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1  Introduction

The Indian summer monsoon (ISM) is a fundamental 
part of the climate of the Indian subcontinent, as India 
receives about 80  % of its annual rainfall amount during 
the months of June until September (Basu 2007). The ISM 
is influenced by external factors, e.g. sea surface tempera-
tures over the Indian Ocean, El Niño Southern Oscillation 
(ENSO), northern hemisphere snow cover or by telecon-
nections with the mid-latitudes (Hahn and Shukla 1976; 
Krishnan et al. 2009; Wang et al. 2003; Ashok et al. 2001) 
and is in parallel characterized by a high internal variability 
(Ajayamohan 2007). The spatial rainfall distribution over 
India is heavily influenced by steep orography at the west-
ern coast (Western Ghats) and in the north of the country at 
the Himalayan foothills. This study investigates the ability 
of the regional climate model COSMO-CLM to simulate 
subseasonal rainfall characteristics of the ISM system, as 
well as the models skill to represent observed wet and dry 
events within the monsoon season.

Several studies investigated the Indian monsoon using 
global climate models (GCM) under present, paleo and 
future climate conditions (Gadgil and Sajani 1998; May 
2003, 2004, 2011; Wang et  al. 2004; Dallmeyer et  al. 
2010). The main characteristics of the large-scale mon-
soon system, e.g. the atmospheric circulation are in good 
agreement with observations. However, these models lack 
a realistic representation of the spatial rainfall distribution, 

Abstract  This study aims to validate the widely used 
regional climate model COSMO-CLM driven by ERA-
Interim reanalysis data with a spatial resolution of 55 km 
with respect to observed features of the intraseasonal vari-
ability of the Indian summer monsoon (ISM) during the 
period 1979 until 2011. One of these features is the north-
ward propagation of the ISM intraseasonal oscillations. 
We find, that the temporal evolution between model and 
observation is in good agreement, while less agreement 
with respect to the strength is found. Furthermore, the 
model’s capability to simulate observed dry and wet events 
on a weekly time-scale is investigated using the standard-
ized precipitation index. In general, the model is capable to 
simulate these events with a similar magnitude at the same 
time. Observational based analyses show, that the coupling 
between atmospheric circulation anomalies and rainfall 
anomalies over India on the intraseasonal time scale is well 
represented by the model. The most important circulation 
anomalies for dry events are a lower tropospheric anti-
cyclonic vortex over India and partly an upper tropospheric 
cyclonic vortex over the Pakistan region and vice versa for 
wet events. The model shows a slightly higher ability to 
simulate dry compared to wet events. Overall, this study 
shows that the current configuration of COSMO-CLM is 
able to simulate the key features of the intraseasonal vari-
ability of the Indian summer monsoon. Being aware of its 
limitation, COSMO-CLM is suitable to investigate possible 
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mainly due to the coarse resolved orography. As this study 
concentrates on results based on a limited area model, we 
refer to Wang (2002) and references therein for an exten-
sive overview of the ISM system in GCM simulations.

Models with a higher spatial resolution and hence 
orography, such as regional climate models (RCM), show 
in general an improved representation of spatial rainfall 
patterns (Asharaf et  al. 2012; Asharaf and Ahrens 2013; 
Dobler and Ahrens 2010; Dobler and Ahrens 2011; Srini-
vas et  al. 2013; Lucas-Picher et  al. 2011; Nguyen and 
McGregor 2009). The majority of these studies investi-
gated seasonal and climatological rainfall distributions 
over India. Dobler and Ahrens (2010) used the model 
COSMO-CLM driven by ERA-40 reanalysis data (Uppala 
et al. 2005) to simulate the ISM under recent climate condi-
tions. They found that the model is able to capture the spa-
tial distribution of rainfall, but also noticed too wet condi-
tions over the west coast of India, which they explain with 
enhanced convective activity over the warm tropical oceans 
surrounding India. Lucas-Picher et  al. (2011) investigated 
the representation of the summer monsoon in four different 
RCM. The spatial distribution of mean rainfall is well cap-
tured by the models, but large differences on the regional 
scale were found.

Differences of model results compared to observations 
are mainly caused by insufficient parametrization schemes 
or deficits in soil conditions: Both, Srinivas et  al. (2013) 
and Dash et  al. (2006) showed that rainfall amounts over 
India in the regional climate models WRF (Srinivas et  al. 
2013) and RegCM3 (Dash et al. 2006) show high sensitiv-
ity to the choice of the convection scheme. Furthermore, 
previous studies (Saeed et  al. 2009; Lucas-Picher et  al. 
2011) revealed positive surface temperature biases over 
the northwestern part of India. Saeed et  al. (2009) sug-
gested that this overestimation is due to the fact that irriga-
tion over Pakistan is not taken into account in these model 
simulations. Asharaf et  al. (2012) showed that wetter ini-
tial soil conditions in the model COSMO-CLM increases 
rainfall over northwestern India, mainly due to recycling 
of soil-moisture. Additionally, Saeed et al. (2009) showed 
that cyclones from the Bay of Bengal enter farer west into 
India, if soil moisture is increased. Besides the effect of soil 
moisture on cyclone paths, Sabin et al. (2013) showed that 
monsoon depressions are better captured in higher resolved 
simulations.

Despite all these differences regarding soil conditions 
and parametrization of convection, these studies indicate 
that current RCMs are able to depict seasonal character-
istics of the ISM. However, there is only a limited num-
ber of studies analyzing rainfall over India on a time scale 
from days to weeks, although the ISM reveals a high intra-
seasonal variability. Active and break cycles with a length 
of several days until several weeks influence the seasonal 

rainfall pattern significantly (Goswami and Mohan 2001; 
Sperber et  al. 2000). Long lasting dry spells affect sea-
sonal rainfall over India and have been investigated by 
Bhat (2006) and Gadgil (2003) and references within. For 
example, in the year 2002 the annual rainfall deficit was 
about 21 %, which was mainly due to a dry event lasting 
for 36 days around July in which rainfall was 56 % below 
normal (Bhat 2006). Suhas et al. (2013) showed that this is 
linked to a reduced northward propagation of rainfall dur-
ing July.

