Skip to main content

Advertisement

Log in

Ventricular volume and neurocognitive outcome after endoscopic third ventriculostomy: is shunting a better option? A review

  • Review Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Shunts are generally associated with a smaller post-treatment ventricular size in comparison to endoscopic third ventriculostomy (ETV).

Methods

To determine whether such a difference in ventricular size has neurocognitive implications, we reviewed the current literature pertaining to the (1) neurocognitive sequelae of hydrocephalus, (2) neurocognitive outcome after ETV, (3) extent of reversal of neurocognitive changes associated with hydrocephalus after shunting, and (4) data on correlation between post-treatment ventricular volume and neurocognitive outcome after ETV.

Results

Collectively, the results of the available studies should call into question the correlation between the residual postoperative ventricular volume and neurocognitive outcome.

Conclusion

The available literature is so far in support of ETV as a valid and effective treatment modality in hydrocephalic patients. No sufficient evidence is available to justify resorting to shunting on the premise that it is associated with a better neurocognitive outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buckley RT, Yuan W, Mangano FT, Phillips JM, Powell S, McKinstry RC, Rajagopal A, Jones BV, Holland S, Limbrick DD Jr (2012) Longitudinal comparison of diffusion tensor imaging parameters and neuropsychological measures following endoscopic third ventriculostomy for hydrocephalus. J Neurosurg Pediatr 9(6):630–635

  2. Kulkarni AV, Drake JM, Armstrong DC, Dirks PB (2000) Imaging correlates of successful endoscopic third ventriculostomy. J Neurosurg 92:915–919

    Article  CAS  PubMed  Google Scholar 

  3. Al-Jumaily MJB, Hayhurst C, Jenkinson MD, Murphey P, Buxton N, Mallucci C (2012) Long term neuropsychological outcome and management of decompensated longstanding overt ventriculomegaly in adults. Br J Neurosurg 26(5):717–721

    Article  PubMed  Google Scholar 

  4. Burtscher J, Twerdy K, Eisner W, Benke T (2003) Effect of endoscopic third ventriculostomy on neuropsychological outcome in late onset idiopathic aqueduct stenosis: a prospective study. J Neurol Neurosurg Psychiatry 74(2):222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hader WJ, Brooks BL, Partlo L, Hamilton M (2014) Neuropsychological outcome after endoscopic third ventriculostomy. Can J Neurol Sci 41(6):729–734

    Article  PubMed  Google Scholar 

  6. Lacy M, Oliveira M, Austria E, Frim MD (2009) Neurocognitive outcome after endoscopic third ventriculocisterostomy in patients with obstructive hydrocephalus. J Int Neuropsychol Soc 15(3):394–398

    Article  PubMed  Google Scholar 

  7. Takahashi Y (2006) Long-term outcome and neurologic development after endoscopic third ventriculostomy versus shunting during infancy. Childs Nerv Syst 22(12):1591–1602

    Article  PubMed  Google Scholar 

  8. Warf B, Ondoma S, Kulkarni A, Donnelly R, Ampeire M, Akona J, Kabachelor CR, Mulondo R, Nsubuga BK (2009) Neurocognitive outcome and ventricular volume in children with myelomeningocele treated for hydrocephalus in Uganda. J Neurosurg Pediatr 4(6):564–570

    Article  PubMed  Google Scholar 

  9. Warf BC (2005) Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg 103(6 Suppl):475–481

    PubMed  Google Scholar 

  10. Warf BC, Campbell JW (2008) Combined endoscopic third ventriculostomy and choroid plexus cauterization as primary treatment of hydrocephalus for infants with myelomeningocele: long-term results of a prospective intent-to-treat study in 115 East African infants. J Neurosurg Pediatr 2:310–316

    Article  PubMed  Google Scholar 

  11. Lun MP, Monuki ES, Lehtinen MK (2015) Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci 16(8):445–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dennis M, Rogers T, Hetherington R, Francis DJ (2002) Object-based and action-based visual perception in children with spina bifida and hydrocephalus. J Int Neuropsychol Soc 8(1):95–106

    Article  PubMed  Google Scholar 

  13. Mataro M, Poca MA, Sahuquillo J (2001) Neuropsychological findings in congenital acquired childhood hydrocephalus. Neuropsychol Rev 11(4):169–178

    Article  CAS  PubMed  Google Scholar 

  14. Dalen K, Bruarøy S, Wentzel-Larsen T, Laegreid LM (2008) Intelligence in children with hydrocephalus, aged 4–15 years: a population-based, controlled study. Neuropediatrics 39(3):146–150

    Article  CAS  PubMed  Google Scholar 

  15. Del Bigio M (1993) Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85(6):573–585

    Article  PubMed  Google Scholar 

  16. Donders J, Rourke BP, Canady AI (1991) Neuropsychological functioning of hydrocephalic children. J Clin Exp Neuropsychol 13(4):607–613

    Article  CAS  PubMed  Google Scholar 

  17. Lindquist B, Persson EK, Fernell E, Uvebrant P (2011) Very long-term follow-up of cognitive function in adults treated in infancy for hydrocephalus. Childs Nerv Syst 27(4):597–601

    Article  PubMed  Google Scholar 

  18. Castejun O (2010) Submicroscopic pathology of human and experimental hydrocephalic cerebral cortex. Folia Neuropathol 48(3):159–174

    Google Scholar 

  19. Del Bigio M (2010) Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 16(1):16–22

    Article  PubMed  Google Scholar 

  20. Shim I, Ha Y, Chung JY, Lee HJ, Yang KH, Chang JW (2003) Association of learning and memory impairments with changes in the septohippocampal cholinergic system in rats with kaolin-induced hydrocephalus. Neurosurgery 53:416–425

