could be run for 
just one iteration where computer resources are limited.

The parameter values which resulted in the simulation 
with the smallest error are shown in Table 2. In both trials, 
K increased, cmax decreased, D increased and T�c remained 
the same relative to the standard model. The magnitude of 
changes for K and cmax are slightly larger in OPT2, which 
had a longer spin-up period. The proximity of the final 
parameter configurations suggests that both experiments 
have located the same stationary point and provides evi-
dence that the optimization is robust under changes in spin-
up period.

The ocean-ice heat diffusion parameter K changed the 
most from the default value relative to its range. Examin-
ing the change in error per unit change in parameter for the 
Gauss-Newton step of the four iterations in OPT1 shows 
that perturbing K caused the largest change in error (see 
Table 3). Increasing K in the first iteration decreased sea ice 
extent in both hemispheres and seasons. This is not desir-
able for the Northern Hemisphere minimum, where the 
standard model has too little ice, but standard model dif-
ference from observations is largest in winter (Fig. 2) and 
so winter improvements are prioritized. We also note that 
in later Hadley Centre models, K is replaced by a function 
of friction velocity with a minimum value of u∗ = 0.005 
ms−2 [McLaren et al. (2006); McPhee (1992)]. This value 
would require a minimum value of K = 1.5 × 10−4 m2s−1 
in the HadCM3 scheme, hence the higher optimized value 
of K may have some physical basis. Turning to the other 
parameters, increasing T�c leads to higher-albedo ice and 
larger sea ice extent in all four tuning variables in the first 
iteration, increasing the error. The default value of T�c lies 
on the lower bound specified by Murphy et al. (2004) and 
so it stays constant during the line-search and remains at 
the default value. The change in error per unit parameter 
change is smallest for ocean isopycnal diffusion D. It causes 
decreases in sea ice extent in the Antarctic but increases in 
the Arctic, which cancel out changes in the error function 
F. The final value for the maximum allowed sea ice con-
centration cmax is the most different from its default value 
relative to its allowed range. This is the least physically-
based parameter of the four, designed to cover a range of 
dynamical and thermodynamical processes involved in sea 
ice fracture and lead opening. As such, we suggest that this 
parameter is the most reasonable to manipulate to modeller 
requirements.

These parameter changes cause large error reductions 
for both optimizations. The root mean square error F 
between simulation and target reduces by 89% in OPT1 
(from 5.3 million km2 to 0.5 million km2) and by 64% 
in OPT2 (to 1.9 million km2). The difference in error 
between OPT1 and OPT2 is due to both model noise 

and the small differences in parameter values for K, cmax 
and D. For simplicity, we consider only the lowest-error 
result, OPT1, in the following.

Firstly, we confirm that the control model climatology 
using OPT1 parameter values is stable. Over a 140 year 
model run, we find that the model does not exhibit a drift 
in the top of atmosphere net flux or in surface tempera-
ture (Fig. 5a, b). The differences in climatology between 
the optimized and standard configurations are consistent 
with there being significantly less global sea ice extent 
in the optimized case than the standard case (Fig.  5c). 
For example, relative to the standard control, the opti-
mized control shows some warming (Fig. 6). Given that 
HadCM3 is biased slightly cold in Northern Hemisphere 
sea surface temperatures [Gordon et  al. (2000)], this is 
a slight improvement in the model climate. Surface air 
temperature and ocean surface potential temperature are 
higher in the optimized model by up to 0.5 K away from 
the poles (Fig. 6). In the Arctic, surface air temperatures 
increase by up to 2.5 K in many areas, but also show a 
decrease of similar magnitude over Siberia and Northern 
Canada, which contrasts with a more uniform tempera-
ture increase of up to around 2 K in the Antarctic. We 
attribute the cooling in high-latitude ocean surface tem-
perature to the decrease in ocean isopycnal diffusion, D, 
with a contribution from the increase in ocean-ice heat 
flux, K, extracting more heat from the ocean during the 
melt season. These cooler ocean surface temperatures 

(a)

(b)

(c)

