

ORIGINAL PAPER

On the Ramsey-Goodness of Paths

Binlong Li^{1,2} · Halina Bielak³

Received: 28 July 2015 / Revised: 12 February 2016 / Published online: 6 June 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract For a graph *G*, we denote by $\nu(G)$ the order of *G*, by $\chi(G)$ the chromatic number of *G* and by $\sigma(G)$ the minimum size of a color class over all proper $\chi(G)$ colorings of *G*. For two graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the least integer *r* such that for every graph *G* on *r* vertices, either *G* contains a G_1 or \overline{G} contains a G_2 . Suppose that G_1 is connected. We say that G_1 is G_2 -good if $R(G_1, G_2) = (\chi(G_2) - 1)(\nu(G_1) - 1) + \sigma(G_2)$. In this note, we obtain a condition for graphs *H* such that a path is *H*-good.

Keywords Ramsey number · Goodness · Path

Mathematics Subject Classification 05C55 · 05D10

1 Introduction

Throughout this paper, all graphs are finite and simple. Let G_1 and G_2 be two graphs. The *Ramsey number* $R(G_1, G_2)$, is defined as the least integer r such that for every

libinlong@mail.nwpu.edu.cn

- ² European Centre of Excellence NTIS, University of West Bohemia, 30614 Pilsen, Czech Republic
- ³ Institute of Mathematics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland

The first author is supported by NSFC (No. 11271300) and the project NEXLIZ - CZ.1.07/2.3.00/30.0038.

Halina Bielak hbiel@hektor.umcs.lublin.pl
Binlong Li

¹ Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China

graph G on r vertices, either G contains a G_1 or \overline{G} contains a G_2 , where \overline{G} is the complement of G.

We denote by $\nu(G)$ the order of G, by $\delta(G)$ the minimum degree of G, by $\omega(G)$ the component number of G, by $\chi(G)$ the chromatic number of G and by $\sigma(G)$ the minimum size of a color class over all proper $\chi(G)$ -colorings of G. For two disjoint graphs G_1 and G_2 , the *union* of G_1 and G_2 is defined as $V(G_1 \cup G_2) =$ $V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$; and the *join* of G_1 and G_2 is defined as $V(G_1 \vee G_2) = V(G_1) \cup V(G_2)$, and $E(G_1 \vee G_2) = E(G_1 + G_2) \cup \{xy :$ $x \in V(G_1), y \in V(G_2)\}$. The union of k disjoint copies of the same graph G is denoted by kG.

Theorem 1 (Burr [5]) For all graphs G and H, with G connected and $v(G) \ge \sigma(H)$,

$$R(G, H) \ge (\chi(H) - 1)(\nu(G) - 1) + \sigma(H).$$

We say G is H-good if $R(G, H) = (\chi(H) - 1)(\nu(G) - 1) + \sigma(H)$. Lin et al. proved the following theorem on Ramsey-goodness of trees.

Theorem 2 (Lin et al. [11]) Let T be a tree and H be a graph. If T is H-good and $\sigma(H) = 1$, then T is also $K_1 \vee H$ -good.

By P_n and C_n we denote the *path* and *cycle* on *n* vertices, respectively. For the case of *T* being a path, we get an extension of Theorem 2.

Theorem 3 Let $n \ge 2$, and H be a subgraph of $K_{a_1,a_2,...,a_k}$, $k = \chi(H)$, such that

$$a_i \le \left\lceil \frac{k(n-1)+1}{k+i} \right\rceil, \ 1 \le i \le k$$

If P_n is H-good, then P_n is also $K_1 \vee H$ -good.

Note that *H* is a subgraph of $K_{a_1,a_2,...,a_k}$ if and only if there is a proper coloring of *H* such that the size of the *i*th color class is at most a_i , $1 \le i \le k$.

We prove Theorem 3 in Sect. 3. In Sect. 2, we will apply Theorem 3 to show some results of Ramsey values involving paths.

Note that $\sigma(K_1 \lor H) = 1$. By Theorem 2, we can see that under the conditions of Theorems 2 and 3, P_n is $K_t \lor H$ -good for all $t \ge 1$.

Theorem 4 Let $n \ge 3$ and H be a graph with $\sigma(H) \le 2$. If P_n is H-good, then P_n is also $(2K_1 \lor H)$ -good.

Proof Since P_n is H-good, $R(P_n, H) = (\chi(H) - 1)(n - 1) + \sigma(H)$. Set

$$r = (\chi(2K_1 \vee H) - 1)(n - 1) + \sigma(2K_1 \vee H) = \chi(H)(n - 1) + \sigma(H).$$

Then $r = R(P_n, H) + n - 1$.