This study focuses on the intra-seasonal variability of 
the ISM and is therefore intended to extend the analyses 
carried out by Dobler and Ahrens (2010) using an earlier 
model version driven by ERA-40 reanalysis data at its 
lateral boundaries. Our results regarding the mean spatial 
rainfall distribution show only slight differences compared 
to results from Dobler and Ahrens (2010), with a general 
underestimation of rainfall over most parts of India (Fig. 1).

Here, focus is put on the representation of observed 
intraseasonal features of the ISM in COSMO-CLM, includ-
ing (a) daily rainfall variability over the Indian subconti-
nent, (b) the northward propagation of monsoon intrasea-
sonal oscillations as well as (c) the representation of wet 
and dry events and their related atmospheric circulation. 
To analyse changes of the ISM on the intraseasonal time-
scale using COSMO-CLM a validation based on e.g., mean 
rainfall distributions or seasonal winds is not sufficient as 
it gives no information about the models capability to rep-
resent subseasonal features. Thus, climatological features 
as, e.g. mean rainfall distribution are only discussed briefly. 
Here, ERA-Interim data is used to force COSMO-CLM at 
its lateral boundaries. Obviously, due to the generation of 
this reanalysis dataset, we expect ERA-Interim to capture 
the observed features of the ISM itself. However, it can-
not be concluded a priory that COSMO-CLM is able to 
simulate these features even if driven by a good perform-
ing model at its lateral boundaries. Thus, the main goal of 
this study is to analyse in how far COSMO-CLM is able to 
depict the observed intraseasonal features of the ISM for 
the right reasons if driven by a good performing model at 
its lateral boundaries and not to show the performance of 
COSMO-CLM compared to ERA-Interim. As explained 
above, this validation is vital to analyse changes of the 
ISM on the intraseasonal time scale under different climate 
conditions using COSMO-CLM forced by global climate 
model simulations.

In this study, a COSMO-CLM simulation in a horizon-
tal resolution of about 55  km is carried out. The choice 
of the resolution is motivated by the set up of the current 
CORDEX simulations, which have mainly been running 
with a similar resolution. Thus, the model configuration 
offers detailed structures of the ISM simulation compared 
to GCM simulations and is also suitable for simulations 
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of about 30  years due to the need of reasonable computa-
tional resources.

The paper is structured as following: the model used 
in this study is described in Sect. 2 and the data used is 
presented in Sect. 3. Methods applied in this study are 
described in Sect. 4. The results are presented in Sect. 5, 
whereas this section is divided into three parts dedicated to 
the analysis of daily rainfall variability over the Indian sub-
continent, the northward propagation of monsoon intrasea-
sonal oscillations as well as the representation of wet and 
dry events and their related atmospheric circulation.

2 � Model configuration

The COnsortium for SMall scale MOdeling (COSMO) 
model in Climate Mode (COSMO-CLM) is the community 
model of the German regional climate research. The model 
is based on the COSMO model which is used by several 
weather services across Europe for numerical weather 
prediction (NWP). The main differences between the cli-
mate version and the NWP version are given in Böhm 
et al. (2006). In this study, we use the model version 4.8, 
subversion 17 for the period from 1979 to 2011 over the 
domain shown in Fig.  2. The lateral boundary conditions 
are provided by the ECMWF ERA-Interim (Dee et  al. 
2011) reanalysis dataset. The simulation is performed on a 
rotated pole grid with a horizontal resolution of 0.5° × 0.5°  
(≈55 km) and 32 vertical levels. The parameterizations used 
for the model integration include a radiation scheme fol-
lowing Ritter and Geleyn (1992), a micro-physics scheme 
including cloud water, rain and snow (Kessler 1969) and 
the Tiedtke mass flux convection scheme (Tiedtke 1989). 
The temporal discretization is performed with a leapfrog 
scheme at an integration time step of 150 s.

Soil moisture and soil temperature profiles at the start 
of the simulation are taken from a previous COSMO-
CLM simulation which is integrated for the same model 
domain, also driven by ERA-Interim reanalysis data at 
its lateral boundaries but only from 1989 until 2001. We 
average soil moisture and temperature from this simula-
tion for the 1st of January over all years and take these 
values to initialize the model simulation presented in 
this paper. This should reduce the models spin up as the 
average soil conditions from the earlier simulation are 
closer to the models climatology compared to the ini-
tialized values taken from reanalysis data. Similar to our 
approach Jaeger et al. (2009) used climatological values 
from a long-term simulation to initialize the model to 
validate the land-atmosphere interactions in the model 
COSMO-CLM.

3 � Data

In this study we use the rainfall dataset carried out within 
the Aphrodite (Asian Precipitation—Highly-Resolved 
Observational Data Integration Towards Evaluation of 
Water Resources) project (Yatagai et  al. 2012). For this 
study the Aphrodite (version: V1003R1) for the region 
“Monsoon Asia” with a horizontal resolution of 0.5° is 
used (Yatagai et al. 2012).

We use additionally Tropical Rainfall Measuring Mis-
sion (TRMM) (Huffman et  al. 2007) as well as Global 
Precipitation Climatology Project (GPCP) (Huffman et al. 
2001) satellite based rainfall estimates to investigate the 
uncertainty of rainfall measurements. Similar to Aphrodite, 
these two datasets are available on a daily time scale and 
are used to validate model results on a sub-monthly time 
scale (c.f. Table 1 for a detailed overview).

(c)(b)(a)

Fig. 1   Mean rainfall during JJAS (mm/day) (1979–2007) for a Aphrodite, b COSMO-CLM and c difference between COSMO-CLM and Aph-
rodite
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To investigate the performance of the model in compari-
son to its forcing model, we use ERA-Interim reanalysis 
data (Dee et al. 2011) over the Indian region. To calculate 
daily precipitation sums for ERA-Interim reanalysis data 
we use the forecast simulation starting at 00 and 12 UTC. 
Using the accumulated rainfall amount after 12 hours from 
both forecasts we obtain the daily precipitation sum.