Fig. 5   The global annual average a surface air temperature, b net 
top-of-atmosphere flux, and c sea ice extent from control simulations 
using (solid line) the standard model parameters and (dashed line) the 
OPT1 parameters. Data are smoothed with a five year moving average



57Automated parameter tuning applied to sea ice in a global climate model﻿	

1 3

may be behind the small increase of 0.5 Sv in the strength 
of the Atlantic Meridional Overturning Circulation, 
although this is unlikely to be significant given its large 
variability (Banks et  al. 2007). Precipitation changes 
are generally smaller than model noise except for small 
shifts in position of the Intertropical Convergence Zone 
(ITCZ). Chiang and Bitz (2005) propose that the ITCZ 
shifts away from an imposed increase in ice cover in a 
particular hemisphere; in the optimized model both hemi-
spheres have reduced sea ice and there is no clear direc-
tion in the ITCZ shift. We conclude that changes in the 

model climate are reasonable and suggest perturbations 
to sea-ice relevant parameters may even reduce other 
model biases.

Three of the four tuning variables in the optimized model 
(OPT1) are now consistent with observations (Fig. 3). The 
Southern Hemisphere maximum is still outside of the range 
of internal variability, but the difference between model 
and observations has reduced by around 3 million km2. 
Over the full monthly sea ice cycle, the optimized model is 
much more consistent with observations over 1981 to 1990 
than the standard model (despite being optimized to obser-
vations for 1980–1990) (Fig. 2). However, we find that the 
time lag between model and observations noted by Turner 
et  al. (2006) persists. Over the long control experiment, 
variability is lower in the optimized model than the stand-
ard model for nearly all months of the year in both hemi-
spheres (Fig.  7). Zunz et  al. (2013) found that HadCM3, 

Fig. 6   The difference in 140-year averages between a control simu-
lation using the standard parameters and a control simulation using 
the OPT1 parameters for a surface air temperature, b ocean surface 
potential temperate and c precipitation. Hatching shows statistically 
significant differences at the 95% confidence level

(a)

(b)

Fig. 7   The standard deviation of sea ice extent for (black line, circu-
lar markers) the standard model and (blue line, triangular markers) 
the optimized model OPT1 in a the Northern Hemisphere and b the 
Southern Hemisphere. The standard deviation is calculated for each 
month of the year over 140 years of control simulation. The large 
jump between December and January values in the Southern Hemi-
sphere is consistent with the results from Zunz et al. (2013)
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and most CMIP5 models, overestimated Antarctic sea ice 
extent variance so this result is encouraging.

Having established the agreement between optimized 
model and observations in terms of the overall amount of 
sea ice, the tuned observable, we now consider regional 

differences in sea ice concentration. During winter in the 
Northern Hemisphere, default HadCM3 produces too 
much ice, particularly around the east coasts of Canada 
and Greenland, and the Barents and Okhotsk seas (Fig. 8a). 
The optimized model strongly reduces sea ice formation in 

Fig. 8   The difference in sea ice concentration between a the standard 
model and the HadISST observations in March in the Northern Hem-
isphere, b the optimized model (OPT1) and the HadISST observa-
tions in March in the Northern Hemisphere, c the standard model and 
the HadISST observations in September in the Southern Hemisphere, 
and d the optimized model (OPT1) and the HadISST observations in 

September in the Southern Hemisphere. Blue shows model underesti-
mation of observations and red overestimation. All data are averaged 
over 1981–1990. HadISST sea ice concentration was interpolated 
onto the HadCM3 grid. Hatching denotes statistically significant dif-
ferences calculated from a Students t-test over the 10 year period at 
the 95% confidence level
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those areas. The smallest improvement is seen in the Bar-
ents Sea, while an anomalously sea ice-free region appears 
northeast of Svalbard (Fig.  8b). We attribute this to the 
decline in magnitude of the north-south temperature gradi-
ent observed in the control optimized model relative to the 
standard model (Fig. 6), although internal variability may 
also contribute.

