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1  Introduction

The East Asian monsoon is one of the most active climate 
systems in the Northern Hemisphere (e.g., Lau and Li 
1984; Tao and Chen 1987; Matsumoto 1992; Ding 1994). 
The climate anomalies associated with the East Asian mon-
soon have a strongly variable intensity that can result in 
extreme events, such as droughts, floods, intense snowfall, 
and cold surges; these events have a profound impact on 
people’s livelihoods, society, and the natural environment 
in East Asia. In addition, the East Asian monsoon can drive 
the atmospheric general circulation and affect the climate 
variability in distant regions (e.g., Li and Mu 2000; Yang 
et al. 2002; Lau and Weng 2002; Chang et al. 2005; Zhou 
et  al. 2007). Therefore, the variability in the East Asian 
monsoon and its causes have been greatly emphasised in 
the literature.

Observational analysis shows that the East Asian sum-
mer monsoon (EASM) significantly weakened around the 
late 1970s (e.g., Wang 2001; Wu and Wang 2002; Gong 
and Ho 2002; Hu et  al. 2003; Han and Wang 2007; Ding 
et  al. 2008). Studies on the EASM-related mechanisms 
indicated that this EASM decadal weakening is largely 
attributable to the variations in the sea surface temperature 
(SST). For example, the tropical Pacific and Indian Ocean 
SST decadal variability may play an important role (Chang 
et al. 2000; Gong and Ho 2002; Hu et al. 2003; Yang and 
Lau 2004; Li et al. 2008, 2010 Zhou et al. 2009). The extra-
tropical SST interdecadal modes, i.e., the Pacific Decadal 
Oscillation (PDO) and Atlantic Multi-decadal Oscillation 
(AMO), are also contributors (Yang et  al. 2005; Ma and 
Shao 2006; Lu et  al. 2006; Wang et  al. 2009a; Zhu et  al. 
2011). Recently, Wang et  al. (2013) indicated that human 
activities were a prime driver of the shift in the EASM in 
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the late 1970s, while the SST variability is still an impor-
tant method of transferring the impact of human activities 
to the EASM.

In contrast to the EASM, which experienced a decadal 
shift around the late 1970s, the East Asian winter monsoon 
(EAWM) showed decadal weakening around the mid-1980s 
(e.g., Shi 1996; Xu et al. 1999; Jhun and Lee 2004; Wang 
et al. 2009b; Wang and He 2012; He and Wang 2012; Sun 
and Ao 2013; Ding et  al. 2014). This decadal weakening 
of the EAWM resulted in an increase in the winter surface 
air temperature, a decrease in the frequency of cold waves, 
and abundant and extreme precipitation over East Asia in 
the last three decades.

Most studies have focused on the interannual time scale 
of the EAWM variability. It has been found that the EAWM 
interannual variability is closely related to the Siberian 
High (Ding and Krishnamurti 1987; Gong et al. 2001), the 
Aleutian Low (Overland et al. 1999), the East Asian trough 
(Sun and Li 1997; Wang et al. 2009b), the North Atlantic 
Oscillation (NAO)/Arctic Oscillation (AO) (Wu and Huang 
1999; Gong et  al. 2001), El Niño-Southern Oscillation 
(ENSO) (Li 1990; Zhang et al. 1996; Wang and He 2012), 
the East Asian jet stream (Yang et al. 2002), the stationary 
planetary wave activity (Chen et  al. 2005), and the snow 
cover over Eurasia (Watanabe and Nitta 1999). Recent 
studies also showed that the EAWM is closely related to 
Arctic sea ice content (Liu et  al. 2012; Li et  al. 2014). 
Among these factors, some have an unstable impact on 
the EAWM. For example, Wang and He (2012) found that 
the connection between the EAWM and ENSO was sig-
nificantly weaker after the late 1970s; thus, predicting the 
interannual variability in the EAWM became difficult.

Compared with the interannual variability, studies 
on the decadal variability in the EAWM are rare, and the 
cause of the decadal shift in the EAWM around the mid-
1980s remains unclear. After diagnosing the atmospheric 
circulation associated with the decadal EAWM variability, 
Jhun and Lee (2004) deduced that the AO may contrib-
ute to the decadal variability in the EAWM. Under global 
warming, models have shown a weakening EAWM; thus, 
global warming is also considered a factor that impacts the 
EAWM’s decadal shift (Hori and Ueda 2006).

