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Abstract
We consider the problem of extending and avoiding partial edge colorings of

hypercubes; that is, given a partial edge coloring u of the d-dimensional hypercube

Qd, we are interested in whether there is a proper d-edge coloring of Qd that agrees
with the coloring u on every edge that is colored under u; or, similarly, if there is a

proper d-edge coloring that disagrees with u on every edge that is colored under u.
In particular, we prove that for any d� 1, if u is a partial d-edge coloring of Qd,

then u is avoidable if every color appears on at most d/8 edges and the coloring

satisfies a relatively mild structural condition, or u is proper and every color appears

on at most d � 2 edges. We also show that u is avoidable if d is divisible by 3 and

every color class of u is an induced matching. Moreover, for all 1� k� d, we
characterize for which configurations consisting of a partial coloring u of d � k
edges and a partial coloring w of k edges, there is an extension of u that avoids w.
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1 Introduction

An edge precoloring (or partial edge coloring) of a graph G is a proper edge

coloring of some subset E0 � EðGÞ; a t-edge precoloring is such a coloring with t
colors. A t-edge precoloring u is extendable if there is a proper t-edge coloring f
such that f ðeÞ ¼ uðeÞ for any edge e that is colored under u; f is called an extension
of u.

Related to the notion of extending a precoloring is the idea of avoiding a

precoloring: if u is a t-edge precoloring of a graph G, then a proper t-edge coloring f
of G avoids u if f ðeÞ 6¼ uðeÞ for every edge e that is colored under u. More

generally, if L is a list assignment for the edges of a graph G, then a proper edge

coloring u of G avoids the list assignment L if uðeÞ 62 LðeÞ for every edge e of G.
In general, the problem of extending a given edge precoloring is an NP-

complete problem, already for 3-regular bipartite graphs [11, 14]. One of the earlier

references explicitly discussing the problem of extending a partial edge coloring is

[23]; there a necessary condition for the existence of an extension is given and the

authors find a class of graphs where this condition is also sufficient. More recently,

questions on extending and avoiding a precolored matching have been studied in

[12, 16]. In particular, in [12] it is proved that if G is subcubic or bipartite and u is

an edge precoloring of a matching M in G using DðGÞ þ 1 colors, then u can be

extended to a proper ðDðGÞ þ 1Þ-edge coloring of G, where DðGÞ as usual denotes
the maximum degree of G; a similar result on avoiding a precolored matching of a

general graph is obtained as well. Moreover, in [16] it is proved that if u is a

ðDðGÞ þ 1Þ-edge precoloring of a distance-9 matching in any graph G, then u can

be extended to a proper ðDðGÞ?1)-edge coloring of G; here, by a distance-k
matching we mean a matching M where the distance between any two edges in M is

at least k, and the distance between two edges e and e0 is the number of edges

contained in a shortest path between an endpoint of e and an endpoint of e0. A
distance-2 matching is usually called an induced matching.

Questions on extending and avoiding partial edge colorings have specifically

been studied to a large extent for balanced complete bipartite graphs. In the

literature these type of problems and results are usually formulated in terms of

completing partial Latin squares and avoiding arrays, respectively. In this form,

these type of questions go back to the famous Evans conjecture [13] which states

that for every positive integer n, if n� 1 edges in the complete bipartite graph Kn;n

have been (properly) colored, then this partial coloring can be extended to a proper

n-edge coloring of Kn;n. This conjecture was solved for large n by Häggkvist [18]

and later for all n by Smetaniuk [24], and independently by Andersen and Hilton [1].

The problem of avoiding partial edge colorings (and list assignments) of

complete bipartite graphs was introduced by Häggkvist [17] and has been further

studied in e.g. [2, 4, 5]. In particular, by results of [9, 10, 25], any partial proper n-
edge coloring of Kn;n is avoidable, given that n� 4. Moreover, a conjecture first

stated by Markström suggests that if u is a partial n-edge coloring of Kn;n where any

color appears on at most n� 2 edges, then u is avoidable (see e.g. [5]). In [5],

several partial results towards this conjecture are obtained; in particular, it is proved
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that the conjecture holds if each color appears on at most n/5 edges, or if the graph is
colored by altogether at most n/2 colors.

Combining the notions of extending a precoloring and avoiding a list assignment,

Andren et al. [3] proved that a ‘‘sparse’’ partial edge coloring of Kn;n can be

extended to a proper n-edge coloring avoiding a given list assignment L satisfying

certain ‘‘sparsity’’ conditions, provided that no edge e is precolored by a color that

appears in L(e); we refer to [3] for the exact definition of ‘‘sparse’’ in this context.

An analogous result for complete graphs was recently obtained in [8].

The study of problems on extending and avoiding partial edge colorings of

hypercubes was recently initiated in the papers [6, 7]. In [6] Casselgren et al.

obtained several analogues for hypercubes of classic results on completing partial

Latin squares, such as the famous Evans conjecture. Moreover, questions on

extending a ‘‘sparse’’ precoloring of a hypercube subject to the condition that the

extension should avoid a given ‘‘sparse’’ list assignment were investigated in [7].

In this paper we continue the work on extending and avoiding partial edge

colorings of hypercubes, with a particular focus on the latter variant. We obtain a

number of results towards an analogue for hypercubes of Markström’s aforemen-

tioned conjecture for complete bipartite graphs (see Conjecture 3.1), and also prove

several related results; in particular, we prove the following.

• For any d� 1, if u is a partial d-edge coloring of Qd where every color appears

on at most d/8 edges, and u satisfies a structural condition (described in

Theorem 3.6 below), then u is avoidable.

• For any d� 1, if u is a partial proper d-edge coloring of Qd where every color

appears on at most d � 2 edges, then u is avoidable.

• If d ¼ 3k and every color class of a partial d-edge coloring u of Qd is an induced

matching, then u is avoidable; we conjecture that this holds for any d� 1.

• For any d� 1 and any 1� k� d, we characterize for which configurations

consisting of a partial coloring u of d � k edges and a partial coloring w of k
edges, there is an extension of u that avoids w.