A Student’s t-test reveals significant (p < 5%) differ-
ences between the standard model and observations in the 
central Arctic, with the number of grid cells in the North-
ern Hemisphere in March which have statistically signifi-
cant differences from observations increasing from 373 for 
the standard model to 491 in the optimized model (out of 
3504 Northern Hemisphere grid cells). This is due to the 
decrease in the limiting parameter cmax, which biases the 
model towards lower concentrations in the central Arctic 
where observed concentrations are much closer to one. For 
example, along the latitude line of 85° N in March (mean 
1981–1990), HadISST sea ice concentrations are all greater 
than 95% with one third of these also greater than 99%. The 
value of cmax in the optimized model means that it cannot 
simulate sea ice concentrations greater than 97%. While 
more recent models do not use this parameter (McLaren 
et  al. 2006), this issue could be resolved for HadCM3 in 
future work by a different choice of error function which 
takes into account differences in concentrations, rather than 
simply sea ice extent. It should be noted again, however, 
that there is significant uncertainty in satellite observations 
(Bunzel et al. 2016). True observed concentrations may be 
lower due to large numbers of unresolvable leads (Marcq 
and Weiss 2012) and widely-used satellite datasets differ in 
their representation of high-concentration grid cells due to 
differing treatment of melt ponds (Notz 2014).

In the Southern Hemisphere, the optimized simula-
tion does significantly reduce the high bias in sea ice 
concentration in the Ross and Amundsen seas (Fig. 8d). 
This mainly occurs because of the increase in ocean-ice 
heat diffusion; the extreme value of this parameter has 
the largest impact of of all individual parameter perturba-
tions on the September Antarctic sea ice edge in this area 

(Fig.  9). However, the ocean-ice heat diffusion increase 
simultaneously drives a loss of sea ice around King 
Haakon VII sea (Fig.  9), which degrades the simulation 
(Fig. 8d). The reduction in the number of grid cells which 
are significantly different (p < 5%) from observations 

Fig. 9   The location of the 15% sea ice edge in the Antarctic in Sep-
tember for (black solid line) the standard model in the control aver-
aged over model years 31–40, (dashed lines with markers) parameter 

perturbed runs in the control averaged over years 31–40 (ten years 
after parameter perturbations), and (solid red line) the HadISST 
observations averaged over years 1981–1990

(a)

(b)

(c)

(d)

Fig. 10   Sea ice extent each year at a the Northern Hemisphere maxi-
mum, b the Northern Hemisphere minimum, c the Southern Hemi-
sphere maximum and d the Southern Hemisphere minimum from 
the standard model ensemble (thin grey solid lines), HadISST obser-
vations (red dashed line) and the simulation with OPT1 parameters 
started in 1940 (green solid line)
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between the standard and optimized models (from 172 to 
137 in March and from 314 to 286 in September, out of 
3504 Southern Hemisphere grid cells) shows that there 
is an overall improvement. However, both models poorly 
capture the observed distribution of Antarctic sea ice 
(Fig. 8c, d), a feature common to a number of the CMIP5 
models (Turner et  al. 2013). None of the individual 
parameter perturbations for HadCM3 are able to repli-
cate the shape of the observed sea ice edge, in particular 
the more extensive area around the King Haakon VII Sea 
(Fig.  9). This points to uncertainties other than simply 
that in parameter values (see Discussion), although much 
of the difference from observations on a regional scale 
may be due to decadal climate variability.

Finally, we ran the model using the optimized param-
eters from 1940 under observationally-based forcings. 

Tuning parameters to conditions in the early satellite record 
will not guarantee agreement to observations in other 
years. The longer spin-up period causes these parameters 
to perform less well against observations in this experi-
ment even during the tuning period (Fig.  2) compared to 
the direct optimization output, but still significantly better 
than the standard model. The mean state from this inde-
pendent run and root mean square error of 2 million km2 
over 1981–1990 is very similar to that of OPT2, which had 
a longer spin-up period (Fig. 2). This suggests that a longer 
spin-up period reduces selection bias in results. The dif-
ferences in simulated tuning variables between OPT1 and 
the independent run begun in 1940 are statistically signifi-
cant (p < 5%) only in the Northern Hemisphere. Only the 
Northern Hemisphere maximum is additionally outside the 
range of variability calculated from the standard model, 