In climate systems, the decadal SST mode is gener-
ally considered a major source of the climate decadal 
shift. For example, the most common SST decadal modes 
(e.g., the PDO, AMO, tropical Atlantic decadal warming 
mode, etc.) greatly contributed to the climate shift around 
the late 1970s (e.g., Trenberth and Hurrell 1994; Zhang 
et  al. 1997a; Kerr 2000; Delworth and Mann 2000; Dong 
et  al. 2006; Sun et  al. 2009). Some studies also indicated 
that the PDO may contribute to the EAWM decadal vari-
ability. However, the PDO phase shift over past half cen-
tury occurred around the late 1970s, leading the decadal 

shift in the EAWM by approximately 10  years. Because 
the atmosphere quickly responds to external forcing, the 
PDO variability with a lead time of approximately 10 years 
may not easily explain the EAWM weakening around the 
mid-1980s. Therefore, a natural question arises: is there 
any other decadal SST mode that contributed to the dec-
adal shift in the EAWM around the mid-1980s? This study 
attempts to answer this question.

The remainder of the paper is organised as follows. 
The datasets and methods used in the present study are 
described in Sect.  2. Section  3 introduces the observed 
EAWM-related atmospheric and SST patterns. The possible 
link between the North Pacific SST decadal pattern and the 
EAWM according to a numerical simulation is presented in 
Sect. 4. Section 5 provides a discussion and conclusions.

2 � Datasets and methods

The atmospheric circulation dataset used in this study is 
the monthly mean reanalysis from the National Centers 
for Environmental Prediction-National Center for Atmos-
pheric Research (Kalnay et  al. 1996). The NCEP–NCAR 
reanalysis data are available after 1948 and are gridded at 
2.5° × 2.5° resolution. Because the quality of the NCEP-
NCAR reanalysis data on a decadal time scale is debatable, 
the reanalysis dataset (ERA-40) produced by the European 
Centre for Medium-Range Weather Forecasts (Uppala et al. 
2005) is used to confirm the robustness of the results identi-
fied with the NCEP–NCAR reanalysis. The ERA-40 data 
are gridded at a 2.5° × 2.5° resolution over 1957–2002.

To obtain the long-term EAWM decadal variability, the 
Twentieth Century Reanalysis version 2 (20CR V2) over 
1871–2012 (Compo et  al. 2011) is used. In addition, the 
AO index data obtained at http://www.esrl.noaa.gov/psd/
data/20thC_Rean/timeseries/monthly/AO/ (1871–2012) are 
employed to investigate the relationship between the AO 
and EAWM on a decadal time scale. To discuss the connec-
tion between global warming and EAWM decadal variabil-
ity, the Northern Hemisphere warming index at http://www.
cru.uea.ac.uk/cru/data/temperature/ (1871–2012) is used.

The SST data gridded at a 2° ×  2° resolution are the 
Extended Reconstructed Sea Surface Temperature version 
3b (ERSST V3b), which are from the National Oceanic 
and Atmospheric Administration (NOAA), Earth System 
Research Laboratory (ESRL) (Smith and Reynolds 2003). 
The SST dataset is available after 1854.

The EAWM index (EAWMI) is defined as the negative 
mean geopotential height at 500 hPa within 25°–45°N and 
110°–145°E, where the East Asian trough is located; this 
area reflects the variations in the EAWM-related circula-
tion (Sun and Li 1997; Wang et  al. 2009b; Wang and He 
2012). In this paper, the December-January–February mean 

http://www.esrl.noaa.gov/psd/data/20thC_Rean/timeseries/monthly/AO/
http://www.esrl.noaa.gov/psd/data/20thC_Rean/timeseries/monthly/AO/
http://www.cru.uea.ac.uk/cru/data/temperature/
http://www.cru.uea.ac.uk/cru/data/temperature/
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represents the boreal winter. For example, the winter of 
1949 refers to the average of December 1948, January 1949 
and February 1949.

