Skip to main content
Log in

The collateral circulation in pediatric moyamoya disease

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

The descriptions of collateral circulation in moyamoya have so far been a mixture of topography-based and vessels’ source-based analyses. We aimed to investigate the anatomy and systematize the vascular anastomotic networks in pediatric moyamoya disease.

Methods

From a series of 25 consecutive complete angiographic studies of newly diagnosed children with moyamoya, 14 children had moyamoya disease and 11 were diagnosed with moyamoya syndrome, i.e., moyamoya angiopathy with some additional concomitant systemic disease. We retrospectively analyzed the arterial branches supplying the moyamoya anastomotic networks, their origin, course, location, and connections with the recipient vessels.

Results

We describe four types of anastomotic networks in children with moyamoya disease, two superficial-meningeal and two deep-parenchymal. As superficial-meningeal, we defined the leptomeningeal and the durocortical networks. Apart from the previously described leptomeningeal network observed in the convexial watershed zones, we report on the basal temporo-orbitofrontal leptomeningeal network. The second superficial-meningeal network is the durocortical network, which can be basal or calvarian in location. We define as deep-parenchymal networks the nonpreviously described subependymal network and the inner striatal and inner thalamic networks. The subependymal network is fed by the intraventricular branches of the choroidal system and diencephalic perforators, which at the level of the periventricular subependymal zone, anastomose with medullary—cortical arteries as well as with striatal arteries. The inner striatal and thalamic networks are constituted by intrastriatal connections among striatal arteries and intrathalamic connections among thalamic arteries when the disease compromises the origin of one or more sources of their supply.

Conclusion

The previously inexplicitly described “moyamoya abnormal network” in pediatric moyamoya disease can be described as a composition of four anastomotic networks with distinct angioarchitecture. A better understanding of the collateralization in moyamoya may help in defining a new staging system of the disease with clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Suzuki J, Kodama N (1983) Moyamoya disease—a review. Stroke J Cereb Circ 14(1):104–109

    Article  CAS  Google Scholar 

  2. Takanashi J (2011) Moyamoya disease in children. Brain Dev 33(3):229–234. doi:10.1016/j.braindev.2010.09.003

    Article  PubMed  Google Scholar 

  3. Takebayashi S, Matsuo K, Kaneko M (1984) Ultrastructural studies of cerebral arteries and collateral vessels in moyamoya disease. Stroke J Cereb Circ 15(4):728–732

    Article  CAS  Google Scholar 

  4. Scott RM, Smith JL, Robertson RL, Madsen JR, Soriano SG, Rockoff MA (2004) Long-term outcome in children with moyamoya syndrome after cranial revascularization by pial synangiosis. J Neurosurg 100(2 Suppl Pediatrics):142–149. doi:10.3171/ped.2004.100.2.0142

    PubMed  Google Scholar 

  5. Smith ER (2012) Moyamoya arteriopathy. Curr Treat Options Neurol 14(6):549–556. doi:10.1007/s11940-012-0195-4

    Article  PubMed  Google Scholar 

  6. Currie S, Raghavan A, Batty R, Connolly DJ, Griffiths PD (2011) Childhood moyamoya disease and moyamoya syndrome: a pictorial review. Pediatr Neurol 44(6):401–413. doi:10.1016/j.pediatrneurol.2011.02.007

    Article  PubMed  Google Scholar 

  7. Kassner A, Zhu XP, Li KL, Jackson A (2003) Neoangiogenesis in association with moyamoya syndrome shown by estimation of relative recirculation based on dynamic contrast-enhanced MR images. AJNR Am J Neuroradiol 24(5):810–818

    PubMed  Google Scholar 

  8. Matsushima Y, Inaba Y (1986) The specificity of the collaterals to the brain through the study and surgical treatment of moyamoya disease. Stroke J Cereb Circ 17(1):117–122

    Article  CAS  Google Scholar 

  9. Baltsavias GVA, Filipce V, Khan N (2014) Selective and superselective angiography of pediatric Moyamoya disease angioarchitecture; anterior circulation. Interv Neuroradiol 20(4):391–402. doi:10.15274/NRJ-2014-10050

    PubMed  Google Scholar 

  10. Baltsavias G, Khan N, Filipce V, Valavanis A (2014) Selective and superselective angiography of pediatric moyamoya disease angioarchitecture in the posterior circulation. Interv Neuroradiol. doi:10.15274/INR-2014-10041