For the investigation of the atmospheric circulation 
ERA-Interim reanalysis data of zonal and meridional wind 
components in 200, 500 and 850 hPa are used.

4 � Methodology

Daily and weekly unfiltered rainfall amounts are calculated 
for the All-Indian Monsoon Rainfall (AIMR) region cover-
ing all India (Fig. 2). We apply the method used by Turner 
and Slingo (2009) to evaluate the model’s capability to cap-
ture the northward propagation of monsoon intraseasonal 
oscillations. Therefore, May to October 30–60  day band-
pass-filtered precipitation is used. Originally, Turner and 
Slingo (2009) used the region from 70°–100° east and 20° 
south to 20° north. Due to the limited domain of the RCM, 
this investigation is only carried out from the equator to 20° 
north. Additionally, the monsoon intraseasonal oscillation 
index (MISO) developed by Suhas et al. (2013) is applied to 
the RCM data. Daily anomalies for this analysis are derived 
by removing the annual cycle (mean and first three harmon-
ics) as done by Suhas et al. (2013). Zonally averaged daily 
precipitation anomalies derived from the GPCP dataset for 
the region 60.5°–95.5° east and 12.5° south to 30° north have 
originally been used by Suhas et al. (2013) for an Extended 
Empirical Orthogonal Functions (EEOF) analysis. The first 
two EEOF’s are projected on simulated daily precipitation 
anomalies and the first two PC’s are called MISO1 (PC1) 
and MISO2 (PC2). Due to the limited domain of the RCM 
simulation we project the EEOF’s, derived from GPCP data 
for the original domain, only on the region ranging from 
60.5°–95.5° east and 0°–30° north for the model data. The 
PC’s calculated by projecting the EEOF’s on the limited 
domain will be called LMISO1 and LMISO2 (for observa-
tion data) and LMISO1-C and LMISO2-C (for COSMO-
CLM model data), subsequently. The intensity is defined as 
√

(MISO1
2
+MISO2

2
) and will be refereed as MISO-Int, 

LMISO-Int and LMISO-C-Int, subsequently.
We use weekly rainfall amounts over the AIMR region 

as a basis to identify wet and dry events in model, observa-
tion and reanalysis data. This approach prevents investigat-
ing short lasting extreme events of e.g. one day, which have 
a smaller impact on the society of the Indian country. As 
modelled absolute rainfall amounts can show high biases 
compared to observations, which complicates the compari-
son between both datasets, we calculate the Standardized 
Precipitation Index (SPI) based on weekly rainfall sums to 

Fig. 2   COSMO-CLM model domain and topography (greyscale) and 
All Indian monsoon rainfall (AIMR) region over India (red)

Table 1   Datasets used in this 
study as well as the temporal 
coverage, horizontal resolution, 
temporal resolution and 
the database used to derive 
this product (only given for 
precipitation datasets)

For some datasets other horizontal/temporal resolutions are available and the value given here indicates the 
resolution used within this study. The superscript indicates the parameter used in this study: a precipitation, 
b zonal + meridional wind speed components in 200, 500 and 850 hPa

Dataset Temporal coverage Hor. resolution Temp. resolution Gauge based Satellite based

Aphroditea 1951–2007 0.5° Daily Yes No

TRMMa 1998–2007 0.25° Daily No Yes

GPCPa 1997–2012 1.0° Daily No Yes

ERA-Interima, b 1979–2011 T255 Daily

Table 2   Definition of SPI classes

SPI value Interpretation

SPI ≤−2 Severely dry

−2 < SPI ≤ −1 Moderately dry

−1 < SPI ≤ 1 Near normal

1 < SPI ≤ 2 Moderately wet

SPI ≥ 2 Severely wet
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detect wet and dry events. To calculate SPI values a gamma 
distribution is fitted to the weekly rainfall sums. This dis-
tribution is afterwards transformed to a normal distribution 
with a standard deviation of 1 using a quantile–quantile map-
ping (Lloyd-Hughes and Saunders 2002). Hence, each pre-
cipitation amount can be converted to a SPI value, respecting 
the local climatological rainfall distribution, meaning that the 
SPI is a relative precipitation measure. Thus, SPI values can 
be compared between different regions and different times. 
Due to the fact that a gamma distribution is fitted to the data 
of each week separately, SPI values of one specific dataset 
are not associated with a fixed rainfall amount, meaning 
that e.g., a wet event (SPI > 1) during the last week of Sep-
tember might be drier than a wet event (SPI > 1) during the 
second week of June. Furthermore, SPI values can be com-
pared between different datasets, but their associated rainfall 
amounts might be different (even for the same week) as the 
gamma distribution is fitted for each dataset separately.

To identify dry and wet events in model and observation 
data, SPI values are divided into three and five bins of dis-
crete values (Table 2). To assess the skill of COSMO-CLM 
in simulating dry and wet events we calculate the Gerrity 
Skill Score (GSS) which is based on the Gandin–Murphy 
Skill Score (Gerrity 1992). The GSS gives an objective 
measurement of the model skill to simulate a multi-category 
variable with natural ordering. It ranges between minus 
infinity and +1, with +1 indicating a perfect agreement 
between model and reference dataset and values below zero 
indicating results less skillful compared to climatology. The 
scoring weight is higher if the model represents rare events 
correctly (e.g. severe droughts) in comparison to regular 
occurring events. Additionally, the penalty is lower if the 
model simulates an event similar to the observed one (e.g. 
severe drought is observed, but model shows a moderate 
drought) in comparison to the case when the model simu-
lates a complete different event (e.g. observed is a severe 
drought and model predicts a flood).

To investigate the spatial variability on a weekly time 
scale we calculate SPI time series for 34 meteorological 
subdivisions of India (provided by the Indian Institute of 
Tropical Meteorology). These time series from model, rea-
nalysis and observation data are further used for a single 
component analysis.