3 � Observed EAWM‑related atmospheric and SST 
patterns

Figure 1a shows the EAWM index from the NCEP-NCAR 
data over the period of 1949–2014. Similar to previ-
ous studies (e.g., Shi 1996; Xu et al. 1999; Jhun and Lee 
2004; Wang et  al. 2009b; Wang and He 2012; He and 
Wang 2012; Sun and Ao 2013; Ding et  al. 2014), the 
EAWM index shows a strong interannual variability and a 
decadal shift around the mid-1980s. A t test analysis indi-
cates that the decadal change in the EAWM around the 
mid-1980s is significant. After the mid-1980s, the EAWM 
significantly weakened, and its variability decreased. The 
EAWM index from ERA-40 exhibits highly consistent 
results (Fig. 1b). The correlation coefficients between the 
two indices over 1958–2002 is 0.98, and the two indices 
have a consistent decadal shift around the mid-1980s. 
Based on these two EAWM indices, the entire analy-
sis period is divided into two 20-year (1966–1985 and 
1988–2007 for NCEP-NCAR) and 15-year (1971–1985 
and 1988–2002 for ERA-40) sub-periods to investigate 

the possible cause of the decadal change in the EAWM 
around the mid-1980s.

Figure 2a shows the decadal differences in the geopoten-
tial height at 500 hPa from the NCEP-NCAR data. Along 
with the weakening EAWM, the changes in the geopoten-
tial height show a meridional dipole pattern from East Asia 
to North America, with negative anomalies over high lati-
tudes and positive anomalies over middle to low latitudes. 
The meridional dipole pattern over the North Pacific is 
referred to as the NPO (Walker and Bliss 1932). Figure 2a 
indicates the phase shift in the NPO around the mid-
1980s, which is consistent with a recent study (Pak et  al. 
2014). Pak et al. (2014) further showed that the connection 
between the EAWM and NPO was essentially broken after 
mid-1980s.

It is well known that the East Asian trough is a dominant 
system over East Asia; the trough can steer cold air south-
eastward from the high latitudes to East Asia (Zhang et al. 
1997b). Figure 2a shows significantly positive geopotential 
heights over East Asia; thus, the East Asian trough weak-
ened around the mid-1980s. A weaker East Asian trough 
will lead to a more zonal circulation in the mid-to-high lati-
tudes, which weakens the southward invasion of the cold 
air from the high latitudes.

In addition to the East Asian trough, Jhun and Lee 
(2004) indicated that the changes in the East Asian 

Fig. 1   Normalised EAWM 
index: year-to-year variabil-
ity (bar), nine-year running 
means (solid line), and two 
sub-periods’ means (dash line) 
calculated from a NCEP-NCAR 
and b ERA-40

(a)

(b)
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upper level jet stream can also reflect the intensity of the 
EAWM. The authors further defined an EAWM index 
using the 300  hPa meridional zonal wind shear. Com-
paring Fig. 2b in this study and Fig. 2 in their paper, the 
enhanced zonal wind over the East Asian mid-to-high lati-
tudes and weakened zonal wind over the mid-to-low lati-
tudes in Fig. 2b indicates weakening of the EAWM.

Under such an atmospheric circulation, there are pre-
vailing anomalous south-westerly winds over northern 
East Asia at the low levels (Fig.  2c). Compared with the 

climatology, the anomalous south-westerly winds can 
weaken the dominant north-westerly winds over East Asia 
and thus prohibit the southward invasion of cold air from 
the high latitudes to East Asia.

The atmospheric circulations associated with the dec-
adal change in the EAWM in the ERA-40 data are depicted 
in Fig.  3. Generally, the two datasets exhibit consistent 
results. Because of the short time period of the ERA-40 
data, the analysis sub-period for the ERA-40 data is only 
15  years, whereas the NCEP-NCAR data sub-period is 

Fig. 2   Decadal differences in 
a 500 hPa geopotential heights, 
b 300 hPa zonal winds, and 
c 850 hPa horizontal winds 
from NCEP-NCAR between 
1988–2007 and 1966–1985. The 
light (dark) shading indicates 
the areas significant at the 90 % 
(95 %) confidence level. The 
rectangle in (a) is the area used 
to compute the EAWM index

(a)

(b)

(c)
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20 years. If the analysis period for the NCEP-NCAR data 
is also confined to the same 15-year sub-period as the 
ERA-40 data, then the distribution, intensity, and signifi-
cance of the atmospheric circulations in these two data are 
more similar. A relatively larger difference occurs over the 
Mongolian region. The atmospheric circulation anomaly 
in the NCEP-NCAR data is larger than that in the ERA-
40 data. Such a difference over the region between the two 
reanalysis datasets should be attributed to the larger bias of 

the NCEP-NCAR data in the 1960s and 1970s (Yang et al. 
2002; Inoue and Matsumoto 2004). Thus, ERA-40 should 
reflect more reliable variability in the EAWM for specific 
features.