2 Preliminaries

In this paper, all (partial) d-edge colorings use colors 1; . . .; d unless otherwise

stated. If u is an edge precoloring of G and an edge e is colored under u, then we

say that e is u-colored.
If u is a (partial) proper t-edge coloring of G and 1� a; b� t, then a path or cycle

in G is called (a, b)-colored under u if its edges are colored by colors a and b
alternately. We also say that such a path or cycle is bicolored under u. By switching
colors a and b on a maximal (a, b)-colored path or an (a, b)-colored cycle, we

obtain another proper t-edge coloring of G; this operation is called an interchange.

We denote by u�1ðiÞ the set of edges colored i under u.
In the above definitions, we often leave out the reference to an explicit coloring

u, if the coloring is clear from the context.
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Havel and Morávek [20] (see also [19]) proved a criterion for a graph G to be a

subgraph of a hypercube:

Proposition 2.1 A graph G is a subgraph of Qd if and only if there is a proper d-
edge coloring of G with integers f1; . . .; dg such that

(i) in every path of G there is some color that appears an odd number of times;

(ii) in every cycle of G no color appears an odd number of times.

A dimensional matching M of Qd is a perfect matching of Qd such that Qd �M is

isomorphic to two copies of Qd�1; evidently there are precisely d dimensional

matchings in Qd. We state this as a lemma.

Lemma 2.2 Let d� 2 be an integer. Then there are d different dimensional
matchings in Qd; indeed Qd decomposes into d such perfect matchings.

The proper d-edge coloring of Qd obtained by coloring the ith dimensional

matching of Qd by color i, i ¼ 1; . . .; d, we shall refer to as the standard edge
coloring of Qd.

As pointed out in [6], the colors in the proper edge coloring in Proposition 2.1

correspond to dimensional matchings in Qd (see also [19]). In particular,

Proposition 2.1 holds if we take the dimensional matchings as the color classes.

Furthermore we have the following.

Lemma 2.3 The subgraph induced by r dimensional matchings in Qd is isomorphic
to a disjoint union of r-dimensional hypercubes.

This simple observation shall be used quite frequently below. In particular, for

future reference, we state the following consequence of Lemma 2.3.

Lemma 2.4 In the standard d-edge coloring, every edge of Qd is in exactly d � 1

2-colored 4-cycles.

We shall also need some standard definitions on list edge coloring. Given a graph

G, assign to each edge e of G a set LðeÞ of colors.
If all lists have equal size k, then L is called a k-list assignment. Usually, we seek

a proper edge coloring u of G, such that uðeÞ 2 LðeÞ for all e 2 EðGÞ. If such a

coloring u exists, then G is L-colorable and u is called an L-coloring. Denote by

v0LðGÞ the minimum integer t such that G is L-colorable whenever L is a t-list
assignment.

A fundamental result in list edge coloring theory is the following theorem by

Galvin [15]. As usual, v0ðGÞ denotes the chromatic index of a multigraph G.

Theorem 2.5 For any bipartite multigraph G, v0LðGÞ ¼ v0ðGÞ.
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3 Avoiding General Partial Edge Colorings

Most of the results in this paper are partial results towards the following general

conjecture for hypercubes. This is a variant of a conjecture for Kn;n first suggested

by Markström based on unavoidable n-edge colorings of Kn;n (see e.g. [5, 22]).

Conjecture 3.1 For any d� 1, if u is a partial d-edge coloring of Qd where every
color appears on at most d � 2 edges, then u is avoidable.

Conjecture 3.1 is best possible: consider the partial coloring of Qd obtained by

coloring d � 1 edges incident with a vertex u by the color 1, and coloring d � 1

edges incident with another vertex v by the color 2. This partial coloring is

unavoidable if uv 2 EðQdÞ and it is uncolored.

Note further that such a statement as in Conjecture 3.1 does not hold for general

d-regular (bipartite) graphs. Indeed, we have the following:

Proposition 3.2 For any d� 1, there is a d-regular bipartite graph G and a partial
proper d-edge coloring with exactly d colored edges that is not avoidable.

Proof The case when d ¼ 1 is trivial, so assume that d� 2. Let G1; . . .;Gd be d
copies of the graph Kd;d � e, that is, the complete bipartite graph Kd;d with an

arbitrary edge e removed. Denote by aibi the edge that was removed from Kd;d to

form the graph Gi. From G1; . . .;Gd, we construct the d-regular bipartite graph G by

adding the edges a1b2; a2b3; . . .; ad�1bd; adb1.
We define a partial d-edge coloring u of G by coloring aibiþ1 by the color i,

i ¼ 1; . . .; d (where indices are taken modulo d). Now, it is straightforward that any

proper d-edge coloring of G uses the same color on all the edges in the set

fa1b2; a2b3; . . .; ad�1bd; adb1g; therefore, u is not avoidable. h

On the other hand, a partial coloring of at most d � 1 edges of a d-edge-colorable
graph is always avoidable:

Proposition 3.3 Let k 2 f1; . . .; dg and let G be a d-edge-colorable graph. If G is
precolored with at most k colors and every color appears on at most d � k edges,
then there is a proper d-edge coloring of G that avoids the preassigned colors.

This is a reformulation for general graphs of a theorem in [5] for complete

bipartite graphs; the proof is identical to the argument given there; thus, we omit it.

Note further that Proposition 3.3 does not set any restrictions on where colors

may appear, so several colors may be assigned to the same edge. Thus, it has a

natural interpretation as a statement on list edge coloring.

By the example preceding Proposition 3.3, it is in general sharp; however, by

requiring that the colored edges satisfy some structural condition, we can prove that

other configurations are avoidable as well.

Proposition 3.4 Let G be a d-edge colorable graph. If u is a partial d-edge
coloring of G, and there is a set K of k vertices such that every precolored edge is
incident to some vertex from K, and every color appears on at most d � k edges,
then u is avoidable.
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The proof of this proposition is similar to the proof of the previous one. The only

essential difference is that instead of using the fact that the precoloring uses at most

k colors, one employs the property that every matching in a decomposition obtained

from a proper k-edge coloring of G contains edges with at most k distinct colors

from u; we omit the details.

Next, we prove the following weaker version of Conjecture 3.1. Following [7],

we say that two edges in a hypercube are parallel if they are non-adjacent and

contained in a common 4-cycle.

We shall use the following simple lemma.

Lemma 3.5 If u is a partial d-edge coloring of Qd, d� 3, where every color
appears on at most one edge, then u is avoidable.

Proof Let f be the proper d-edge coloring of Qd obtained by assigning color i to the

ith dimensional matching of Qd, that is, f is the standard edge coloring of Qd.

