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Abstract For a graph G, we denote by ν(G) the order of G, by χ(G) the chromatic
number of G and by σ(G) the minimum size of a color class over all proper χ(G)-
colorings of G. For two graphs G1 and G2, the Ramsey number R(G1,G2) is the
least integer r such that for every graph G on r vertices, either G contains a G1
or G contains a G2. Suppose that G1 is connected. We say that G1 is G2-good if
R(G1,G2) = (χ(G2) − 1)(ν(G1) − 1) + σ(G2). In this note, we obtain a condition
for graphs H such that a path is H -good.
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1 Introduction

Throughout this paper, all graphs are finite and simple. Let G1 and G2 be two graphs.
The Ramsey number R(G1,G2), is defined as the least integer r such that for every
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graph G on r vertices, either G contains a G1 or G contains a G2, where G is the
complement of G.

We denote by ν(G) the order of G, by δ(G) the minimum degree of G, by ω(G)

the component number of G, by χ(G) the chromatic number of G and by σ(G)

the minimum size of a color class over all proper χ(G)-colorings of G. For two
disjoint graphs G1 and G2, the union of G1 and G2 is defined as V (G1 ∪ G2) =
V (G1) ∪ V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2); and the join of G1 and G2 is
defined as V (G1 ∨G2) = V (G1) ∪ V (G2), and E(G1 ∨G2) = E(G1 +G2) ∪ {xy :
x ∈ V (G1), y ∈ V (G2)}. The union of k disjoint copies of the same graph G is
denoted by kG.

Theorem 1 (Burr [5])For all graphs G and H,with G connected and ν(G) ≥ σ(H),

R(G, H) ≥ (χ(H) − 1)(ν(G) − 1) + σ(H).

We say G is H -good if R(G, H) = (χ(H) − 1)(ν(G) − 1) + σ(H). Lin et al.
proved the following theorem on Ramsey-goodness of trees.

Theorem 2 (Lin et al. [11]) Let T be a tree and H be a graph. If T is H-good and
σ(H) = 1, then T is also K1 ∨ H-good.

By Pn and Cn we denote the path and cycle on n vertices, respectively. For the case
of T being a path, we get an extension of Theorem 2.

Theorem 3 Let n ≥ 2, and H be a subgraph of Ka1,a2,...,ak , k = χ(H), such that

ai ≤
⌈
k(n − 1) + 1

k + i

⌉
, 1 ≤ i ≤ k,

If Pn is H-good, then Pn is also K1 ∨ H-good.

Note that H is a subgraph of Ka1,a2,...,ak if and only if there is a proper coloring of
H such that the size of the i th color class is at most ai , 1 ≤ i ≤ k.

We prove Theorem 3 in Sect. 3. In Sect. 2, we will apply Theorem 3 to show some
results of Ramsey values involving paths.

Note that σ(K1 ∨ H) = 1. By Theorem 2, we can see that under the conditions of
Theorems 2 and 3, Pn is Kt ∨ H -good for all t ≥ 1.

Theorem 4 Let n ≥ 3 and H be a graph with σ(H) ≤ 2. If Pn is H-good, then Pn is
also (2K1 ∨ H)-good.

Proof Since Pn is H -good, R(Pn, H) = (χ(H) − 1)(n − 1) + σ(H). Set

r = (χ(2K1 ∨ H) − 1)(n − 1) + σ(2K1 ∨ H) = χ(H)(n − 1) + σ(H).

Then r = R(Pn, H) + n − 1.
From Theorem 1, we have R(Pn, 2K1 ∨ H) ≥ r . Now let G be an arbitrary graph

of order r without Pn as a subgraph. We will prove that G contains 2K1 ∨ H . Let
P = v1v2 . . . vk be a longest path of G. Thus k ≤ n − 1.
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If k = 1 then G is an empty graph and G is complete. Note that ν(G) = r ≥
R(Pn, H) + 2 ≥ ν(H) + 2. So G contains 2K1 ∨ H .