Consistent with the decadal change in the atmospheric 
circulation, the North Pacific SST also exhibits a significant 
decadal change around the mid-1980s. As shown in Fig. 4, 
strongly positive anomalous SST zones are located over the 
southwestern North Pacific and high latitudes of the North 

Fig. 3   Decadal differences in 
a 500 hPa geopotential heights, 
b 300 hPa zonal winds, and c 
850 hPa horizontal winds from 
ERA-40 between 1988–2002 
and 1971–1985. The light 
(dark) shading indicates the 
areas significant at the 90 % 
(95 %) confidence level

(a)

(b)

(c)
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Pacific; between these areas is a narrow and weak negative 
SST zone from the western mid-North Pacific to the south-
eastern North Pacific.

The air-sea interaction over the mid-latitude ocean could 
differ with timescale. Bjerknes (1964) suggested that the 
atmosphere was thought to drive directly most the short-
term SST variability and the ocean to contribute signifi-
cantly to long-term SST and atmosphere variability. Later 
researches confirm the Bjerknes conjecture. Based on the 
coupled model simulation, some studies concluded that 
the decadal climate variability over the North Pacific is an 
inherently air-sea coupled phenomenon, while the slow 
dynamical adjustments of the ocean are crucial in setting 
the decadal SST mode and the atmosphere responds pas-
sively and feed back to the SST decadal variability (e.g., 
Latif and Barnett 1994, 1996; Latif 2006; An 2008). On the 
observation aspect, Gulev et  al. (2013) provided evidence 
that, on the decadal timescale, the turbulent heat flux is 
indeed driven by the ocean and may force the atmosphere, 
and Zhang and Levitus (1997) proposed the subtropi-
cal subsurface ocean process may contribute to establish-
ing the decadal SST variability in the mid-latitude North 
Pacific, which, in turn, influences the atmospheric circula-
tion. In this study, to further investigate the relative role of 
the atmosphere and ocean in the East Asia-North Pacific 
climate decadal change around the mid-1980s, the related 
decadal changes in wind stress and wind stress curl were 
calculated (figure not shown). It is found that the decadal 
changes in the atmospheric circulation can generally result 

in anomalous downwelling Ekman pumping in the southern 
North Pacific and upwelling Ekman pumping in the north-
ern. However, these Ekman pumping anomalies are weak 
and do not correspond well to the significant SST warming 
over the southwestern North Pacific. Thus the decadal SST 
anomaly over the southwestern North Pacific could not be 
dominated by the atmosphere change, although the atmos-
phere has a positive feedback. Besides the wind stress and 
its related dynamical process, the surface heat flux is also 
important language of the ocean–atmosphere communica-
tion (Gulev et al. 2013). Thus, the turbulent heat flux (sen-
sible plus latent heat fluxes) is further diagnosed. Figure 5 
suggests that the large-scale upward directed turbulent heat 
flux is located over the southwestern North Pacific, corre-
sponding well to the warming SST over the region, indi-
cating that the warming SST over the southwestern North 
Pacific releases energy and heats the overlying atmosphere. 
Thus the ocean dynamics could play an important role in 
the generation of the decadal SST anomaly over the south-
western North Pacific, which further influences its overly-
ing atmosphere variability.