From Theorem 1, we have $R(P_n, 2K_1 \vee H) \ge r$. Now let *G* be an arbitrary graph of order *r* without P_n as a subgraph. We will prove that \overline{G} contains $2K_1 \vee H$. Let $P = v_1v_2 \dots v_k$ be a longest path of *G*. Thus $k \le n - 1$.

If k = 1 then G is an empty graph and \overline{G} is complete. Note that $\nu(G) = r \ge R(P_n, H) + 2 \ge \nu(H) + 2$. So \overline{G} contains $2K_1 \lor H$.

Now we assume that $2 \le k \le n-1$. Let G' be a subgraph of G induced by V(G) - V(P). Then $v(G') = r - k \ge R(P_n, H)$. So $\overline{G'}$ contains H. Note that v_1 and v_k are nonadjacent to every vertex of G'. Thus \overline{G} contains $2K_1 \lor H$.

From Theorem 4 we get the following result.

Corollary 1 Let $n \ge 3$ and H be a graph with $\sigma(H) \le 2$. If P_n is H-good, then P_n is also $(tK_2 \lor H)$ -good.

2 Some Corollaries

In this section, we will list some known results for the Ramsey numbers involving paths. After each result, we apply Theorems 2, 3 and 4 to get a new Ramsey numbers involving paths. We denote by L_s^t ($s \ge t + 1$) the graph obtained from K_{s+t} by removing the edges of a matching of size *t*, i.e., $L_s^t = tK_2 \lor K_{s-t}$. We use par(*m*) to denote the parity of *m*. In the following corollaries, we always assume that $n \ge 3$.

Theorem 5 (Gerencsér and Gyárfás [10]) If $2 \le m \le n$, then

$$R(P_n, P_m) = n + \left\lfloor \frac{m}{2} \right\rfloor - 1.$$

Corollary 2 Let $t \ge 0$ be an integer. If $2 \le m \le n$, then

$$R(P_n, L_s^t \vee P_m) = (s+1)(n-1) + 1.$$

Proof By Theorem 5, P_n is P_m -good. Take $a_1 = \lceil m/2 \rceil$ and $a_2 = \lfloor m/2 \rfloor$. By Theorem 3, P_n is $(K_1 \lor P_m)$ -good. So by Theorems 2 and 4 we get the assertion.

The kipas \widehat{K}_m is the graph obtained by joining a K_1 and a path P_m . For the case (s, t) = (1, 0) in Corollary 2, we can get the values of path-kipas Ramsey numbers $R(P_n, \widehat{K}_m)$ for $3 \le m \le n$, which was already obtained by Saleman and Broersma [16].

Theorem 6 (Faudree et al. [9]) If $n \ge 2$ and $m \ge 3$, then

$$R(P_n, C_m) = \begin{cases} 2n - 1, & n \ge m \text{ and } m \text{ is odd}; \\ n + m/2 - 1, & n \ge m \text{ and } m \text{ is even}; \\ \max\{m + \lfloor n/2 \rfloor - 1, 2n - 1\}, m > n \text{ and } m \text{ is odd}; \\ m + \lfloor n/2 \rfloor - 1, & m > n \text{ and } m \text{ is even}. \end{cases}$$

Corollary 3 Let $t \ge 0$ be an integer. If m is even, $4 \le m \le n$; or m is odd and $3 \le m \le \lceil 3n/2 \rceil$, then

$$R(P_n, L_s^t \vee C_m) = (s + par(m) + 1)(n - 1) + 1.$$

Proof From Theorem 6, one can check that P_n is C_m -good. For the case *m* is even, take $a_1 = a_2 = m/2$ and apply Theorems 3, 2 and 4; for the case *m* is odd, apply Theorems 2 and 4. In both case, we have the assertion.

The wheel W_m is the graph obtained by joining K_1 and a cycle C_m . For the case (s, t) = (1, 0) in Corollary 3, we can get the values of path-wheel Ramsey numbers $R(P_n, C_m)$ under the condition of Corollary 3, which was already obtained by Chen et al. [6].

Theorem 7 If $n \ge 2$, then

$$R(P_n, mK_1) = m.$$

This theorem is trivial and the following corollary can be get immediately. We omit the proof.

Corollary 4 Let $t \ge 0$ be an integer. If $m \le \lceil n/2 \rceil$, then

$$R(P_n, L_s^t \lor mK_1) = s(n-1) + 1.$$

For $m \ge 2$, the graph $K_{1,m}$ is called a *star*; the graph $K_2 \lor mK_1$ is called a *book*; and the graph $K_t \lor mK_1$, $t \ge 3$, is called a *generalized book*. We remark here that the Ramsey numbers of paths versus stars and paths versus (generalized) books under the condition of Corollary 4 was already obtained by Parsons [12], and Rousseau and Sheehan [14], respectively.