Consider the bipartite graph B(f), with vertices for the colors f1; . . .; dg and for

the color classes f�1ðiÞ of f, and where there is an edge between f�1ðiÞ and j if there
is no edge colored i under f that is colored j under u. If there is no set violating

Hall’s condition for a matching in a bipartite graph, then B(f) has a perfect

matching, and by assigning colors to the color classes of f according to this perfect

matching, we obtain a proper d-edge coloring of Qd that avoids u.
Now, if there is such a set violating Hall’s condition, then one of the color classes

of f contains all u-colored edges, because every color used by u appears on just one

edge. Without loss of generality, assume that M1 is such a color class and consider

the subgraph H ¼ Qd½M1 [M2�, where M2 is another arbitrarily chosen color class

of f. By Lemma 2.3, H consists of a collection of bicolored 4-cycles. By

interchanging colors on such a bicolored cycle that contains at least one u-colored
edge, we obtain a proper edge coloring f 0 of Qd such that the bipartite graph Bðf 0Þ,
defined as above, contains a perfect matching. Thus there is a proper d-edge
coloring that avoids u. h

Theorem 3.6 Let d� 1, and let u be a partial d-edge coloring of Qd. Assume a(d)

and b(d) are functions satisfying that 11
208

d2 � 2bðdÞ aðdÞ � 7d
8

� �
� 0 and

aðdÞ� bðdÞ.
(i) If every color appears on at most d/8 edges, for every edge in Qd there are at

most b(d) other parallel u-colored edges, and every dimensional matching
in Qd contains at most a(d) u-precolored edges, then u is avoidable.

(ii) For every constant C1 � 1, there is a positive constant C2, such that if every
dimensional matching contains at most C1d u-colored edges and every

color appears on at most d
C2

edges under u, then u is avoidable.

Before proving Theorem 3.6, allow us to comment on the possible values of a(d)
and b(d) for which the inequality in the theorem holds. If we choose b(d) to be as

large as possible, that is, aðdÞ ¼ bðdÞ, then it suffices to require that aðdÞ ¼
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bðdÞ� 11
416

þ 49
96

� �1=2þ 7
16

� �
d � 1:17d for part (i) of the theorem to hold. On the other

hand, if b(d) is a ‘‘sufficiently small’’ linear function of d, then we can pick a(d) to
be an arbitrarily large linear function of d.

Proof of Theorem 3.6 We first prove part (i) of the theorem. Let f be the standard

edge coloring of Qd. Similarly to the proof of the preceding lemma, our goal is to

transform f into a coloring f 0 where every color class contains edges of at most 7
8
d

distinct colors under u. Consider a bipartite graph B with vertices for the colors

f1; . . .; dg and for the color classes f 0�1ðiÞ of f 0, and where there is an edge between

f 0�1ðiÞ and j if there is no edge colored i under f 0 that is colored j under u. The
condition that every color class in f 0 contains edges of at most 7

8
d distinct colors

under u implies that every vertex f�1ðiÞ has degree at least d/8 in B. Thus, any

subset S � ff�1ð1Þ; . . .; f�1ðdÞg that violates Hall’s condition in B has size at least

d=8þ 1. However, since every color appears on at most d/8 edges under u, every
color in f1; . . .; dg has degree at least 7d/8 in B. Consequently, NBðSÞ ¼ f1; . . .; dg,
and so, S cannot violate Hall’s condition. Hence, B has a perfect matching, and by

coloring the color classes of f 0 according to the perfect matching, we obtain a proper

d-edge coloring of Qd that avoids u.
We shall use interchanges on 2-colored 4-cycles for transforming the coloring f

into a required coloring f 0. More precisely, we shall use the following method.

Suppose that there is some color class of f that contains at least 7
8
d þ 1 edges that are

colored under u; let M1 ¼ f�1ð1Þ be such a color class. We call such a color class

heavy; a color class that contains at most 7
8
d � 2 edges that are colored under u is

called a light color class.

Since there are at most 1
8
d2 edges in Qd that are colored under u, there must be

some light color class of f; without loss of generality assume that M2 ¼ f�1ð2Þ is
such a color class. By Lemma 2.3, the subgraph Qd½M1 [M2� of Qd induced by M1

andM2 is a collection of bicolored 4-cycles. Now, sinceM1 is heavy andM2 is light,

there is a 4-cycle C in Qd½M1 [M2� such that by interchanging colors on C, we

obtain a coloring f1 where the color class f
�1
1 ð1Þ contains at least one less edge that

is colored under u and f�1
1 ð2Þ contains at least one more edge that is colored under

u (but no more than two such additional edges).

We shall apply this procedure iteratively and repeatedly select previously unused

edges of a light color class that are not colored under u (where unused means that

the edges have not been involved in any interchanges performed by the algorithm

before), together with previously unused edges from a heavy color class, at least one

of which is colored under u, which together form a bicolored 4-cycle, and then

interchange colors on this 4-cycle. Thus we shall construct a sequence of colorings

f1; . . .; fq, where fiþ1 is obtained from fi by interchanging colors on a bicolored 4-

cycle, and fq is the required coloring f 0 where every color class contains at most 7d
8

u-colored edges. Note that since Qd contains at most d2=8 u-colored edges,

q� d2=8.
We now give a brief counting argument which shows that as long as there is a

heavy color class, there is a 4-cycle in the current coloring fi so that after
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interchanging colors on this 4-cycle, the obtained coloring fiþ1 contains fewer or

equally many heavy color classes, but in the latter case one heavy color class

contains fewer u-colored edges.

Suppose that Qd initially contains k heavy color classes under the coloring f,
where k\d, and that exactly a u-colored edges are not contained in the heavy k

color classes in Qd, where a\d2=8. Consider a color class M that is heavy under fi.

Suppose that M (initially) contains b u-colored edges, where b� d2=8. By

Lemma 2.4, every edge in Qd is contained in d � 1 2-colored 4-cycles under f, so
initially there are at least

ðd � kÞ
2

b� a

4-cycles containing edges from M that may be used by the algorithm, because every

u-colored edge of a heavy color class is contained in ðd � kÞ 4-cycles, where two

edges are in a light color class, and up to a such cycles are unavailable since they

contain a u-colored edge of a light color class.