Over the cool SST region, the changes in the turbulent 
heat flux are not strong. In contrast to the warm SST over 
the southwestern North Pacific, the significant SST warm-
ing over the high latitude North Pacific along the conti-
nental margin corresponds to a downward turbulent heat 
flux, which indicates that the SST warming over the region 
could result from energy absorption from the overlying 
atmosphere. Thus, the warm SST over the high latitude 

Fig. 4   Decadal differences in 
the SST between 1988–2007 
and 1966–1985. The light 
(dark) shading indicates the 
areas significant at the 90 % 
(95 %) confidence level. The 
rectangle is the area used to 
compute the SST index

Fig. 5   Decadal differences 
in the turbulent heat fluxes 
from NCEP-NCAR between 
1988–2007 and 1966–1985. The 
light (dark) shading indicates 
the areas significant at the 90 % 
(95 %) confidence level. The 
positive value indicates the 
upward and negative indicates 
the downward
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North Pacific could be a response to the atmospheric vari-
ability. The distribution of the anomalous turbulent heat 
flux from NCEP-NCAR in Fig.  5 is further confirmed by 
the International Comprehensive Ocean–Atmosphere Data 
Set (figure not shown).

Combining the SST and turbulent heat flux variability, 
we can deduce that the key oceanic region associated with 
the decadal change in the atmospheric circulation around 
the mid-1980s could be the southwestern North Pacific. 
Then, a North Pacific SST decadal pattern index is defined 
as the negative averaged SST over the key warming region 
(120°–180°E, 26°–40°E). As shown in Fig.  6, the SST 
index exhibits a strong decadal variability. Around the mid-
1980s, the SST index exhibits a consistent decadal shift 
with the EAWM. A t test analysis indicates that the decadal 
change in the SST index is significant.

It is well known that the leading empirical orthogonal 
function (EOF) mode of the SST variability over the North 
Pacific is the PDO pattern. The second EOF mode of the 
SST variability over the North Pacific in Fig.  7 shows a 
highly consistent spatial pattern, with the decadal change 
pattern of the North Pacific SST occurring around the mid-
1980s (Fig. 4). The spatial correlation coefficient between 
the SST patterns in Figs. 4 and 7 is 0.79, and the time series 
of the second EOF mode co-varies with the variability in 
the pronounced SST decadal pattern, with a correlation of 
0.74 over the period of 1949–2013. Bond et al. (2003) has 
showed that the EOF2-type SST mode has a contribution 
to the decadal shift of the North Pacific state in the winter 
half-year (November to March) around late 1990s. In this 
study, on one hand the decadal SST pattern around the mid-
1980s is similar to the EOF2 SST mode; on the other hand 

Fig. 6   Normalised North 
Pacific SST decadal pattern 
index: year-to-year variability 
(bar), nine-year running means 
(solid line), and two sub-peri-
ods’ means (dash line)

Fig. 7   Second EOF mode of 
the North Pacific SST: a spatial 
pattern and b time series

(a)

(b)
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the decadal SST pattern also exhibits some differences with 
the EOF2 SST mode. For example, in Fig.  4 the positive 
signal is strong and the negative signal is weak. In contrast, 
the positive and negative signals are almost comparable 
in Fig.  7. In addition, the North Pacific SST decadal pat-
tern can explain about 55 % of the variance of the EOF2 
SST mode. Thus the decadal SST pattern revealed in this 
study not only exhibits some variability of the EOF2 SST 
mode and also presents its own variability feature; it is an 
EOF2-like SST decadal pattern, dominating over the North 
Pacific.

4 � Results of the numerical simulation

The response of the atmosphere to an extratropical warm 
SST anomaly is complicated. Whether a ridge or trough 
responds to warm SSTs is debatable (e.g., Palmer and Sun 
1985; Ting 1991; Kushnir and Lau 1992; Lau and Nath 
1994; Ferranti et  al. 1994; Latif and Barnett 1994; Peng 
et  al. 1995, 1997; Sutton and Hodson 2005; Zhao et  al. 
2012; Sun 2014). In this study, along with the decadal SST 
warming over the southwestern North Pacific, the overlying 
atmosphere shows barotropic positive anomalies (Fig.  8). 
The indubitable cause-effect relationship between the 
warm SST and the barotropic ridge response needs to be 
confirmed by numerical simulations.