5 � Results

5.1 � Validation of daily rainfall variability 
in COSMO‑CLM

To evaluate the simulated seasonal precipitation of 
COSMO-CLM compared to reanalysis and observation 
data we calculate the mean daily rainfall amounts over 

the AIMR region. Furthermore, we apply a 10-day run-
ning mean to smooth day-to-day variability in the datasets 
(Fig. 3). COSMO-CLM as well as ERA-Interim are able to 
capture the observed seasonal cycle over the AIMR region 
with correlations of 0.95 for COSMO-CLM and 0.99 for 
ERA-Interim (Fig. 3). This well marked seasonal cycle is 
characterized by lower rainfall amounts during June and 
September and a maximum during the peak monsoon sea-
son in July and August. It is found that the overall underes-
timation of rainfall during JJAS is mainly due to reduced 
rainfall during July, August and September in COSMO-
CLM compared to observations.

To analyze anomalies of daily rainfall amounts, we 
calculate correlation coefficients, RMSE and standard 

Fig. 3   Climatological daily precipitation (1979–2009) over India 
(AIMR) for Aphrodite, ERA-Interim reanalysis data as well as 
COSMO-CLM simulation data. Rainfall amounts are smoothed with 
a 10-day running mean filter
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deviation for ERA-Interim and COSMO-CLM model out-
put over the AIMR region (Fig. 4), illustrated in a Taylor 
diagram. The diagram is normalized to the standard devia-
tion of the reference dataset (Aphrodite).

The temporal correlation of daily rainfall anomalies 
is similar in COSMO-CLM (≈0.65) compared to ERA-
Interim data (≈0.7) regarding the AIMR region. RMSE is 
higher for COSMO-CLM but the variability of daily rain-
fall in the model is in better agreement with observations 
than for ERA-Interim data.

As gridded precipitation products can differ signifi-
cantly, even if having the same source of data, we added the 
satellite based rainfall products TRMM and GPCP to com-
pare with daily rainfall anomalies of COSMO-CLM. As 
these datasets are only available since 1998 (1997, respec-
tively for GPCP) RMSE, correlation and standard devia-
tion are computed for all four datasets over the period 1998 
until 2007. Correlations of ERA-Interim and COSMO-
CLM data are nearly the same for the period 1998 until 
2007 compared to 1979 until 2007, which indicates a fairly 
constant skill of COSMO-CLM with increased integra-
tion time. TRMM and GPCP show both lower correlation 
coefficients compared to COSMO-CLM and ERA-Interim, 
which is consistent with rain gauge data from Thailand and 
TRMM data (Chokngamwong and Chiu 2008).

Overall, COSMO-CLM is in good agreement regarding 
the mean seasonal cycle as well as the day-to-day variabil-
ity of daily rainfall over the Indian subcontinent.

5.2 � Monsoon intraseasonal oscillation

Here, two different methods are applied to investigate the 
models capability to simulate the northward propagation 

of monsoon intraseasonal oscillations. First, we use the 
method based on lagged correlations between zonally 
averaged rainfall and rainfall at a reference point over 
India, which is called BSISO [Boreal Summer Intrasea-
sonal Osciallations, see Turner and Slingo (2009)]. Next, 
we apply the method developed by Suhas et  al. (2013), 
which gives information about the models capability to 
simulate these monsoon intraseasonal oscillations (MISO) 
on a yearly time scale, which is not possible using the for-
mer method. We calculate lag correlations of 30–60  day 
bandpass-filtered precipitation zonally averaged over the 
region 70°–100° east against a reference point at 85° east 
and 12.5° north (see Sect. 4) to evaluate the model’s capa-
bility to simulate observed features of the BSISO (Fig. 5). 
Fig.  5c shows that COSMO-CLM is capable to simulate 
the observed northward propagation (Fig.  5a). However, 
lead-lag correlation coefficients are somehow smaller than 
observed. ERA-Interim shows a higher ability to capture 
the observed northward propagation (Fig. 5b).

As these analyses clearly show the general ability of 
the model to simulate this feature of the ISM, it does not 
give any conclusion about the model’s ability to simulate 
the observed northward propagation in specific years. We 
apply the method developed by Suhas et al. (2013) to the 
model data. As pointed out in Sect. 4, it is not possible to 
apply the originally proposed method to the RCM data, 
as the southern boundary is located at around 5° south of 
the equator. Thus, before carrying out model based results 
we analyzed in how far results using the original domain 
(12.5° south–30° north) and the smaller domain (0°–30° 
north) differ if using GPCP observations. Therefore, we 
perform the EEOF analysis for the original domain and 
project the first two EEOFs on the GPCP data to obtain the 

(a) (b) (c)

Fig. 5   Cross-Correlation of zonally average precipitation (for longitudinal section between 70°–100°) against a reference point near 85° east 
and 12.5° north for a GPCP, b ERA-Interim and c COSMO-CLM
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MISO1 and MISO2 indices. In another step, we use the 
same EEOFs (from the original domain) but use only the 
values from 0°–30° north, which are then projected to the 
GPCP precipitation from 0°–30° north. We find high cor-
relations for MISO1 and LMISO1 (0.94) and MISO2 and 
LMISO2 (0.97), respectively. Additionally, the correlation 
of the intensity between MISO-Int and LMISO-Int of the 
original and the small domain yields a correlation of (0.90), 
which confirms the general usability of this method on the 
smaller domain.

Finally, we project the EEOF (derived from GPCP data) 
on COSMO-CLM simulated precipitation anomalies to 
derive the corresponding LMISO1-C and LMISO2-C indi-
ces for COSMO-CLM. We find strong correlation between 
LMISO1-C and LMISO1 (0.76) and LMISO2-C and 
LMISO2 (0.71), respectively, suggesting that the temporal 
development of the northward propagation is well captured 

by the model. However, the intensities (LMISO-Int and 
LMISO-C-Int) show a weaker linear relation of only 0.50. 
Figures 6 and 7 shows the observed northward propagation 
(derived from GPCP data), as well as the northward propa-
gation as found in COSMO-CLM and in ERA-Interim rea-
nalysis data in a MISO phase diagram for the years 2005 
and 2002. The MISO phase diagram shows the approxi-
mate location of anomalous high precipitation. In general, 
phases 1–4 are characterized by lower than average rainfall 
amounts over central India, whereas phases 5–8 are charac-
terized by higher amounts over central and northern India 
(see Suhas et al. 2013).