Now we assume that 2 ≤ k ≤ n − 1. Let G ′ be a subgraph of G induced by
V (G)−V (P). Then ν(G ′) = r − k ≥ R(Pn, H). So G ′ contains H . Note that v1 and
vk are nonadjacent to every vertex of G ′. Thus G contains 2K1 ∨ H . �	

From Theorem 4 we get the following result.

Corollary 1 Let n ≥ 3 and H be a graph with σ(H) ≤ 2. If Pn is H-good, then Pn
is also (t K2 ∨ H)-good.

2 Some Corollaries

In this section, we will list some known results for the Ramsey numbers involving
paths. After each result, we apply Theorems 2, 3 and 4 to get a new Ramsey numbers
involving paths. We denote by Lt

s (s ≥ t + 1) the graph obtained from Ks+t by
removing the edges of a matching of size t , i.e., Lt

s = t K2 ∨ Ks−t . We use par(m) to
denote the parity of m. In the following corollaries, we always assume that n ≥ 3.

Theorem 5 (Gerencsér and Gyárfás [10]) If 2 ≤ m ≤ n, then

R(Pn, Pm) = n +
⌊m
2

⌋
− 1.

Corollary 2 Let t ≥ 0 be an integer. If 2 ≤ m ≤ n, then

R(Pn, L
t
s ∨ Pm) = (s + 1)(n − 1) + 1.

Proof ByTheorem5, Pn is Pm-good. Take a1 = 
m/2� and a2 = �m/2
. ByTheorem
3, Pn is (K1 ∨ Pm)-good. So by Theorems 2 and 4 we get the assertion. �	

The kipas K̂m is the graph obtained by joining a K1 and a path Pm . For the case
(s, t) = (1, 0) in Corollary 2, we can get the values of path-kipas Ramsey numbers
R(Pn, K̂m) for 3 ≤ m ≤ n, which was already obtained by Saleman and Broersma
[16].

Theorem 6 (Faudree et al. [9]) If n ≥ 2 and m ≥ 3, then

R(Pn,Cm) =

⎧⎪⎪⎨
⎪⎪⎩

2n − 1, n ≥ m and m is odd;
n + m/2 − 1, n ≥ m and m is even;
max{m + �n/2
 − 1, 2n − 1}, m > n and m is odd;
m + �n/2
 − 1, m > n and m is even.

Corollary 3 Let t ≥ 0 be an integer. If m is even, 4 ≤ m ≤ n; or m is odd and
3 ≤ m ≤ 
3n/2�, then

R(Pn, L
t
s ∨ Cm) = (s + par(m) + 1)(n − 1) + 1.
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Proof From Theorem 6, one can check that Pn is Cm-good. For the case m is even,
take a1 = a2 = m/2 and apply Theorems 3, 2 and 4; for the case m is odd, apply
Theorems 2 and 4. In both case, we have the assertion. �	

The wheel Wm is the graph obtained by joining K1 and a cycle Cm . For the case
(s, t) = (1, 0) in Corollary 3, we can get the values of path-wheel Ramsey numbers
R(Pn,Cm) under the condition of Corollary 3, which was already obtained by Chen
et al. [6].

Theorem 7 If n ≥ 2, then

R(Pn,mK1) = m.

This theorem is trivial and the following corollary can be get immediately. We omit
the proof.

Corollary 4 Let t ≥ 0 be an integer. If m ≤ 
n/2�, then

R(Pn, L
t
s ∨ mK1) = s(n − 1) + 1.

For m ≥ 2, the graph K1,m is called a star; the graph K2 ∨ mK1 is called a book;
and the graph Kt ∨ mK1, t ≥ 3, is called a generalized book. We remark here that
the Ramsey numbers of paths versus stars and paths versus (generalized) books under
the condition of Corollary 4 was already obtained by Parsons [12], and Rousseau and
Sheehan [14], respectively.

Theorem 8 (Faudree and Schelp [8]) If n,mi ≥ 2, 1 ≤ i ≤ k, then

R

(
Pn,

k⋃
i=1

Pmi

)
= max

{
n +

k∑
i=1

⌊mi

2

⌋
− 1,

k∑
i=1

mi +
⌊n
2

⌋
− 1

}
.