Now, after performing some steps of this algorithm we might have used edges

from some of these cycles. Let us estimate how many of these cycles that are

unavailable due to this. Suppose that the algorithm has used

• s 4-cycles C with two edges from M, such that both edges from M in C are u-
colored, and

• r 4-cycles C with two edges from M, such that one edge from M in C is u-
colored.

Firstly, Qd contains at most d2=8� a u-precolored edges that initially do not lie in

light color classes, every interchange on a 4-cycle involves two edges from a light

color class and a u-precolored edges are intially in light color classes. Hence we

might be unable to use 4-cycles with edges from at most

2 d2

8
� a

� �
þ a

7d
8
� 1

� 4d

13

of the d � k initially light color classes, because such a color class contains at least
7d
8
� 1 u-colored edges after performing some steps of the algorithm, where the

inequality follows from the fact that by Lemma 3.5, we may assume that d� 16.

Furthermore, since every 4-cycle that has been used by the algorithm contains

two edges from a light color class, at most

2
d2

8
� a� 7

8
dk

� �

4-cycles C are unavailable because C contains an edge from a light color class that

was used previously in another 4-cycle. Similarly, for every edge from M, there are

at most b(d) parallel edges that are u-colored, so at most
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2bðdÞðsþ rÞ

4-cycles C are unavailable because it contains an edge from M that was used

previously in another 4-cycle by the algorithm.

Consequently, there are at least

d � k � 4d
13

� �

2
ðb� 2s� rÞ � a� 2

d2

8
� a� 7

8
dk

� �
� 2bðdÞðsþ rÞ

4-cycles containing two previously unused edges fromM, at least one of which is u-
colored, and two previously unused edges from a light color class. So if this quantity

is greater than 1, then we can perform all the necessary steps in the algorithm and

thus the required coloring f 0 exists.

Now, since M is a heavy color class, b� 7d
8
, and by definition b� aðdÞ. More-

over, since each color class may contain up to 7d
8
u-colored edges when the algo-

rithm terminates, we have that 2sþ r� b� 7d
8
. Thus

d � k � 4d
13

� �

2
ðb� 2s� rÞ � a� 2

d2

8
� a� 7

8
dk

� �
� 2bðdÞðsþ rÞ� 1 ð1Þ

holds if

11d2

208
� k

7d

16
þ aþ 7

4
dk � 2bðdÞ aðdÞ � 7d

8

� �
� 1 ð2Þ

Now, by assumption, 11
208

d2 � 2bðdÞ aðdÞ � 7d
8

� �
� 0, so (1) does indeed hold.

Let us now prove part (ii). The proof of this part is similar to the proof of part (i).

We shall prove that we can perform all the necessary steps in the algorithm

described above, and choose each 4-cycle C that is used by the algorithm in such a

way that for each of the edges of C that belongs to a heavy color class, there are at

most d
38C1

parallel unused edges that are u-colored. Since we will have that

1=C2 � 1=8, part (ii) of the theorem then holds if (1) is valid under the assumptions

that aðdÞ ¼ C1d and bðdÞ ¼ d
38C1

. Since 11
208

[ 1
19
, this, in turn, follows from the fact

that (2) holds, given that aðdÞ ¼ C1d and bðdÞ ¼ d
38C1

.

Our task is thus to prove that in each step of the algorithm, we can select a 4-

cycle so that each of the edges from the heavy color class is parallel with at most
d

38C1
unused u-colored edges. As we shall see, it shall be sufficient to require that

C2 � 6� 100C1 [ 0 and that d is large enough, d� d0 say, for this to hold. Since

we can pick C2 to be smaller than 1=d0, and the proof will contain a finite number

inequalities involving d and C2, this suffices for proving part (ii) of the theorem.

So suppose that some steps of the algorithm have been performed and we have

selected so far some 4-cycles satisfying this condition. Then, since (1) holds, there is

some 4-cycle C ¼ uvxyu that is edge-disjoint from all previously considered 4-

cycles and such that uv and xy are edges from some heavy color class, at least one of

which is u-colored, and the edges vx and yu are not u-colored and lie in a color

class that is light under the current coloring fi. Suppose that one of the edges uv and
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xy, uv say, is parallel with at least d
38C1

unused u-colored edges. Denote by M1 the

dimensional matching containing uv and consider the set E0 � M1 of all these u-
colored edges that are parallel to uv. Now, at most 76C2

1 of the edges in E0 are

parallel with at least d
38C1

u-colored edges, because any edge (except uv) that is

parallel with an edge from E0 is parallel with at most one other edge from E0,
1
2

d
38C1

76C2
1 ¼ C1d, and M1 contains altogether at most C1d u-colored edges.

Let E00 � E0 be the set of edges that are parallel with uv and which are parallel

with at most d
38C1

u-colored edges. Then

jE00j � d

38C1

� 76C2
1 �

d

50C1

;

if d is large enough.

Let C be a largest set of 4-cycles C with usable edges that contains exactly one

edge from E00 and two edges from a light color class, and which satisfies that any

two cycles in C containing different edges from E00 are disjoint.

Let us estimate the size of C. Now, since Qd contains altogether d
2=C2 u-colored

edges, certainly at most 2d=C2 color classes of fi are initially heavy before applying

the algorithm. Moreover, at most 4d=C2 color classes of fi that are initially light

might lose the property of being light after performing some steps of the algorithm.

Moreover, since every cycle used by the algorithm at a previous step intersect at

most one edge from E0, at most d2=C2 cycles containing exactly one edge from E00

are unavailable because they contain an edge that was used previously by the

algorithm. In conlusion, we have that

jCj � 1

2

d

50C1

d
C2 � 6

C2

� d2

C2

¼ d2
C2 � 6� 100C1

100C1C2

;

where the first factor 1/2 in the denominator accounts for the fact that the cycles in C
should be disjoint if they contain different edges from E00.