2002 was marked by a intense MISO event during June, 
followed by a minor MISO event in July. This minor event 
during July led to a huge drought affecting all India. ERA-
Interim is in good agreement with observations (Fig.  6a), 
but it underestimates the MISO intensity during June 

(a) (a)(b) (c)

Fig. 6   Summer season 2002 LMISO phase diagram for a GPCP, b ERA-Interim and c COSMO-CLM

(a) (b) (c)

Fig. 7   Summer season 2005 LMISO phase diagram for a GPCP, b ERA-Interim and c COSMO-CLM
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(Fig. 6b), which is also seen for COSMO-CLM (Fig. 6c). 
For both, reanalysis and COSMO-CLM only a minor event 
during July is identified, as no activity in phase 5–8 is 
found. However, COSMO simulates a MISO event with too 
high values especially in phase 1 and phase 2. During 2005 
COSMO-CLM depicts the observed MISO events (Fig. 7a) 
quite well, with a strong event taking place during Septem-
ber (Fig. 7c).

Overall, COSMO-CLM is capable in simulating the 
observed northward propagation of rainfall during the sum-
mer monsoon season. Temporal variability of these MISO’s 
is in good agreement with observations, even though 
the model has some problems in simulating the observed 
strength of observed MISO’s.

5.3 � Assessment of dry and wet events

Dry and wet events are identified using the SPI, derived 
from weekly rainfall amounts (see Sect. 4).

5.3.1 � Identification of dry and wet events

The skill of COSMO-CLM and ERA-Interim to represent 
dry and wet conditions is measured using the Gandin–Mur-
phy Skill Score with the extension from Gerrity (GSS) (see 
Sect. 4). Generally, during observed normal conditions 
(−1 ≤ SPI ≤ 1), ERA-Interim and COSMO-CLM simu-
late normal conditions as well. Only for a small number of 
these observed events with normal conditions, the model 
simulates moderate dry or wet events. COSMO-CLM is not 
able to simulate the observed extreme wet events (SPI > 2 ) 
with the same magnitude at the same time. Here, ERA-
Interim is also only able to depict a small number of these 
observed events. The ability of both models simulating 
moderate to extreme dry events (−2 < SPI < −1) is better 
compared to wet events.

GSS values (Table 3) of 0.52 for ERA-Interim indicate a 
higher ability of this dataset to detect wet and dry events at 
the same time with the same intensity than COSMO-CLM 
(GSS: 0.31). Additionally, we calculate GSS based on the 
three SPI classes: dry (SPI ≤ −1), normal (−1 ≤ SPI ≤ 1 ) 
and wet conditions (SPI > 1). GSS values for both ERA-
Interim and COSMO-CLM are increased compared to 
five SPI categories. The higher skill of ERA-Interim is 
due to the higher probability to detect observed extreme 
wet events, whereas COSMO-CLM is not able to simulate 
these events at the same time with the observed intensity. 
Due to the small sample size of only 29 years for all data-
sets, results for five bins should be discussed carefully as 
the number of cases for extreme wet/dry events is very 
small, which makes results less robust. For three bins (−1, 
0, 1) results are more robust as the number of cases in each 
bin is higher.

To investigate whether the GSS of this COSMO-CLM 
model simulation is representative, we calculate GSS also 
for other precipitation datasets which are available on 
a daily resolution. As discussed in Sect. 5.1, TRMM and 
GPCP satellite based daily rainfall estimates have a lower 
temporal correlation with Aphrodite observation data com-
pared to COSMO-CLM. Chokngamwong and Chiu (2008) 
found that the relation between gauge measurements over 
Thailand and TRMM strengthens when averaging TRMM 
data over five days or longer time periods. We find a simi-
lar behavior for both: TRMM and GPCP compared to Aph-
rodite observations (not shown). Thus, it is reasonable to 
calculate wet and dry spells on a weekly timescale. Unfor-
tunately, both datasets, TRMM and GPCP, are only avail-
able since 1997 or 1998, respectively. Thus, when calculat-
ing weekly sums of precipitation only 180 weekly rainfall 
amounts values are left for the summer monsoon season 
(JJAS) from 1998 until 2007. Concerning the statistical 
representativeness of this sample we use only three SPI cat-
egories (Table 3).

GSS is highest for ERA-Interim data (0.62), fol-
lowed by TRMM (0.59), GPCP (0.52) and COSMO-
CLM (0.49). For the shorter period (1998–2007) the 
GSS of COSMO-CLM is nearly the same as for the 
whole period (1979–2007), indicating a stable skill in 
time. As discussed in Sect. 5.1 correlation of daily rain-
fall anomalies with Aphrodite observations is higher for 
COSMO-CLM than for TRMM and GPCP. Furthermore, 
temporal correlation of weekly precipitation is similar 
for COSMO-CLM compared to both satellite products. 
The reason for higher GSS values for TRMM and GPCP 
is due to the higher probability of capturing dry events. 
Normal and wet condition are captured nearly equal in 
COSMO-CLM compared to TRMM and GPCP. As the 
scoring weight of rare events (e.g. dry events) is higher 
compared to regular events (see Sect. 4), GSS is higher 
in TRMM and GPCP data. These results have to be inter-
preted carefully as the gamma distribution fit to derive 
the SPI values is performed using only 10 years, which 
is obviously not as robust as fitting a gamma distribution 
to a 30 year long dataset. Nevertheless, these results can 
be viewed as an estimate of the value of the COSMO-
CLM simulation.