Corollary 5 Let t ≥ 0 be an integer. If mi ≥ 2, 1 ≤ i ≤ k and
∑k

i=1
mi/2� ≤ 
n/2�,
then

R

(
Pn, L

t
s ∨

k⋃
i=1

Pmi

)
= (s + 1)(n − 1) + 1.

Proof By Theorem 8, Pn is (
⋃k

i=1 Pmi )-good. Take

a1 =
k∑

i=1

⌈mi

2

⌉
and a2 =

k∑
i=1

⌊mi

2

⌋
.

ByTheorem3, Pn is (K1∨⋃k
i=1 Pmi )-good. ByTheorems 2 and 4we get the assertion.

�	
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The graph Fm = K1 ∨ mK2 is called a fan. From the above corollary, we can see
that if m ≤ 
n/2�, then R(Pn, Fm) = 2n − 1. This result was already obtained by
Saleman and Broersma [15].

Let Pk
n be the k-th power of Pn , i.e., the graph with vertex set {v1, . . . , vn} and edge

set {viv j : |i − j | ≤ k}.
Theorem 9 (Pokrovskiy [13]) If n ≥ k + 1, then

R(Pn, P
k
n ) = k(n − 1) +

⌊
n

k + 1

⌋
.

Corollary 6 Let t ≥ 0 be an integer. If n ≥ k + 1, then

R(Pn, L
t
s ∨ Pk

n ) = (t + k)(n − 1) + 1.

Proof Note that χ(Pk
n ) = k + 1 and σ(Pk

n ) = �n/(k + 1)
. By Theorem 9, Pn is
Pk
n -good. Take

ai =
⌊
n + i − 1

k + 1

⌋
, 1 ≤ i ≤ k + 1.

It is easy to see that Pk
n is a subgraph of Ka1,a2,...,ak+1 . By Theorems 3, 2 and 4, we

have the assertion. �	
Theorem 10 (Sudarsana et al. [18]) If m ≥ 2, then

R(Pn, 2Km) = (m − 1)(n − 1) + 2.

Corollary 7 Let t ≥ 0 be an integer. If m ≥ 2 and n ≥ 3, then

R(Pn, L
t
s ∨ 2Km) = (s + m − 1)(n − 1) + 1.

Proof By Theorem 10, Pn is 2Km-good. Take ai = 2, 1 ≤ i ≤ m. Note that 2Km is
a subgraph of Ka1,a2,...,am . By Theorems 3, 2 and 4, we have the assertion. �	
Theorem 11 (Sudarsana [17]) If m, k ≥ 2 and n ≥ (k−2)((km−2)(m−1)+1)+3,
then

R(Pn, kKm) = (m − 1)(n − 1) + k.

Corollary 8 Let t ≥ 0 be an integer. If m, k ≥ 2 and n ≥ (k −2)((km −2)(m −1)+
1) + 3, then

R(Pn, L
t
s ∨ kKm) = (s + m − 1)(n − 1) + 1.

Proof By Theorem 11, Pn is kKm-good. Take ai = k, 1 ≤ i ≤ m. Note that kKm is
a subgraph of Ka1,a2,...,am . By Theorems 3, 2 and 4, we have the assertion. �	
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The cocktail party graph (or hyperoctahedral graph) Hm is the graph obtained by
removing a perfect matching from a complete graph K2m (i.e., Hm = mK2).

Theorem 12 (Ali et al. [1]) If n,m ≥ 3, then

R(Pn, Hm) = (n − 1)(m − 1) + 2.

Corollary 9 Let t ≥ 0 be an integer. If n,m ≥ 3, then

R(Pn, L
t
s ∨ Hm) = (s + m − 1)(n − 1) + 1.

Proof By Theorem 12, Pn is Hm-good. Take ai = 2, 1 ≤ i ≤ m. Note that Hm =
Ka1,a2,...,am . By Theorems 3, 2 and 4, we have the assertion. �	

The sunflower graph SFm is the graph on 2m+1 vertices obtained by taking awheel
Wm with hub x , anm-cycle v1v2 · · · vmv1, and additional m vertices w1, w2, . . . , wm ,
where wi is joined by edges to vi , vi+1, 1 ≤ i ≤ m, where vm+1 = v1.