    Google Scholar 

  11. Lasjaunias P, Berenstein A, Ter Brugge KG (2001) Surgical neuroangiography, vol 1. 2nd edn. Springer

  12. Baker HJ (1972) The angiographic delineation of sellar and parasellar masses. Radiology 104:67–78

    Article  PubMed  Google Scholar 

  13. Marinković SV, Milisavljević MM, Marinković ZD (1989) Microanatomy and possible clinical significance of anastomoses among hypothalamic arteries. Stroke J Cereb Circ 20(10):1341–1352

    Article  Google Scholar 

  14. Hunter J (1837) The works of John Hunter FRS, with notes, vol III. London

  15. Shellshear J (1920) The basal arteries of the forebrain and their functional significance. J Anat 55(Pt 1):27–35

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Van den Bergh R (1969) Centrifugal elements in the vascular pattern of the deep intracerebral blood supply. Angiology 20(2):88–94

    Article  PubMed  Google Scholar 

  17. Plets C, De Reuck J, Vander Eecken H, Van den Bergh R (1970) The vascularization of the human thalamus. Acta Neurol Belg 70(6):687–770

    CAS  PubMed  Google Scholar 

  18. De Reuck J (1971) The human periventricular arterial blood supply and the anatomy of cerebral infarctions. Eur Neurol 5(6):321–334

    Article  PubMed  Google Scholar 

  19. Handa J, Handa H (1972) Progressive cerebral arterial occlusive disease: analysis of 27 cases. Neuroradiology 3:119–133

    Article  CAS  PubMed  Google Scholar 

  20. Kaplan HA, Ford DH (1966) The brain vascular system. Elsevier, Amsterdam

    Google Scholar 

  21. Yamamoto T, Kagami T, Tamagiwa A, Kawarada Y (1966) Physiologic aspects of vascular network at brain base of newborn and its correlation with cerebral juxtabasal telangiectasia. Nippon Acta Neuroradiologica 7:12–15

    Google Scholar 

  22. Kuban KCGF (1985) Human telencephalic angiogenesis. Ann Neurol 17(6):539–548

    Article  CAS  PubMed  Google Scholar 

  23. Gilles F (2001) Telencephalic angiogenesis: a review. Dev Med Child Neurol Suppl 86:3–5

    CAS  PubMed  Google Scholar 

  24. Moody DMBM, Challa VR (1990) Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study. AJNR Am J Neuroradiol 11(3):431–439

    CAS  PubMed  Google Scholar 

  25. Nelson MD Jr, G-GI GFH (1991) Dyke Award. The search for human telencephalic ventriculofugal arteries. AJNR Am J Neuroradiol 12(2):215–222

    PubMed  Google Scholar 

  26. Mayer PLKE (1991) The controversy of the periventricular white matter circulation: a review of the anatomic literature. AJNR Am J Neuroradiol 12(2):223–228

    CAS  PubMed  Google Scholar 

  27. Van den Bergh R (1992) The ventriculofugal arteries. AJNR Am J Neuroradiol 13(1):413–415

    PubMed  Google Scholar 

  28. Nakamura YOT, Hashimoto T (1994) Vascular architecture in white matter of neonates: its relationship to periventricular leukomalacia. J Neuropathol Exp Neurol 53(6):582–589

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi S (2010) Neurovascular imaging. Springer, London

    Google Scholar 

  30. Saito R KT, Sonoda Y, Kanamori M, Mugikura S, Takahashi S, Tominaga T. (2013) Infarction of the lateral posterior choroidal artery territory after manipulation of the choroid plexus at the atrium: causal association with subependymal artery injury. J Neurosurg 29

  31. Marinković S, Gibo H, Filipović B, Dulejić V, Piscević I (2005) Microanatomy of the subependymal arteries of the lateral ventricle. Surg Neurol 63(5):451–458

    Article  PubMed  Google Scholar 

  32. Yakovlev P (1968) Telencephalon “impar”, “semipar” and “totopar”. (Morphogenetic, tectogenetic and architectonic definitions). Int J Neurol 6(3–4):245–265

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerasimos Baltsavias.

Additional information

No Institutional Review Board vote for this retrospective study was necessary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltsavias, G., Khan, N. & Valavanis, A. The collateral circulation in pediatric moyamoya disease. Childs Nerv Syst 31, 389–398 (2015). https://doi.org/10.1007/s00381-014-2582-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-014-2582-5

Keywords

Navigation