Table 3   Gerrity skill scores (GSS) for COSMO-CLM, ERA-Interim, 
TRMM and GPCP compared to Aphrodite observation dataset based 
on SPI values derived from weekly rainfall over AIMR region

Dataset CCLM ERA-Interim TRMM GPCP

GSS 1979–2007 (5 bins) 0.31 0.52 – –

GSS 1979–2007 (3 bins) 0.48 0.65 – –

GSS 1998–2007 (3 bins) 0.49 0.62 0.59 0.52
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Overall, the ability of COSMO-CLM to simulate 
extreme precipitation events is comparable to those repre-
sented in observation or ERA-Interim data. Thus, COSMO-
CLM is useful to investigate those extreme events over 
India. GSS for different subregions are smaller compared 
to All-Indian GSS, which reflects the models ability to 
simulate the observed temporal evolution of events but not 
their spatial occurrence.

5.3.2 � Spatial variability

Based on weekly SPI values for 34 subregions, we per-
form an empirical orthogonal function (EOF) analysis. As 
pointed out by Wu et al. (2007) SPI values on short time-
scales and especially in dry climates can be misleading as 
the SPI values are not normal distributed due to too many 
zero rainfall events. In the beginning of June and end of 
September some subregions in northwestern India receive 
very little rainfall amounts which might lead to misleading 
SPI values. To address this fact, we compute EOF analysis 
using data for the whole summer monsoon season (JJAS) 
and for the peak monsoon season (July–August), only. As 
the results from both time periods indicate similar results 
in general, we discuss EOF patterns for the complete 
season.

In principle, the first EOF shows a variability pattern 
with a sharp contrast between northeastern/southern India 
and the rest of the subcontinent (Fig. 8a–c), which is more 
pronounced in Aphrodite than in ERA-Interim (correlation: 
0.92) or COSMO-CLM (correlation: 0.86) data. As we per-
form an EOF analysis based on SPI values for 34 subre-
gions, we count every subregion only once when comput-
ing the correlation. The second EOF (Fig.  8d–f) shows a 
strong north–south contrast of the loadings in observation 
data, which is also present in both: reanalysis (correlation: 
0.98) and model data (correlation: −0.89). The third EOF 
(Fig.  8g–i) indicates a variability pattern associated with 
positive loadings over southern/northeastern India and 
negative loadings over northwestern India, which is well 
captured by ERA-Interim (correlation: 0.81). EOF 3 and 4 
are in reversed order comparing COSMO-CLM to Aphro-
dite and ERA-Interim. Nevertheless, explained variances of 
both patterns are similar and comparing EOF 4 of COSMO-
CLM with EOF 3 of Aphrodite indicates a high agreement 
(correlation: −0.73). EOF 4 (Fig.  8j–l) in Aphrodite data 
shows positive values over the core monsoon region and 
negative values over northwestern and southern India. This 
pattern is well captured by both ERA-Interim (correlation: 
0.80) and by the third EOF pattern of COSMO-CLM (cor-
relation: −0.71). The first EOF pattern in COSMO-CLM 
accounts less explained variance (28.4 %) than in Aphro-
dite (32.8 %). For the following three EOF’s explained var-
iances have similar magnitudes.

As this study focuses on the validation of the models 
spatial variability on a weekly time scale, the complete 
physical explanation of these EOF patterns are beyond the 
scope of this paper. It is worth mentioning that the first 
EOF pattern is similar to earlier studies from Krishnamur-
thy and Shukla (2000) and Sontakke and Singh (1996) even 
though there are some differences which might be caused 
by the relatively large regions used in our study. Overall, 
COSMO-CLM shows high correlations for the first four 
EOF patterns. As these four EOFs explain over 60 % of the 
natural variability, we conclude that spatial variability on a 
weekly timescale is well captured by the model.

5.3.3 � Coupling between rainfall anomalies and the 
large‑scale circulation anomalies on intraseasonal 
time scales

Rainfall variability on the intraseasonal time scale over 
India is predominately determined by changes in the large-
scale atmospheric circulation. Thus, it is important for the 
model to capture the coupling between large-scale anoma-
lies in atmospheric conditions and rainfall anomalies over 
India. We investigate in how far differences in dry and 
wet events between observations and COSMO-CLM can 
be attributed to differences in the large-scale atmospheric 
circulation between both datasets. For this reason com-
posite analysis for three different categories are carried 
out: (1) events, which are observed and simulated with a 
similar magnitude by COSMO-CLM, (2) events, which are 
observed and simulated by ERA-Interim but not simulated 
with a similar magnitude by COSMO-CLM and (3) events, 
which are not observed nor simulated by ERA-Interim but 
simulated by COSMO-CLM.

As shown in Sect. 5.3.2, the first EOF pattern shows a 
strong contrast between northeastern India and the rest of 
the subcontinent, indicating an antisymmetric behavior 
of SPI between these regions. As mechanisms leading to 
extreme events might be different between northeastern 
India and the rest, we only use SPI information from the 
region covering all India without the northeastern area for 
the following investigation. To ensure a reasonable large 
number of extreme events, we classify events into normal 
conditions (−1 < SPI < 1), dry conditions (SPI < −1 ) 
and wet conditions (SPI > 1). As the SPI is normal dis-
tributed with a standard deviation of one, 66 % of SPI val-
ues are between −1 and +1. Thus, there are 82 dry and 81 
wet weeks in the observational dataset (about 31 % of the 
whole dataset).

5.3.3.1  Dry events:  Out of the observed 82 dry events, 
COSMO-CLM simulates 49 (≈60 %) dry events at the same 
time with a similar magnitude, whereas ERA-Interim cap-
tures 64 (≈78 %) dry events at the same time with a similar 
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 8   SPI EOF loading patterns, based on weekly JJAS precipitation amount from 1979 until 2009, derived for Aphrodite, ERA-Interim and 
COSMO-CLM. The values within the square brackets represent the explained variance of each loading pattern
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magnitude, showing the higher ability of ERA-Interim in 
depicting these events. 21 (≈26 %) observed dry events are 
not simulated by COSMO-CLM but found in ERA-Interim. 
Thus, 12 (≈  15% of all 82) observed dry events are not 
found in ERA-Interim and COSMO-CLM, indicating that 
the boundary conditions are the main reason for the mis-
match of these events. Figures 9, 10 and 11 show composite 

anomalies of vorticity in 200, 500 and 850 hPa for the three 
defined categories of events.