Theorem 8 (Faudree and Schelp [8]) If $n, m_i \ge 2, 1 \le i \le k$, then

$$R\left(P_n,\bigcup_{i=1}^k P_{m_i}\right) = \max\left\{n + \sum_{i=1}^k \left\lfloor \frac{m_i}{2} \right\rfloor - 1, \sum_{i=1}^k m_i + \left\lfloor \frac{n}{2} \right\rfloor - 1\right\}.$$

Corollary 5 Let $t \ge 0$ be an integer. If $m_i \ge 2$, $1 \le i \le k$ and $\sum_{i=1}^k \lceil m_i/2 \rceil \le \lceil n/2 \rceil$, then

$$R\left(P_n, L_s^t \vee \bigcup_{i=1}^k P_{m_i}\right) = (s+1)(n-1) + 1.$$

Proof By Theorem 8, P_n is $(\bigcup_{i=1}^k P_{m_i})$ -good. Take

$$a_1 = \sum_{i=1}^k \left\lceil \frac{m_i}{2} \right\rceil$$
 and $a_2 = \sum_{i=1}^k \left\lfloor \frac{m_i}{2} \right\rfloor$.

By Theorem 3, P_n is $(K_1 \lor \bigcup_{i=1}^k P_{m_i})$ -good. By Theorems 2 and 4 we get the assertion.

The graph $F_m = K_1 \vee mK_2$ is called a *fan*. From the above corollary, we can see that if $m \leq \lceil n/2 \rceil$, then $R(P_n, F_m) = 2n - 1$. This result was already obtained by Saleman and Broersma [15].

Let P_n^k be the *k*-th power of P_n , i.e., the graph with vertex set $\{v_1, \ldots, v_n\}$ and edge set $\{v_i v_j : |i - j| \le k\}$.

Theorem 9 (Pokrovskiy [13]) *If* $n \ge k + 1$, *then*

$$R(P_n, P_n^k) = k(n-1) + \left\lfloor \frac{n}{k+1} \right\rfloor.$$

Corollary 6 Let $t \ge 0$ be an integer. If $n \ge k + 1$, then

$$R(P_n, L_s^t \vee P_n^k) = (t+k)(n-1) + 1.$$

Proof Note that $\chi(P_n^k) = k + 1$ and $\sigma(P_n^k) = \lfloor n/(k+1) \rfloor$. By Theorem 9, P_n is P_n^k -good. Take

$$a_i = \left\lfloor \frac{n+i-1}{k+1} \right\rfloor, \ 1 \le i \le k+1.$$

It is easy to see that P_n^k is a subgraph of $K_{a_1,a_2,\ldots,a_{k+1}}$. By Theorems 3, 2 and 4, we have the assertion.

Theorem 10 (Sudarsana et al. [18]) If $m \ge 2$, then

$$R(P_n, 2K_m) = (m-1)(n-1) + 2.$$

Corollary 7 Let $t \ge 0$ be an integer. If $m \ge 2$ and $n \ge 3$, then

$$R(P_n, L_s^t \vee 2K_m) = (s + m - 1)(n - 1) + 1.$$

Proof By Theorem 10, P_n is $2K_m$ -good. Take $a_i = 2, 1 \le i \le m$. Note that $2K_m$ is a subgraph of $K_{a_1,a_2,...,a_m}$. By Theorems 3, 2 and 4, we have the assertion.

Theorem 11 (Sudarsana [17]) *If* $m, k \ge 2$ and $n \ge (k-2)((km-2)(m-1)+1)+3$, *then*

$$R(P_n, kK_m) = (m-1)(n-1) + k.$$

Corollary 8 Let $t \ge 0$ be an integer. If $m, k \ge 2$ and $n \ge (k-2)((km-2)(m-1) + 1) + 3$, then

$$R(P_n, L_s^t \vee kK_m) = (s + m - 1)(n - 1) + 1.$$

Proof By Theorem 11, P_n is kK_m -good. Take $a_i = k, 1 \le i \le m$. Note that kK_m is a subgraph of $K_{a_1,a_2,...,a_m}$. By Theorems 3, 2 and 4, we have the assertion.

The *cocktail party graph* (or *hyperoctahedral graph*) H_m is the graph obtained by removing a perfect matching from a complete graph K_{2m} (i.e., $H_m = \overline{mK_2}$).