Now, by definition, all the edges of E00 that are in cycles in C are parallel with at

most d
38C1

unused u-colored edges. We shall prove that this holds for both edges of

M1 in at least one of the cycles of C.
Consider a cycle C ¼ abcda 2 C, where ab 2 E00, cd 2 M1 n E00, the edges ua and

bv are contained in the dimensional matching Mi, and the edges bc and ad are

contained in the dimensional matching Mj. Now, if cd is parallel with at least d
38C1

unused u-precolored edges, then there are at least d
38C1

� 2 such edges c0d0 2 M1,

where cc0 2 EðQdÞ and dd0 2 EðQdÞ, such that cc0; dd0 62 Mi. Suppose, for instance,

cc0; dd0 2 Mk, where k 6¼ i. Then, since i 6¼ k, and there are six permutations of the

matchings Mi;Mj;Mk, it follows from Proposition 2.1 (ii) (where we take the

dimensional matchings as colors), that there are at most 5 other cycles from C that

contain an edge which is parallel with c0d0; this is so, because if there is such a cycle

C0 2 C, then Qd has a 6-cycle containing the vertices u; a; d; d0 and two vertices

from C0. Summing up, we conclude that if all cycles in C contain an edge from M1

that is parallel with at least d
38C1

unused u-colored edges, then Qd contains at least
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d2
C2 � 6� 100C1

100C1C2

d

38C1

� 2

� �
1

6

u-colored edges. However, if C2 � 6� 100C1 [ 0 and d is large enough, then this

is not possible because Qd contains at most d2

C2
precolored edges. We conclude that at

least one cycle in C satisfies that every edge from M1 is parallel with at most d
38C1

other u-precolored edges. Consequently, we can perform all the necessary steps in

the algorithm to obtain the required coloring f 0. h

It is trivial that Conjecture 3.1 is true in the case when only one color appears in

the coloring that is to be avoided; the case of two involved colors is also

straightforward. We give a short argument showing that Conjecture 3.1 holds in the

case when the partial coloring uses at most three colors.

Proposition 3.7 If u is a partial edge coloring of Qd with at most three colors and
every color appears on at most d � 2 edges, then u is avoidable.

Proof Let f be the standard edge coloring of Qd, and consider the bipartite graph

B(f) with parts consisting of the color classes C(f) of f and the colors f1; . . .; dg used

in u, and where an edge appears between a color i of u and a color class Mj of f if

and only if no edge of Mj is colored i under u.
As in the proof of the preceding theorem, if there is a perfect matching in B(f),

then the coloring u is avoidable; so suppose that this is not the case. Then there is an

anti-Hall set S � Cðf Þ, that is, a set S � Cðf Þ, such that jNðSÞj\jSj. Our goal is to
prove that there is a coloring f 0 that can be obtained from f by interchanging colors

on some 4-cycles, so that in the bipartite graph Bðf 0Þ, defined as above, there is a

perfect matching.

Now, if S is an anti-Hall set, then since every color in u appears at most d � 2

times, jSj � d � 2. On the other hand, since at most 3 colors appear in the coloring

u, jNðSÞj � d � 3, so jSj � d � 2; consequently, jSj ¼ d � 2, that is, every

dimensional matching in S contains edges of all three colors under u, and thus

there are two dimensional matchings in Qd where no edges are colored under u.
Without loss of generality, we assume that M1 is a dimensional matching with color

1 under f that is in S.
We pick a dimensional matching, Md, with color d under f, say, not contained in

the set S. Now, since Md contains no u-colored edges and M1 contains three such

edges, there is a 4-cycle in the edge-induced subgraph Qd½M1 [Md� containing at

least one u-colored edge. By interchanging colors on this 4-cycle, we obtain the

required coloring f 0. h

Remark 3.8 We remark that by using the same strategy it is straightforward to

prove a version of the preceding result with four instead of three colors, provided

that d� 5; indeed, the only essential difference is that one has to consider two

different cases on the size of the anti-Hall set, namely, when it has size d � 2 and

d � 3, respectively. However, for the case when d ¼ 4, the only proof we have

proceeds by long and detailed case analysis, so we abstain from giving the details in

the case when the coloring to be avoided contains four different colors.
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As a final observation of this section, let us consider the case when all precolored

edges lie in a hypercube of dimension d � 1 contained in a d-dimensional

hypercube.

The following was first conjectured in [21].

Proposition 3.9 If u is a partial d-edge coloring of the hypercube Qd (d� 2),
where all colored edges lie in a subgraph that is isomorphic to Qd�1, then u is
avoidable.

Proof Let H1 be a subgraph of Qd that is isomorphic to Qd�1 and contains all

precolored edges. Then Qd consists of the two copies H1 and H2 of Qd�1 and a

dimensional matching M joining vertices of H1 and H2.

We define a list assignment L for H1 by setting LðeÞ ¼ f1; . . .; dg n fuðeÞg, for
every edge e 2 EðH1Þ, where we assume that fuðeÞg ¼ ; if e is not colored under

u. By Galvin’s Theorem 2.5, there is a proper d-edge coloring of H1 with colors

from the lists. Since H1 and H2 are isomorphic, this also yields a corresponding d-
edge coloring of H2. By coloring all edges of M by the unique color in f1; . . .; dg
missing at its endpoints, we obtain a proper d-edge coloring of Qd which

avoids u. h

4 Avoiding Partial Proper Edge Colorings

In [21], Johansson presented a complete list of minimal unavoidable partial 3-edge

colorings of Q3, where minimal means that removing a color from any colored edge

yields an avoidable edge coloring; the list is complete in the sense that it contains all
such colorings up to permuting colors and/or applying graph automorphisms. There

are 29 such configurations, and we refer to [21] for a comprehensive list of all such

colorings. Let us here just remark that, based on this list of minimal unavoidable

partial edge colorings, it seems to be a difficult task to characterize the family of

unavoidable partial edge colorings of Qd for general d. Note further that a similar

investigation for complete bipartite graphs was pursued in [22].

Here, we shall focus on the unavoidable partial proper 3-edge colorings of Q3. As

explained in [21], there are six such minimal configurations.

Proposition 4.1 The partial edge colorings of Q3 in Fig. 1 constitute a complete list
of minimal unavoidable partial proper 3-edge colorings of Q3.

The proof of this proposition is by an exhaustive computer search; we refer to

[21] for details.

As in the non-proper case, based on this list of minimal unavoidable partial

proper 3-edge colorings of Q3, it seems difficult to make any specific conjecture as

to whether it is possible to characterize the minimal unavoidable partial proper d-
edge colorings of Qd for general d. It is, however, easy to construct infinite families

of minimal unavoidable partial (non-proper) 3-edge colorings of hypercubes. For

the case when the coloring is required to be proper, this problem appears to be more

difficult; in fact, we are interested in whether the following might be true:
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Problem 4.2 Is there an integer d0 � 0 such that every partial proper d-edge
coloring of Qd is avoidable if d� d0?