Dry events, which are simulated by COSMO-CLM (cat-
egory  1) are associated with significant positive vorticity 
anomalies north of Pakistan and negative anomalies over 
Bangladesh in 200  hPa (Fig.  11b). In 500  hPa the positive 
anomaly is again found over Pakistan region and a negative 

(a) (b)

(c) (d)

(e) (f)

Fig. 9   Anomaly composites of vorticity (shaded) + wind field 
(arrows) in 850  hPa for COSMO-CLM (a, c, e) and ERA-Interim 
data (b, d, f). a, b Dry events simulated by COSMO-CLM; c, d dry 

event not simulated by COSMO-CLM; e, f: dry events simulated by 
COSMO-CLM only. Shaded areas are significant with an p value of 
5 % (t test)
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vorticity anomaly over central India is found (Fig.  10b). In 
850  hPa the positive anomaly over Pakistan is not present, 
but the negative anomaly over central India is much more 
pronounced and stretches over large parts of the Arabian 
Sea (Fig. 9b). These results compare well with those found 
by Krishnan et al. (2009). All these features are captured by 
COSMO-CLM, meaning that the mechanisms are well rep-
resented in the model (Figs. 9a, 10a, 11a). Thus, an observed 

dry event on the intraseasonal time scale, which is captured 
by COSMO-CLM is associated with an enhanced low to mid-
tropospheric cyclonic activity over central India, which leads 
to a decreased moisture flow into the Indian subcontinent. 
Additionally, these events are associated with a mid to upper-
tropospheric anti-cyclonic vorticity anomaly over Pakistan, 
which leads to an increased inflow of dry air from the mid-
latitudes into northwestern India (Krishnan et al. 2009).

(a) (b)

(c) (d)

(e) (f)

Fig. 10   Anomaly composites of vorticity (shaded) + wind field 
(arrows) in 500  hPa for COSMO-CLM (a, c, e) and ERA-Interim 
data (b, d, f). a, b Dry events simulated by COSMO-CLM; c, d dry 

event not simulated by COSMO-CLM; e, f dry events simulated by 
COSMO-CLM only. Shaded areas are significant with an p value of 
5 % (t test)
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For observed dry events, which are not simulated by 
COSMO-CLM (category  2), changes in the upper-trop-
ospheric circulation are not significant over most of the 
region, however, signs of a cyclonic anomaly are found 
over Pakistan again (Fig.  11d), which is also captured by 
COSMO-CLM (Fig.  11c). In line with this, no signifi-
cant cyclonic vorticity anomaly is found over Pakistan in 
500 hPa for ERA-Interim and COSMO-CLM (Fig. 10c, d). 

However, ERA-Interim reveals a significant anti-cyclonic 
vorticity anomaly over central India, which is not found 
in COSMO-CLM (Fig.  10c, d). Additionally, COSMO-
CLM shows no significant vorticity anomalies over most 
of India in the lower troposphere, whereas a significant 
anti-cyclonic vorticity over large parts of India is found in 
ERA-Interim (Fig. 9c, d). Thus, the reason why COSMO-
CLM does not simulate these events is due to differences 

(a) (b)

(c) (d)

(e) (f)

Fig. 11   Anomaly composites of vorticity (shaded) + wind field 
(arrows) in 200  hPa for COSMO-CLM (a, c, e) and ERA-Interim 
data (b, d, f). a, b Dry events simulated by COSMO-CLM; c & d dry 

event not simulated by COSMO-CLM; e, f dry events simulated by 
COSMO-CLM only. Shaded areas are significant with an p value of 
5 % (t test)
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in the lower troposphere as the model does not simulate 
an anti-cyclonic circulation anomaly over India in these 
cases, which does coherently not lead to an extreme defi-
cit in rainfall. However, it is worth mentioning that for all 
these 21 events COSMO-CLM simulates dry conditions 
(SPI < 0), however not as dry as observed (SPI < −1).

For dry events, which are only simulated by COSMO-
CLM but neither observed nor simulated by ERA-Interim 
(category  3), upper- and mid-tropospheric circulation 
anomalies do not reveal significant cyclonic anomalies over 
Pakistan in ERA-Interim and COSMO-CLM (Figs. 10e, f, 
11e, f). In contrast, COSMO-CLM shows a significant low-
level anti-cyclonic vorticity anomaly over India, which is 
not found in ERA-Interim (Fig. 9e, f). Thus, differences in 
SPI values for these events are caused by a lower-tropo-
spheric anti-cyclonic vorticity anomaly in COSMO-CLM, 
which is not present in ERA-Interim.

5.3.3.2  Wet events:  An analog analysis for wet events 
affecting India is performed. Out of the total observed 81 
wet events, 43 (≈53 %) observed wet events are also simu-
lated by COSMO-CLM (category 1) and the main charac-
teristic leading to these events is a strong cyclonic vorticity 
anomaly over India in 850  hPa (Fig.  12b), which is well 
captured by the model (Fig. 12a).

18 (≈22  %) observed wet events are not simulated by 
COSMO-CLM but found in ERA-Interim reanalysis (cat-
egory  2). The vorticity anomaly composite for reanaly-
sis data shows again a strong positive vorticity anomaly 
(Fig.  12d), which is not captured by COSMO-CLM 
(Fig. 12c).

30 wet events are simulated by COSMO-CLM but 
neither found in reanalysis nor in observation data (cat-
egory 3). In these cases COSMO-CLM simulates a strong 
cyclonic vorticity anomaly over India (Fig.  12e) which is 
stronger than in reanalysis data (Fig. 12f).

In the upper troposphere (200  hPa) a similar vorticity 
anomaly pattern with reversed sign is found for wet events 
compared to dry events (not shown). However, these upper-
tropospheric features are not present in the mid-troposphere 
(500  hPa), which is characterized by a cyclonic vorticity 
anomaly over India only (not shown).