Theorem 13 (Ali et al. [4]) If m ≥ 3, then

R(Pn, SFm) =
{
2n + m/2 − 2, m is even and n ≥ 4m2 − 7m + 4;
3n − 2, m is odd and n ≥ 2m2 − 9m + 11.

Corollary 10 Let t ≥ 0 be an integer. If m ≥ 4 is even and n ≥ 4m2 − 7m + 4, or
m ≥ 3 is odd and n ≥ 2m2 − 9m + 11, then

R(Pn, L
t
s ∨ SFm) = (s + 2 + par(m))(n − 1) + 1.

Proof By Theorem 13, Pn is SFm-good. If m is even, then take a1 = m + 1 and
a2 = a3 = m/2; if m is odd, then σ(SFm) = 1. By Theorems 3, 2 and 4, we have the
assertion. �	

TheBeadedwheel BWm is a graph on 2m+1 vertices which is obtained by inserting
one vertex in each spoke of the wheel Wm .

Theorem 14 (Ali et al. [3]) If m ≥ 3, then

R(Pn, BWm) =
{
2n − 1 m is even and n ≥ 2m2 − 5m + 4;
2n m is odd and n ≥ 2m2 − 5m + 3.

Corollary 11 Let t ≥ 0 be an integer. If m ≥ 4 is even and n ≥ 2m2 − 5m + 4, or
m ≥ 3 is odd and n ≥ 2m2 − 5m + 3, then

R(Pn, L
t
s ∨ BWm) = (s + 2)(n − 1) + 1.

Proof By Theorem 14, Pn is BWm-good. If m is even, then σ(BWm) = 1; if m is
odd, then take a1 = m and a2 = a3 = (m + 1)/2. By Theorems 3, 2 and 4, we have
the assertion. �	
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The Jahangir graph J2m is a graph on 2m + 1 vertices consisting of a cycle C2m
with one additional vertex which is adjacent alternatively to m vertices of C2m .

Theorem 15 (Surahmat and Tomescu [19]) If m ≥ 2 and n ≥ (4m−1)(m−1)+1,
then

R(Pn, J2m) = n + m − 1.

Corollary 12 Let t ≥ 0 be an integer. If m ≥ 2 and n ≥ (4m − 1)(m − 1) + 1, then

R(Pn, L
t
s ∨ J2m) = (t + 1)(n − 1) + 1.

Proof By Theorem 15, Pn is J2m-good. Take a1 = m and a2 = m + 1. By Theorems
3, 2 and 4, we have the assertion. �	

The generalized Jahangir graph Jk,m is a graph on km + 1 vertices consisting of a
cycle Ckm with one additional vertex which is adjacent to m vertices of the Ckm each
of which is at distance k to the next one on Ckm .

Theorem 16 (Ali et al. [2]) If m, k ≥ 2, then

R(Pn, Jk,m) =
⎧⎨
⎩
n + km/2 − 1, k is even and n ≥ (2km − 1)(km/2 − 1) + 1;
2n − 1 k is odd, m is even and n ≥ km(km − 2)/2;
2n k,m are odd and n ≥ (km − 1)2/2.

Corollary 13 Let t ≥ 0 be an integer. If n,m, k ≥ 2, and if k is even and n ≥
(2km − 1)(km/2 − 1) + 1, or k is odd, m is even and n ≥ km(km − 2)/2, or k,m
are odd and n ≥ (km − 1)2/2, then

R(Pn, L
t
s ∨ Jk,m) = (s + 1 + par(k))(n − 1) + 1.

Proof By Theorem 16, Pn is Jk,m-good. If k is even, then take a1 = km/2 + 1 and
a2 = km/2; if k is odd, then take

a1 = m ·
⌊
k + 2

3

⌋
+ 1, a2 = m ·

⌊
k + 1

3

⌋
and a3 = m ·

⌊
k

3

⌋
.