As mentioned in the introduction above, for the balanced complete bipartite

graphs the answer to the corresponding question is positive and it suffices to require

that the graph has at least 8 vertices [9, 10, 25].

Next, we shall deduce some general consequences of Proposition 4.1. We begin

by considering the special case of Problem 4.2 when all colored edges are contained

in a matching. We shall need the following lemmas, which are immediate from

Proposition 4.1.

Lemma 4.3 If u is a partial 3-edge coloring Q3 where all colored edges are
contained in a matching, then u is avoidable.

We note that an analogous statement does not hold for Q2, since the partial

coloring where two non-adjacent edges of Q2 are colored by 1 and 2, respectively, is

unavoidable.

Lemma 4.4 If u is a partial proper 3-edge coloring of Q3 where all colored edges
are contained in two dimensional matchings, then u is avoidable.

Corollary 4.5 If d ¼ 3k and u is a partial d-edge coloring of Qd where all colored
edges are contained in a matching, then u is avoidable.

Proof Let M1; . . .;Md be the dimensional matchings in Qd . For i ¼ 1; . . .; k, let Hi

be the subgraph of Qd induced by M3i�2 [M3i�1 [M3i. By Lemma 2.3, each Hi is a

collection of disjoint 3-dimensional hypercubes.

1

2
3

3

2

1

1

1

3

2

1

2

1

3

2
3

3

2

1

1

1

1

2

1

3

1

3

2 1

2

3

2 1

1

3 1

3

2

2 1

1

3

Fig. 1 Minimal unavoidable partial proper 3-edge colorings of Q3

123

Graphs and Combinatorics (2022) 38:79 Page 13 of 20 79



Now, by Lemma 4.3, there is a proper edge coloring of Hi using colors 3i�
2; 3i� 1; 3i that avoids the restriction of u to Hi, for i ¼ 1; . . .; k. Combining such

colorings yields a proper d-edge coloring of Qd that avoids u. h

Corollary 4.6 If u is a partial coloring of Qd, d� 3, such that all edges colored i
are in the same dimensional matching, i ¼ 1; . . .; d, then u is avoidable.

Proof Let M1; . . .;Md be the dimensional matchings of Qd. If every dimensional

matching contains edges of exactly one color from u, then u is extendable, and thus

avoidable (by permuting colors).

If there is a dimensional matching M on which u uses 2� k� d � 1 colors, then

assign one of the other d � k colors to M. The graph Qd �M consists of two copies

of Qd�1 and the restriction of u to these two subgraphs satisfy the hypothesis of the

corollary. For d� 3, proceed by induction; if d � 1 ¼ 2, then the restriction of u to

Qd �M only uses one color, and so it is avoidable.

In the remaining case, one dimensional matching, M1 say, contains all the u-
colored edges. We assign colors 4; . . .; d to M4; . . .;Md, respectively, and consider

the subgraph Qd �M4 [ . . . [Md. This subgraph consists of a collection of Q3’s

and the restriction of u to each copy of Q3 satisfies that all u-colored edges lie in a

matching. Hence, by Lemma 4.3, there is a 3-edge coloring of each copy H of Q3

that avoids the restriction of u to H. h

If we insist that all precolored edges are contained in a bounded number of

dimensional matchings, then we obtain another family of avoidable partial (not

necessarily proper) d-edge colorings of Qd.

Corollary 4.7 If u is a partial d-edge coloring of Qd where all colored edges are
contained in bd=3c dimensional matchings, then u is avoidable.

Proof Suppose that M1; . . .;Ma are the dimensional matchings that contain edges

that are colored under u, where a ¼ bd=3c. As in the proof of the preceding

corollary, we decompose Qd into a ¼ bd=3c subgraphs H1; . . .;Ha consisting of 3-

dimensional hypercubes, and possibly one subgraph Haþ1 that consists of disjoint

copies of 1- or 2-dimensional hypercubes. Moreover, without loss of generality we

assume that Mi is contained in Hi, i ¼ 1; . . .; d. The result now follows from

Lemma 4.3 as in the proof of Corollary 4.5. h

If we require that the partial coloring is proper, then we can allow up to 2bd=3c
dimensional matchings in Qd containing colored edges, while still being able to

avoid the partial coloring.

Corollary 4.8 If u is a partial proper d-edge coloring of Qd where all colored edges
are contained in 2bd=3c dimensional matchings, then u is avoidable.

The only difference in the proof of Corollary 4.8 compared to the proof of

Corollary 4.7 is that we use Lemma 4.4 in place of Lemma 4.3; we omit the details.

A weaker and perhaps more tractable version of Problem 4.2 is obtained by

requiring that every color class in the partial edge coloring to be avoided is an

induced matching.
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Conjecture 4.9 If d� 3 and u is a partial d-edge coloring of Qd where every color
class is an induced matching, then u is avoidable.

Using Proposition 4.1 and proceeding as in the proofs of the preceding

Corollaries, we can prove the following stronger version of Conjecture 4.9 in the

case when d is divisible by 3.

Corollary 4.10 If d ¼ 3k and u is a partial proper d-edge coloring of Qd, where
every precolored edge is at distance 1 from at most one other edge with the same
color, then u is avoidable.

Finally, we shall prove that Conjecture 3.1 is true in the case when the partial

edge coloring is proper. We shall need the following easy lemma.

Lemma 4.11 If u is a partial proper 2-edge coloring of Q2, then u is avoidable
unless two non-adjacent edges are colored by different colors.

Theorem 4.12 If u is a partial proper d-edge coloring of Qd where every color
appears on at most d � 2 edges, then u is avoidable.

Proof If d� 3, then the theorem trivially holds by Proposition 4.1. If d ¼ 4, then

consider a dimensional matching M not containing edges of all colors under u; such
a matching exists, since every color appears on at most d � 2 edges under u.
Suppose, for example, that color 4 does not appear on an edge of M.