Our results suggest that dry events which are caused by 
both, changes in the lower tropospheric circulation over 
India as well as changes in the upper tropospheric circu-
lation over Pakistan, are better captured by COSMO-CLM 
than dry events which are only caused by changes of the 
lower tropospheric circulation over the Indian subconti-
nent only. One explanation is that tropical-extratropical 
interactions are mainly induced by a strong upper level 
cyclonic anomaly over Pakistan (Krishnan et  al. (2009)), 
which is forced by lateral boundary conditions supplied 
by ERA-Interim reanalysis. In contrast to this, the lower 

level anticyclonic anomaly over India might be much more 
influenced by changes of the circulation over the tropical 
oceans. In our model setup COSMO-CLM is forced by 
observed sea surface temperatures but it is likely that model 
parameterizations might play an important role in config-
uring the local climate conditions over the tropical oceans, 
which in turn affects monsoon variability over India.

6 � Conclusion

In this study we investigate the ability of the RCM, 
COSMO-CLM, driven by ERA-Interim reanalysis data at 
its lateral boundaries to represent the intraseasonal variabil-
ity of the ISM. Furthermore, we focus on daily rainfall var-
iability, northward propagation of monsoon intraseasonal 
oscillations and longer lasting extreme precipitation events.

We find that the general underestimation of rainfall in 
COSMO-CLM during the summer monsoon season [found 
by Dobler and Ahrens (2010)], is mainly due to too little 
rainfall amounts during the period from July to September. 
However, modelled daily rainfall anomalies over all India 
show a high correlation with observations.

We investigate the model’s capability to simulate 
observed northward propagation of rainfall during the 
summer monsoon season (Turner and Slingo 2009; Suhas 
et  al. 2013). It is found that COSMO-CLM simulates the 
observed northward propagation, however lag correlations 
between zonally averaged rainfall and rainfall at a refer-
ence point over India reveal smaller correlations for the 
model than for observations.

Northward propagation for specific years have been 
investigated using the method developed by Suhas et  al. 
(2013). The originally proposed method to calculate 
MISO indices (Suhas et al. 2013) has been modified to suit 
the limited area of the RCM simulation. It is shown that 
these indices show similar results for the smaller domain 
compared to the original domain. The application of this 
approach on COSMO-CLM data shows that the model is 
able to simulate the temporal evolution of the LMISO1 and 
LMISO2 indices. However, the correlation of the intensity 
(LMISO-Int and LMISO-C-Int) between observed and sim-
ulated events is smaller compared to the individual correla-
tion of both time series.

Further on, the models ability of simulating longer last-
ing extreme intraseasonal events has been investigated. 
To account for systematic model errors regarding abso-
lute rainfall amounts, we use the standardized precipita-
tion index (SPI) to detect extreme events on a weekly time 
scale. The spatial variability of COSMO-CLM regarding 
SPI timeseries is in good agreement with observational 
data. An analysis of the models ability to represent observed 
extreme dry and wet weeks at the same time with a similar 
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magnitude, shows reasonable skill of the model. Even if 
ERA-Interim reanalysis data shows higher skill, COSMO-
CLM is comparable to results deduced from satellite based 
rainfall estimates from TRMM and GPCP data. The latter 
has to be discussed carefully as only ten years of data are 
available for TRMM and GPCP data. Thus, the fit of the 
gamma distribution, which is needed to derive the SPI val-
ues, is likely to be not as robust as using a longer dataset.

To identify driving mechanisms leading to dry and wet 
events on a weekly time scale, we analyze atmospheric 
circulation in 200, 500 and 850  hPa during dry and wet 
events over the Indian subcontinent excluding the north-
eastern part of the country. Three different categories are 
defined: (1) found in Aphrodite and COSMO-CLM, (2) 
found in observations and ERA-Interim but not simulated 
by COSMO-CLM and (3) simulated by COSMO-CLM 

(a) (b)

(c) (d)

(e) (f)

Fig. 12   Anomaly composites of vorticity (shaded) + wind field 
(arrows) in 850  hPa for COSMO-CLM (a, c, e) and ERA-Interim 
data (b, d, f). a, b wet events simulated by COSMO-CLM; c, d wet 

event not simulated by COSMO-CLM; e, f wet events simulated by 
COSMO-CLM only. Shaded areas are significant with an p value of 
5 % (t test)
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but neither observed in Aphrodite data nor simulated by 
ERA-Interim. It is found that COSMO-CLM performs bet-
ter in simulating dry events associated with an anomalous 
upper tropospheric cyclonic vortex over Pakistan and an 
anomalous lower tropospheric anti-cyclonic vortex over 
India compared to dry events which are characterized by 
an anomalous lower tropospheric anticyclonic vortex over 
India only. We hypothesize that the upper level vortex over 
Pakistan is largely influenced by boundary conditions sup-
plied by ERA-Interim but that the lower troposphere anti-
cyclonic vortex over India is heavily influenced by the 
surrounding tropical oceans. Due to the high sensitivity of 
RCM results to physical parameterizations, e.g. convec-
tion (Srinivas et  al. 2013), we assume that improvements 
of these parameterizations are necessary to enhance the 
skill of COSMO-CLM to capture events which are mainly 
forced by the anomalous anti-cyclonic vortex over India. A 
slighly better agreement between model and observations 
for dry events compared to wet events is found. This might 
be caused by the fact that the upper tropospheric circulation 
anomaly found for dry events is also present in the mid-
dle troposphere, which is not the case for wet events. Thus, 
the circulation during dry events might be more influenced 
by upper-tropospheric features, which are in turn in bet-
ter agreement with observations compared to lower tropo-
spheric circulation anomalies in COSMO-CLM. Even 
though not all observed dry/wet events could be identified 
in COSMO-CLM at the same time with a similar magni-
tude it is found that the mechanisms between lower level 
circulation anomalies and rainfall over India on the intra-
seasonal timescale are well represented in COSMO-CLM.
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