Here, the sensitivity experiments were performed with 
the global Community Atmosphere Model (CAM5), which 

Fig. 8   Decadal differences in the latitude-pressure cross-section of 
the geopotential heights averaged along 100°E–180°E between 1988–
2007 and 1966–1985. The light (dark) shading indicates the areas 
significant at the 90 % (95 %) confidence level

Fig. 9   Differences in the 500 hPa geopotential heights between the 
sensitivity experiment (EXP1) and control run (EXP0). The light 
(dark) shading indicates the areas significant at the 90 % (95 %) con-
fidence level

Fig. 10   Differences in 300  hPa zonal wind between the sensitiv-
ity experiment (EXP1) and the control run (EXP0). The light (dark) 
shading indicates the areas significant at the 90 % (95 %) confidence 
level

Fig. 11   Differences in the latitude-pressure cross-section of the geo-
potential heights averaged along 100°E–180°E between the sensitiv-
ity experiment (EXP1) and the control run (EXP0). The light (dark) 
shading indicates the areas significant at the 90 % (95 %) confidence 
level
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is the atmospheric component of the Community Earth 
System Model (CESM1_0_5). The “F_2000” component 
set was selected for CESM1_0_5, which used a prescribed 
climatology for SST and sea ice and an active land model 
(Community Land Model; CLM) coupled to CAM5. The 
atmospheric composition was constant in the year 2000, 
with a CO2 concentration of 367.0  ppm during the simu-
lations. The simulations used a 1.9° ×  2.5° finite volume 
grid, with 26 hybrid sigma pressure levels and a 30-min 
integration time step. Detailed information on the model 
can be found in Gent et al. (2011).

We performed two sets of model simulations. First, a 
55-year run with the model’s climatological SST and sea 
ice boundary conditions was performed, and the average 
for the last 40 years was defined as the control run (EXP0). 
In the sensitivity experiment, an idealised SST is con-
structed by imposing the North Pacific SST decadal pat-
tern in Fig.  4 on the monthly climatological SSTs; then, 
a 55-year run was performed with the idealised SST and 

sea ice boundary conditions. The average over the last 
40  years was defined as the sensitivity experiment run 
(EXP1). The difference between EXP1 and EXP0 reflects 
the impact of the North Pacific SST decadal pattern on the 
change in the atmospheric circulation. The 40-year mean 
values were equivalent to the values from an ensemble 
of 40 sensitivity experiments with SST changes over the 
North Pacific by means of different initial atmospheric and 
land surface conditions, similar to previous studies (e.g., 
Zhao et al. 2012).

Figure  9 suggests that the North Pacific SST decadal 
pattern can stimulate a meridional dipole circulation from 
East Asia to the North Pacific. Significantly positive geo-
potential heights can be found over the mid-latitudes and 
negative heights are found over high latitudes. In particu-
lar, there is an anomalously positive geopotential height 
centre over East Asia, spanning East China, Korea, and 
Japan; therefore, the East Asian trough weakened. In 
addition, the zonal wind shows a meridional dipole pat-
tern over East Asia, with positive values over the mid-to-
high latitudes and negative values over the mid-to-low 
latitudes (Fig. 10). These changes in the atmospheric cir-
culation indicate a weakened EAWM. The vertical struc-
ture indicates that the atmosphere has a barotropic and 
positive geopotential height response to the SST warm-
ing over the southwestern North Pacific (Fig.  11). One 
possible physical mechanism for the impact of the south-
western North Pacific warming SST on the East Asian 
trough and jet stream could be attributed to the thermal 
wind theory. In this study, the strong SST warming is 
located over the southwestern North Pacific. The warm-
ing SST releases energy and heats the overlying atmos-
phere over the North Pacific portion south of 40o N, which 
will increase the meridional temperature gradient north 
of 40o N and reduce the meridional temperature gradi-
ent south of 40°N (Fig.  12). Based on the thermal wind 

Fig. 12   Differences in the latitude-pressure cross-section of the 
meridional temperature gradient averaged along 120°E–180°E 
between the sensitivity experiment (EXP1) and the control run 
(EXP0). The light (dark) shading indicates the areas significant at the 
90 % (95 %) confidence level. And the negative value indicates the 
meridional temperature gradient is enhanced

Fig. 13   Differences in the sur-
face air temperature between the 
sensitivity experiment (EXP1) 
and the control run (EXP0). The 
light (dark) shading indicates 
the areas significant at the 90 % 
(95 %) confidence level
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theory, the westerly wind over the region north (south) of 
40°N will be enhanced (weakened). Consequently, a sig-
nificant anomalous anticyclone (cyclone) occurs over the 
mid-latitude (high latitude) region from East Asia to the 
North Pacific, resulting a weakened East Asian trough and 
EAWM. These responses of the atmospheric circulation 
to the North Pacific SST decadal pattern in the numeri-
cal simulation are quite similar to the observed decadal 
change in the atmospheric circulation around the mid-
1980s. These results indicate that the North Pacific SST 

decadal pattern can weaken the East Asian trough and 
result in a weakened EAWM, leading to a warmer winter 
in East Asia (Fig. 13).    