The graph Qd �M consists of two disjoint copies H1 and H2 of Q3. Moreover,

since every color appears on at most two edges, it follows from Proposition 4.1 that

there are proper 3-edge colorings (using colors 1, 2, 3) of H1 and H2 that avoid the

restrictions of u to H1 and H2, respectively. By coloring all edges of M by color 4,

we obtain a proper 4-edge coloring of Qd that avoids u.
Next, we consider the case when d� 5. We shall consider two main cases,

namely when d ¼ 2k, and when d ¼ 2k þ 1.

Let us first consider the case when d ¼ 2k� 6. Denote by M1; . . .;M2k the

dimensional matchings of Qd and consider the subgraphs H1; . . .;Hk of Qd, where

Hi is the subgraph induced by M2i�1 [M2i. We shall partition the colors in

f1; . . .; 2kg into 2-subsets A1; . . .;Ak and use the colors in Ai for a proper edge

coloring of Hi that avoids the restriction of u to Hi. Combining all these colorings

yields a d-edge coloring of Qd which avoids u.

In total, there are
ð2kÞ!
2k

ordered partitions of f1; . . .; 2kg into k 2-subsets. Now,

some of these partitions A1 [ . . . [ Ak are forbidden in the sense that for some i
there is no proper edge coloring of Hi using colors from Ai that avoids the restriction

of u to Hi. If a copy of Q2, which is contained in some subgraph Hi, contains at most

three u-colored edges, then by Lemma 4.11 at most
ð2k�2Þ!
2k�1 partitions of f1; . . .; 2kg

are forbidden due to this coloring of Q2; similarly, if four edges of Q2 are colored

under u, then at most 2
ð2k�2Þ!
2k�1 partitions are forbidden.

Now, since Qd contains at most dðd � 2Þ u-colored edges, at most
dðd�2Þ

2

ð2k�2Þ!
2k�1

partitions of f1; . . .; 2kg are forbidden due to the condition that the resulting d-edge
coloring of Qd should avoid u. Thus, if
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ð2kÞ!
2k

� dðd � 2Þ
2

ð2k � 2Þ!
2k�1

[ 0;

then there is a non-forbidden partition of f1; . . .; 2kg. Since this inequality holds for

any k� 1, the desired result follows.

Let us now consider the case when d ¼ 2k þ 1. The argument here is similar to

the one given above. We partition Qd into the subgraphs H1; . . .;Hk, where Hi is

induced by the dimensional matchings M2i�1 [M2i, i ¼ 1; . . .; k � 1, and Hk is

induced by M2k�1;M2k;M2kþ1. We now seek a partition of f1; . . .; 2k þ 1g into sets

A1 [ . . . [ Ak, where jAij ¼ 2, i ¼ 1; . . .k � 1, and jAkj ¼ 3, and corresponding

proper edge colorings of H1; . . .;Hk, where a coloring of Hi uses colors from Ai.

In total, there are
ð2kþ1Þ!
2k�13!

such ordered partitions of f1; . . .; 2k þ 1g. As before,

some of these partitions are forbidden due to the fact the resulting edge coloring

should avoid u. We shall need the following claim.

Claim 4.13 Let u be a partial edge coloring of a copy H of the 3-dimensional
hypercube Q3 contained in Hk. Let s(a) be the largest number of partitions of
f1; . . .; 2k þ 1g that are forbidden due to the restriction of u to H being unavoidable
when a edges of H are colored. Then

sðaÞ�

0; if a� 6;

ð2k � 2Þ!
2k�1

; if 7� a� 8;

3
ð2k � 2Þ!
2k�1

; if a ¼ 9;

4
ð2k � 2Þ!
2k�1

; if a ¼ 10;

6
ð2k � 2Þ!
2k�1

; if a ¼ 11;

9
ð2k � 2Þ!
2k�1

; if a ¼ 12:

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Proof By Proposition 4.1, Figure 1 constitutes a complete list of minimal

unavoidable partial proper 3-edge colorings of Q3. Note that every such partial

coloring contains three edges colored 1, two edges colored 2, and two edges colored

3. Thus, if H contains at most six u-colored edges, then no partitions of f1; . . .; 2k þ
1g are forbidden due to the restriction of u to H being unavoidable; that is, sðaÞ ¼ 0

if a� 6. Similarly, if at most 8 different u-colored edges appear in H, then at most
ð2k�2Þ!
2k�1 partitions are forbidden, because there is at most one set of colors fa; b; cg

that cannot be used in a proper edge coloring of H that avoids u.

If H contains 9 u-colored edges, then at most 3
ð2k�2Þ!
2k�1 partitions are forbidden,

since there could be four colors present on edges in H, one of which appears on

three edges. Similarly, it is straightforward that sð10Þ� 4
ð2k�2Þ!
2k�1 , sð11Þ� 6

ð2k�2Þ!
2k�1 ,

and sð12Þ� 9
ð2k�2Þ!
2k�1 . h
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Let b be the number of u-colored edges that appear on edges in Hk. Then by

using the same counting arguments as above and invoking Claim 4.13, we deduce

that at most

dðd � 2Þ � bð Þ 1
2

ð2k � 1Þ!
2k�23!

þ b
9

12

ð2k � 2Þ!
2k�1

partitions of f1; . . .; 2kg are forbidden due to the condition that the resulting d-edge
coloring of Qd should avoid u. Thus, if

ð2k þ 1Þ!
2k�13!

� dðd � 2Þ
2

� b

2

� �
ð2k � 1Þ!
2k�23!

þ b
9

12

ð2k � 2Þ!
2k�1

� �
[ 0;

then there is a non-forbidden partition of f1; . . .; 2k þ 1g. This holds if k� 3, and if

k ¼ 2, then we can select the two dimensional matchings contained in H1 to be

maximal with respect to the property of containing u-precolored edges. This implies

that Hk contains at most nine u-colored edges; that is, b� 9, and the required

inequality holds. h

5 Extending and Avoiding Edge Colorings Simultaneously

In [6], it was proved that any partial proper coloring of at most d � 1 edges of Qd is

extendable to a proper d-edge coloring of Qd . Moreover, it was proved that any

partial proper coloring of at most d edges in Qd is extendable unless it satisfies one

of the following conditions:

(C1) there is an uncolored edge uv in Qd such that u is incident with edges of r� d
distinct colors and v is incident to d � r edges colored with d � r other

distinct colors (so uv is adjacent to edges of d distinct colors);

(C2) there is a vertex u and a color c such that u is incident with at least one

colored edge, u is not incident with any edge of color c, and every uncolored

edge incident with u is adjacent to another edge colored c;
(C3) there is a vertex u and a color c such that every edge incident with u is

uncolored and every edge incident with u is adjacent to another edge colored

c;
(C4) d ¼ 3 and the three precolored edges use three different colors and form a

subset of a dimensional matching.