By Theorems 3, 2 and 4, we have the assertion. �	

3 Proof of Theorem 3

From Theorem 1, it is sufficient to prove that R(Pn, K1 ∨ H) ≤ k(n − 1) + 1. Let G
be a graph of order k(n − 1) + 1. Suppose that G contains no Pn and G contains no
K1 ∨ H .

Since H is a subgraph of Ka1,a2,...,ak , we have

σ(H) ≤ ak ≤
⌈
k(n − 1) + 1

2k

⌉
=

⌈
n

2
− k − 1

2k

⌉
=

⌈n
2

⌉
.
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Since Pn is H -good,

R(Pn, H) = (χ(H) − 1)(n − 1) + σ(H) ≤ (k − 1)(n − 1) +
⌈n
2

⌉
.

If there is a vertex v in G with d(v) ≤ �n/2
 − 1, then let G ′ be a subgraph of G
induced by V (G) − {v} − N (v), where N (v) is the set of vertices adjacent to v in G.
Note that

ν(G ′) = ν(G) − 1 − d(v) ≥ k(n − 1) + 1 −
⌊n
2

⌋

= (k − 1)(n − 1) +
⌈n
2

⌉
≥ R(Pn, H).

This implies that G ′ contains a path Pn or G ′ contains a subgraph isomorphic to H .
Note that v is nonadjacent to every vertex of G ′. G contains a Pn or G contains a
K1 ∨ H , a contradiction. Thus we assume that δ(G) ≥ �n/2
.

If there is a component B of G with ν(B) ≥ n, then by Dirac’s Theorem (see [7]),
B contains a Pn , a contradiction. Thus we assume that every component ofG has order
at most n− 1. Note that the minimum degree of G is at least �n/2
. Every component
of G has order between �n/2
 + 1 and n − 1.

If ω(G) ≤ k, then ν(G) ≤ k(n − 1); and if ω(G) ≥ 2k, then ν(G) ≥ k(n + 1),
both a contradiction. This implies that

k + 1 ≤ ω(G) ≤ 2k − 1.

Let B = {B1, B2, . . . , Bω}, ω = ω(G), be the set of the components of G. We
assume without loss of generality that ν(B1) ≥ ν(B2) ≥ · · · ≥ ν(Bω). Thus we have

ν(Bi ) ≥
⌈

ν(G) − (i − 1)(n − 1)

ω − i + 1

⌉
=

⌈
(k − i + 1)(n − 1) + 1

ω − i + 1

⌉
, 1 ≤ i ≤ k < ω.

Now we partition B into k + 1 parts such that the order sum of the components in
the i th part is at least ai , 1 ≤ i ≤ k.

Let t = ω − k − 1. For 1 ≤ i ≤ t , let Bi = {Bω−2i+1, Bω−2i }; for t + 1 ≤ i ≤ k,
let Bi = {Bi−t }; and let Bk+1 = {Bω}.

If 1 ≤ i ≤ t , then Bi contains two components each of which has order at least
�n/2
 + 1. Thus

∑{ν(Bj ) : Bj ∈ Bi } ≥ n + 1. On the other hand,

ai ≤
⌈
k(n − 1) + 1

k + i

⌉
≤

⌈
k(n − 1) + 1

k

⌉
= n <

∑
Bj∈Bi

ν(Bj ).

If t + 1 ≤ i ≤ k, then Bi = {Bi−t }. Note that

ν(Bi−t ) ≥
⌈

(k − i + t + 1)(n − 1) + 1

ω − i + t + 1

⌉
=

⌈
(ω − i)(n − 1) + 1

2ω − k − i

⌉
.
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Since ω − k ≤ i ≤ k, one can check that

ai ≤
⌈
k(n − 1) + 1

k + i

⌉
≤

⌈
(ω − i)(n − 1) + 1

2ω − k − i

⌉
≤ ν(Bi−t ).

Clearly ν(Bω) ≥ 1. Thus G contains a Ka1,a2,...,ak ,1, which is a supergraph of
K1 ∨ H , our final contradiction.

The proof is complete.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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