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11   Top the linear trend in sea ice extent from 1980–2014 rel-
ative to the 1980–2009 average in a the maximum of the Northern 
Hemisphere annual cycle, b the minimum of the Northern Hemi-
sphere annual cycle, c the maximum of the Southern Hemisphere 
annual cycle and d the minimum of the Southern Hemisphere annual 
cycle from the mean of the standard model ensemble (black solid 
line), HadISST observations (red dashed line) and the simulation 
with OPT1 parameters started in 1940 (green solid line). Bottom the 

linear trend in sea ice volume from 1980–2014 relative to the 1980–
2009 average in e the maximum of the Northern Hemisphere annual 
cycle, f the minimum of the Northern Hemisphere annual cycle, g 
the maximum of the Southern Hemisphere annual cycle and h the 
minimum of the Southern Hemisphere annual cycle from the mean 
of the standard model ensemble (black solid line), PIOMAS reanal-
ysis (orange dashed line) and the simulation with OPT1 parameters 
started in 1940 (green solid line)
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with both OPT2 and the independent run being closer to 
the standard model in the Northern Hemisphere maximum 
than OPT1. Examining the intermediate steps in the opti-
mization shows that the Northern Hemisphere maximum 
took the longest to converge. The Northern Hemisphere 
maximum may be more difficult to optimize because of the 
limitations due to surrounding landmasses. It is also likely 
to have a larger inter-annual correlation than the Southern 
Hemisphere, as it has a larger proportion of multi-year ice.

The improvement in the mean sea ice state due to opti-
mized parameters causes HadCM3 to more skilfully predict 
sea ice extent up to the present day (Fig. 10). Linear trends 
from 1980–2014 relative to the 1980–2009 average in all 
four variables are statistically significant (p < 5%) and are 
displayed in Fig. 11a–d. The optimized model fails to cap-
ture the observed positive trend in the Antarctic, although 
trends are less negative compared to the standard model (for 
example, Southern Hemisphere maximum: standard model 
−2.8%/decade, OPT1 −1.8%/decade and HadISST +2.5%/
decade). This is consistent with the hypothesis that there 
are significant process-related uncertainties in the Antarc-
tic. Trends in the Northern Hemisphere are more negative 
in the optimized case (OPT1) than in the standard model, 
with an improvement towards consistency with observa-
tions seen in the Arctic minimum (standard model −5.2%/
decade, OPT1 −9.1%/decade and HadISST −9.8%/decade). 
The absolute trend in the Arctic minimum over 1980–2011 
is −0.71 million km2/decade. Comparison to Fig. 3 in Stro-
eve et al. (2012) reveals that optimization moves the Arctic 
minimum simulated by HadCM3 to within their calculated 
observational range, where only 7 of the 18 CMIP5 models 
examined by that paper lie.

We also examine sea volume and compare time series 
from the standard and optimized model to PIOMAS rea-
nalysis data in the Arctic (Fig.  12). Given the signifi-
cant uncertainties in observed sea ice volume, we fol-
low Shu et al. (2015) and show a ±15% error around the 
PIOMAS data. This reveals that the standard model has 
a high bias in maximum Northern Hemisphere sea ice 
volume, which is amplified in the optimized case due to 
cooler sea surface temperatures (Fig. 6). In the Northern 
Hemisphere minimum, the PIOMAS reanalysis lies in 
between the standard and optimized models, and given 
the large uncertainties in this data, suggests that neither 
simulation has an unreasonable minimum. The Antarctic 
minimum is very similar in both the standard and opti-
mized models; the Antarctic maximum is lower in the 
optimized case but there are no available observations 
which would confirm whether this is a move towards or 
away from the observed state. The reduction in Antarctic 
volume is likely due to the increase in K without a simi-
lar decrease in sea surface temperatures. Interestingly, 