Compared with the observations in the last section, 
the North Pacific SST decadal pattern can reproduce 
the observed decadal feature of the atmospheric circula-
tion over the North Pacific and East Asia. Nevertheless, 
the uncertainty in the sensitivity experiment should not 
be ignored. There are still visible differences in the inten-
sity and position of the atmospheric circulation patterns 

Fig. 14   Nine-year running means of the normalised North Pacific SST decadal pattern and EAWM indices

Fig. 15   Nine-year running 
means of the normalised AO 
and EAWM indices

Fig. 16   Nine-year running means of the normalised Northern Hemisphere warming and EAWM indices
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between the simulations and observations, which could be 
attributed to the climate model’s uncertainty in the extrat-
ropical climate simulation. Additionally, the observed fea-
ture is the result of the air-sea interactions, although the 
SST could play a more active role. The experiment only 
allows for one-way interactions; thus, the feedback of the 
atmospheric to the SST is not considered here. Such short-
ages could result in biases in the atmospheric simulation 
as compared with the observations. However, the observed 
atmospheric features are generally reproduced by the 
numerical experiment, which confirms the contribution of 
the North Pacific SST decadal pattern to the EAWM dec-
adal variability.

5 � Conclusion and discussion

Compared with the interannual variability, the possi-
ble cause of the decadal variability in the EAWM is still 
unclear. In this study, we proposed a factor that could be 
responsible for the EAWM decadal changes. Along with 
the decadal change in the EAWM, a dominant SST pat-
tern over the North Pacific exhibits consistent decadal vari-
ability. The observations and numerical simulations show 
that this North Pacific SST decadal pattern can impact the 
East Asian trough and NPO pattern via changing the air-sea 
interactions; as a result, the East Asian trough weakens, and 
a positive NPO pattern occurs. The weakened East Asian 
trough can lead to a more zonal atmospheric circulation, 
which can weaken the meridional circulation over East 
Asia and prohibit the southward invasion of cold air.

Over the past century, the EAWM has exhibited sev-
eral decadal changes. Does the North Pacific SST decadal 
pattern contribute to these decadal changes or is it only 
important to the decadal change around the mid-1980s? To 
answer this question, the relationship between the EAWM 
and North Pacific SST decadal pattern was investigated 
over a long period. Because of the short period of the 
NCEP-NCAR data, the EAWM was calculated using the 
20CR V2 reanalysis based on the same definition as pre-
sented in Sect. 2. As shown Fig. 14, over the past 130 years, 
the two indices reasonably co-varied. In addition to the 
decadal change around the mid-1980s, these two indices 
show a consistent decadal change over other periods. If the 
century-scale variation is removed using the linear detrend-
ing method, then the variation in the two indices is more 
consistent: the correlation coefficient increased from 0.77 
pre-detrending to 0.85 post-detrending.

As discussed in the Introduction, previous studies sug-
gested that the AO and global warming also contribute to the 
decadal change in the EAWM (Jhun and Lee 2004; Hori and 
Ueda 2006). However, these factors would only be impor-
tant to the last decadal change in the EAWM around the 

mid-1980s. As shown in Figs. 15 and 16, the AO and North-
ern Hemisphere warming indices only show a decadal vari-
ability that is consistent with the EAWM around the mid-
1980s. Over other periods, the relationship of the AO and 
global warming with the EAWM is weak. The correlation 
coefficients with the EAWM index are only 0.09 and 0.23 
for the AO and global warming indices, respectively. Thus, 
the North Pacific SST decadal pattern could be a major 
factor influencing the EAWM decadal variability. What is 
more, the EAWM decadal variability is very complicated. 
Some other boundary forcings (e.g., sea ice) might play a 
role in the EAWM decadal variability as well, which should 
be investigated in the future. 
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