    Article  PubMed  Google Scholar 

  21. Vachha B, Adams RC, Rollins NK (2006) Limbic tract anomalies in pediatric myelomeningocele and Chiari II malformation: anatomic correlations with memory and learning—initial investigation. Radiology 240:194–202

    Article  PubMed  Google Scholar 

  22. Hannay HJ (2000) Functioning of the corpus callosum in children with early hydrocephalus. J Int Neuropsychol Soc 6:351–361

    Article  CAS  PubMed  Google Scholar 

  23. Iddon JL, Morgan DJ, Loveday C, Sahakian BJ, Pickard JD (2004) Neuropsychological profile of young adults with spina bifida with or without hydrocephalus. J Neurol Neurosurg Psychiatry 75(8):1112–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kulesz PA, Treble-Barna A, Williams VJ, Juranek J, Cirino PT, Dennis M, Fletcher JM (2015) Attention in spina bifida myelomeningocele: relations with brain volume and integrity. Neuroimage Clin. 8:72–78

    Article  PubMed  PubMed Central  Google Scholar 

  25. Treble-Barna A, Kulesz PA, Dennis M, Fletcher JM (2014) Covert orienting in three etiologies of congenital hydrocephalus: the effect of midbrain and posterior fossa dysmorphology. J Int Neuropsychol Soc 20(3):268–277

    Article  PubMed  Google Scholar 

  26. Dennis M, Barnes MA (2010) The cognitive phenotype of spina bifida meningomyelocele. Dev Disabil Res Rev 16(1):31–39

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dennis M, Edelstein K, Copeland K, Frederick J, Francis DJ, Hetherington R, Blaser SE, Kramer LA, Drake JM, Brandt ME, Fletcher JM (2005) Covert orienting to exogenous and endogenous cues in children with spina bifida. Neuropsychologia 43(6):976–987

    Article  PubMed  Google Scholar 

  28. Colvin AN, Yeates KO, Enrile BG, Coury DL (2003) Motor adaptation in children with myelomeningocele: comparison to children with ADHD and healthy siblings. J Int Neuropsychol Soc 9(4):642–652

    Article  PubMed  Google Scholar 

  29. Ou X, Snow JH, Byerley AK, Hall JJ, Glasier CM (2013) Decreased activation and increased lateralization in brain functioning for selective attention and response inhibition in adolescents with spina bifida. Child Neuropsychol 19(1):23–36

    Article  PubMed  Google Scholar 

  30. Aoyama Y, Kinoshita Y, Yokota A, Hamada T (2006) Neuronal damage in hydrocephalus and its restoration by shunt insertion in experimental hydrocephalus: a study involving the neurofilament-immunostaining method. J Neurosurg 104(5 Suppl):332–339

    PubMed  Google Scholar 

  31. Miyazawa Y, Sato K (1991) Learning disability and impairment of synaptogenesis in HTx-rats with arrested shunt-dependent hydrocephalus. Childs Nerv Syst 7:121–128

    Article  CAS  PubMed  Google Scholar 

  32. Tashiro Y, Drake JM (1998) Reversibility of functionally injured neurotransmitter systems with shunt placement in hydrocephalic rats: implications for intellectual impairment in hydrocephalus. J Neurosurg 88:709–717

    Article  CAS  PubMed  Google Scholar 

  33. Kulkarni AV, Donnelly R, Mabbott DJ, Widjaja E (2015) Relationship between ventricular size, white matter injury, and neurocognition in children with stable, treated hydrocephalus. J Neurosurg Pediatr 16(3):267–274

    Article  PubMed  Google Scholar 

  34. Hasan KM, Sankar A, Halphen C, Kramer LA, Ewing-Cobbs L, Dennis M, Fletcher JM (2008) Quantitative diffusion tensor imaging and intellectual outcomes in spina bifida: laboratory investigation. J Neurosurg Pediatr 2(1):75–82

    Article  PubMed  PubMed Central  Google Scholar 

  35. Williams VJ, Juranek J, Stuebing K, Cirino PT, Dennis M, Fletcher JM (2013) Examination of frontal and parietal tectocortical attention pathways in spina bifida meningomyelocele using probabilistic diffusion tractography. Brain Connect 3(5):512–522

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mandell JG, Neuberger T, Drapaca CS, Webb AG, Schiff SJ (2010) The dynamics of brain and cerebrospinal fluid growth in normal versus hydrocephalic mice. J Neurosurg Pediatr 6(1):1–10

    Article  PubMed  Google Scholar 

  37. Mandell JG, Kulkarni AV, Warf BC, Schiff SJ (2015) Volumetric brain analysis in neurosurgery: part 2. Brain and CSF volumes discriminate neurocognitive outcomes in hydrocephalus. J Neurosurg Pediatr 15(2):125–132

    Article  PubMed  Google Scholar 

  38. Hanlo PW, Gooskens RJ, van Schooneveld M, Tulleken CA, van der Knaap MS, Faber JA, Willemse J (1997) The effect of intracranial pressure on myelination and the relationship with neurodevelopment in infantile hydrocephalus. Dev Med Child Neurol 39(5):286–291

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waleed A. Azab.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azab, W.A., Mijalcic, R.M., Nakhi, S.B. et al. Ventricular volume and neurocognitive outcome after endoscopic third ventriculostomy: is shunting a better option? A review. Childs Nerv Syst 32, 775–780 (2016). https://doi.org/10.1007/s00381-016-3032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-016-3032-3

Keywords

Navigation