although optimization has worsened the high bias in vol-
ume in the Arctic winter, trends in Arctic sea ice volume 
from the optimized case show a larger decline and there-
fore agree better with the PIOMAS data than the standard 
model (Fig. 11e, f). This may be because, once thick ice 
is established, it is better insulated from the cold ocean 
beneath and will melt more easily from surface heat 
fluxes than thinner ice (Hodson et al. 2013), resulting in 
larger losses. Conversely, Antarctic ice is thinner in the 
optimized case (Fig. 12), resulting in smaller losses com-
pared to the standard model (Fig. 11g, h). Lastly, we note 
that sea ice volume takes around two decades to adjust to 
parameter changes (Fig. 12). If future optimizations were 
to include sea ice volume as a tuning variable, they would 
require a longer adjustment period.

(a)

(b)

(c)

(d)

Fig. 12   Sea ice volume each year at a the Northern Hemisphere 
maximum, b the Northern Hemisphere minimum, c the Southern 
Hemisphere maximum and d the Southern Hemisphere minimum 
from the standard model ensemble (thin grey solid lines), the simu-
lation with OPT1 parameters started in 1940 (green solid line) and 
the PIOMAS reanalysis (red solid line, with orange shading denoting 
±15% error)
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5 � Discussion

This paper reports on the application of automated 
parameter tuning to uncertainty in climate model simu-
lations of sea ice. We find that manipulating poorly-
constrained parameter values within physically reason-
able ranges can reduce model error by up to an order 
of magnitude in decadal mean historical sea ice extent. 
The improved total sea ice extent in the mean state corre-
sponds to more consistency with observations in longer-
term trends, most notably in the Arctic minimum. A key 
achievement is that these parameter values apply to both 
hemispheres and both sea ice growth and melt seasons.

Table 1   All sea-ice-relevant parameters initially investigated in this study, with default values, extreme values and justifications for these pertur-
bations

In some cases, the default value is the extreme end of the allowed range; we mark these perturbations as ‘standard’
a Literature default values do not agree, so we select the default in UM4.5 as supplied to the University of Edinburgh
b Because of paucity of Antarctic observations, we assume the same limiting lead fraction as the Arctic
c Due to the high disagreement in the literature as to the default value, we set A

H
 to zero to gauge sensitivity

Parameter Default value Perturbation Justification

Ocean-ice diffusion K (m2s−1) 2.50 × 10-5a Low Standard
High 3.75 × 10−4 Murphy et al. (2004)

Ocean isopycnal diffusion D (m2s−1) 1 × 103 Low 2 × 102 Brierley et al. (2010)
High 2 × 103 Brierley et al. (2010)

Warm ice albedo �
m

0.50 Low 0.45 Perovich and Polashenski (2012)
High 0.55 Murphy et al. (2004)

Cold ice albedo �
c

0.80 Low 0.75 Perovich and Polashenski (2012)
High 0.85 Perovich and Polashenski (2012)

Cold ice albedo temperature T�
c

 (°C) −10 Low Standard
High −2 Murphy et al. (2004)

Maximum allowed SIC cmax

NH
0.995 Low 0.960 Lindsay and Rothrock (1995)

High Standard
SH 0.980 Low 0.960 b

High Standard
Ice thermal conductivity �

i
 (W m−1 K−1) 2.09 Low 1.69 Pringle et al. (2007)

High 2.63 Rae et al. (2014)
Ice turbulent diffusion A

H
 (m2s−1) 675a Low 0 c

High 2500 Bryan (1969)

Table 2   (Columns 1–3): 
parameters, their default values 
and allowed value ranges used 
in the optimization

(Columns 4–5): resulting parameter values from the two optimization trials

Parameter STD Range OPT1 OPT2

Ocean-ice diffusion K (10−5 m2 s−1) 2.5 [2.4, 37.5] 9.1 10.1
Ocean isopycnal diffusion D (103 m2 s−1) 1 [0.75, 1.75] 0.86 0.88
Cold ice albedo temperature T�

c

 (°C) −10 [−10, −2] −10 −10

Maximum allowed SIC cmax (%) NH 99.5 [96.0, 99.5] 97.0 96.5
SH 98.0 [96.0, 98.0] 97.0 96.5