For i ¼ 1; 2; 3; 4, we denote by Ci the set of all colorings of Qd, d� 1, satisfying the

corresponding condition above, and we set C ¼ [Ci.

Theorem 5.1 [6] If u is a partial proper d-edge coloring of at most d edges in Qd,

then u is extendable to a proper d-edge coloring of Qd unless u 2 C.

For 1� k� d, let u be a proper precoloring of d � k edges of Qd and w be a

partial coloring of k edges in Qd. Using the preceding theorem, we shall prove that

there is a proper d-edge coloring of Qd that agrees with u and which avoids w unless

one of the following conditions are satisfied:
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(D1) there is a vertex v such that every edge incident with v is either w-colored c,
u-colored by a color distinct from c, or not colored under u or w, but
adjacent to an edge with color c under u; or

(D2) exactly one edge uv is colored under w and for every i 2 f1; . . .; dg n
fwðuvÞg there is an edge incident with u or v that is colored i under u; or

(D3) d ¼ 2 and two non-adjacent edges are colored by different colors under w, or
there is one edge e colored under u and another edge e0 colored under w,
such that e and e0 have different colors if they are adjacent, and the same

color if they are non-adjacent.

Theorem 5.2 Let u be a proper d-edge precoloring of d � k edges of Qd and w be a
partial coloring of k edges in Qd , where 1� k� d. There is an extension of u that
avoids w unless some edge of Qd has the same color under u or w, or the colorings
satisfy one of the conditions (D1)-(D3).

Proof If Qd contains altogether d � 1 edges that are colored under u and w (i.e.

some edge is colored under both u and w), then since at most d � 1 edges are

colored, we can form a new partial proper edge coloring from u by greedily

assigning some color from f1; . . .; dg n wðeÞ to any edge e that is colored under w,
but not colored under u, so that the resulting coloring u0 is proper. By Theorem 5.1,

u0 is extendable, so there is an extension of u that avoids w.
Now assume that altogether exactly d edges are colored under u and w, so no

edge is colored under both u and w. Let Eu;w be the set of edges in EðQdÞ that are
colored under u or w. The case when d� 2 is trivial, so assume that d� 3. We shall

consider some different cases.

Suppose first that there are two non-adjacent edges e1 and e2 that are colored

under w. Then we consider the coloring u0 obtained from u by in addition coloring

every w-colored edge in such a way that the resulting precoloring is proper and

avoids w; since e1 and e2 are non-adjacent, this is possible. At most d edges are

colored under the resulting coloring u0, so if it is not extendable, then u0 2 C.
If u0 2 C1, then there is an uncolored edge uv in Qd such that u is incident with

edges of r� d distinct colors under u0 and v is incident to d � r edges u0-colored
with d � r other distinct colors. Suppose without loss of generality that e1 is

incident with u, e2 is incident with v and that at least two u0-colored edges are

incident with u. Then we can define a new edge coloring of Eu;w from u0 that avoids
w by recoloring e2 by some color that appears at u. The obtained partial edge

coloring is not in C, and thus there is an extension of u that avoids w.
If u0 2 C3 [ C4, then since all edges in Eu;w are non-adjacent, we can recolor the

edges that are colored under both u0 and w to obtain a proper coloring of Eu;w that

avoids w and is extendable to a proper d-edge coloring. Hence, there is an extension

of u that avoids w.
Suppose now that u0 2 C2. Since e1 and e2 are non-adjacent, at least one of them

is not adjacent to any other edge from Eu;w. Thus, we may recolor this edge and a

similar argument as in the preceding paragraph shows that there is an extension of u
that avoids w.

Suppose now that there are at least two edges colored under w and that all such
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edges are pairwise adjacent. Thus there is some vertex v that is incident with every

edge that is colored under w. If we cannot define a new proper coloring u0 of Eu;w

from u by coloring the w-colored edges in such a way that u0 avoids w, then all w-
colored edges are colored by the same color. Moreover, if there is no such coloring

u0, then all u-colored edges are incident with v and have colors that are distinct

from the w-colored edges; that is, (D1) holds.

Let us now consider the case when we can define a coloring u0 as described in the
preceding paragraph. Then u0 is extendable, unless u0 2 C1 [ C2.

Suppose first that u0 2 C1. Then, since all colors in f1; . . .; dg appear on edges

under u0, there must be some u-colored edge incident with u; suppose that such an

edge has color c under u. Then no edge incident with v is u0-colored c, because
u0 2 C1. Now, if there is such a color c, such that, in addition, some w-colored edge

e incident with v is not colored c under w, then we can, from u0, define a new

coloring u00 of Eu;w by recoloring e by the color c. Since u00 62 C, it is extendable. In

conclusion, there is an extension of u that avoids w unless (D1) holds. A similar

argument applies if u0 2 C2.

It remains to consider the case when exactly one edge e ¼ uv is colored under w.
If we cannot pick some color for e that is distinct from wðeÞ and satisfies that this

coloring of e taken together with u is proper, then u and w satisfy (D2). On the

other hand, if we can define such a coloring u0 of Eu;w from u which avoids w, then
there is an extension of u that avoids w unless u0 2 C.

If u0 2 C3 or u0 2 C4, then since all u0-colored edges are pairwise non-adjacent,

we can define a new proper coloring of Eu;w from u0 that is extendable, and which

avoids w.
If u0 2 C1, then we can similarly define a new proper coloring u00 of Eu;w that is

extendable, unless exactly one u-colored edge e0 is not adjacent to e and

uðe0Þ ¼ wðeÞ; that is, (D1) holds.
Finally, if u0 satisfies (C2), then a similar argument shows that we can define a

new extendable partial edge coloring of Eu;w that avoids w, unless u and w satisfy

(D1). h

Acknowledgements We are indebted to two referees for a very careful reading which helped improve the
quality of the paper.
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20. Havel, I., Morávek, J.: B-valuations of graphs. Czech. Math. J. 22, 338–352 (1972)

21. Johansson, P.: Avoiding Edge Colorings of Hypercubes. Bachelor thesis, Linköping University
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