Table 3   The change in root mean square error F per parameter step 
from the Gauss-Newton individual parameter perturbations in each 
iteration of OPT1

Parameter Change in error F per parameter step (million km2)

Iteration 1 Iteration 2 Iteration 3 Iteration 4

K −3.11 × 106 −7.56 × 105 −3.53 × 105 3.16 × 105

D −2.48 × 105 4.10 × 105 1.00 × 105 1.15 × 105

T�
c

3.15 × 105 7.03 × 105 2.16 × 105 4.78 × 105

cmax 2.38 × 105 1.07 × 106 −4.69 × 105 −4.62 × 105
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Parameter tuning has been criticized for artificially 
improving models beyond their capabilities (Eisenman 
et al. 2007), but a manual approach is widely used amongst 
climate modellers (Mauritsen et  al. 2012) and, like Mas-
sonnet et al. (2014), we argue that we can justifiably alter 
poorly-known or poorly-defined parameters to fit modelling 
needs. Using a 140-year control model experiment, we find 
no adverse effects of the parameter changes on the model 
climatology. We note an increase in Northern Hemisphere 
winter sea ice volume, in disagreement with reanalysis 
data, but this reduces later in the simulation and sea ice vol-
ume decreases faster than in the standard model after 1990.

Examining the spatial distribution of sea ice concentra-
tion, we note that, while improvements occur in the Arc-
tic, Antarctic improvements are minimal. The inability to 
improve some regional aspects may be due to missing or 
poorly parametrized processes relevant to the Antarctic. 
HadCM3 does not include ice sheet melt, its coarse resolu-
tion is not suited to accurate Southern Ocean representa-
tion (Zunz et al. 2013), Antarctic topography for HadCM3 
is lacking (Turner et  al. 2006) and none of the model’s 
sea ice parametrizations were specifically designed for 
the Antarctic (Turner et  al. 2006). Indeed, our literature 
review showed that the experimental values behind vari-
ous parameters are often measured in the Arctic only. In 
the face of these other issues, only limited improvement 
from parameter optimization using hemispheric sea ice 
extent error functions can be expected. We would expect to 
achieve greater consistency with observations using sepa-
rate parameter values for each hemisphere, which would 
further point to deficiency in model processes, as the phys-
ics should be independent of hemisphere. We conclude that 
improvements from global parameter optimization are lim-
ited when other structural uncertainties dominate.

The high error reduction found here may not be repli-
cated in other models that have better-constrained param-
eters or more advanced representation of sea ice processes. 
Yet even state-of-the-art models contain a large number 
of parameters and other studies have found improvements 
in uncoupled runs with advanced sea ice models such as 
CICE (Kim et al. 2006) and LIM3 (Massonnet et al. 2014). 
While more efficient than manual model tuning, automated 
parameter optimization is still computationally costly 
which limits ability to repeat experiments. The near-repli-
cation of resulting parameters in the second optimization 
experiment suggests that the successful error reduction was 
not due to chance, but future work should test this more 
robustly.

We stress that this is the first use of such a method tar-
geting only one climate variable in a coupled climate model 
and as such there are areas that can be developed further. 
For sea ice, more advanced metrics than sea ice extent that 
take into account sea ice concentration differences could 

be investigated. Recent improvements in sea ice thickness 
observations mean that this could be used as an optimiza-
tion metric for near present-day conditions. Similarly, more 
advanced models simulate variables such as meltpond area 
(Schroder et al. 2014), which can be observed by satellite, 
and therefore may provide another tuning variable. In our 
optimization method, a number of tuning metrics may be 
used without increasing computational cost. Another area 
for development would be to take into account observa-
tional uncertainty and weight the error function accord-
ingly. Nevertheless, we have shown that automated param-
eter optimization significantly reduces difference from 
observations in the sea ice simulation in HadCM3. Our 
approach could be customized for other poorly-simu-
lated climate observables and other models to investigate 
whether similar uncertainty reductions are possible.
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