Theorem 12 (Ali et al. [1]) If $n, m \ge 3$, then

$$R(P_n, H_m) = (n-1)(m-1) + 2.$$

Corollary 9 Let $t \ge 0$ be an integer. If $n, m \ge 3$, then

$$R(P_n, L_s^t \vee H_m) = (s + m - 1)(n - 1) + 1.$$

Proof By Theorem 12, P_n is H_m -good. Take $a_i = 2, 1 \le i \le m$. Note that $H_m = K_{a_1,a_2,...,a_m}$. By Theorems 3, 2 and 4, we have the assertion.

The sunflower graph SF_m is the graph on 2m + 1 vertices obtained by taking a wheel W_m with hub x, an *m*-cycle $v_1v_2 \cdots v_mv_1$, and additional *m* vertices w_1, w_2, \ldots, w_m , where w_i is joined by edges to $v_i, v_{i+1}, 1 \le i \le m$, where $v_{m+1} = v_1$.

Theorem 13 (Ali et al. [4]) If $m \ge 3$, then

$$R(P_n, SF_m) = \begin{cases} 2n + m/2 - 2, & m \text{ is even and } n \ge 4m^2 - 7m + 4; \\ 3n - 2, & m \text{ is odd and } n \ge 2m^2 - 9m + 11. \end{cases}$$

Corollary 10 Let $t \ge 0$ be an integer. If $m \ge 4$ is even and $n \ge 4m^2 - 7m + 4$, or $m \ge 3$ is odd and $n \ge 2m^2 - 9m + 11$, then

$$R(P_n, L_s^t \vee SF_m) = (s + 2 + par(m))(n - 1) + 1.$$

Proof By Theorem 13, P_n is SF_m -good. If m is even, then take $a_1 = m + 1$ and $a_2 = a_3 = m/2$; if m is odd, then $\sigma(SF_m) = 1$. By Theorems 3, 2 and 4, we have the assertion.

The *Beaded wheel* BW_m is a graph on 2m + 1 vertices which is obtained by inserting one vertex in each spoke of the wheel W_m .

Theorem 14 (Ali et al. [3]) If $m \ge 3$, then

$$R(P_n, BW_m) = \begin{cases} 2n-1 \ m \ is \ even \ and \ n \ge 2m^2 - 5m + 4; \\ 2n \ m \ is \ odd \ and \ n \ge 2m^2 - 5m + 3. \end{cases}$$

Corollary 11 Let $t \ge 0$ be an integer. If $m \ge 4$ is even and $n \ge 2m^2 - 5m + 4$, or $m \ge 3$ is odd and $n \ge 2m^2 - 5m + 3$, then

$$R(P_n, L_s^t \vee BW_m) = (s+2)(n-1) + 1.$$

Proof By Theorem 14, P_n is BW_m -good. If m is even, then $\sigma(BW_m) = 1$; if m is odd, then take $a_1 = m$ and $a_2 = a_3 = (m + 1)/2$. By Theorems 3, 2 and 4, we have the assertion.

The Jahangir graph J_{2m} is a graph on 2m + 1 vertices consisting of a cycle C_{2m} with one additional vertex which is adjacent alternatively to m vertices of C_{2m} .

Theorem 15 (Surahmat and Tomescu [19]) *If* $m \ge 2$ and $n \ge (4m-1)(m-1)+1$, *then*

$$R(P_n, J_{2m}) = n + m - 1.$$

Corollary 12 Let $t \ge 0$ be an integer. If $m \ge 2$ and $n \ge (4m - 1)(m - 1) + 1$, then

$$R(P_n, L_s^t \vee J_{2m}) = (t+1)(n-1) + 1.$$

Proof By Theorem 15, P_n is J_{2m} -good. Take $a_1 = m$ and $a_2 = m + 1$. By Theorems 3, 2 and 4, we have the assertion.

The generalized Jahangir graph $J_{k,m}$ is a graph on km + 1 vertices consisting of a cycle C_{km} with one additional vertex which is adjacent to m vertices of the C_{km} each of which is at distance k to the next one on C_{km} .

Theorem 16 (Ali et al. [2]) If $m, k \ge 2$, then

$$R(P_n, J_{k,m}) = \begin{cases} n + km/2 - 1, \ k \ is \ even \ and \ n \ge (2km - 1)(km/2 - 1) + 1; \\ 2n - 1 & k \ is \ odd, \ m \ is \ even \ and \ n \ge km(km - 2)/2; \\ 2n & k, \ m \ are \ odd \ and \ n \ge (km - 1)^2/2. \end{cases}$$

Corollary 13 Let $t \ge 0$ be an integer. If $n, m, k \ge 2$, and if k is even and $n \ge (2km - 1)(km/2 - 1) + 1$, or k is odd, m is even and $n \ge km(km - 2)/2$, or k, m are odd and $n \ge (km - 1)^2/2$, then

$$R(P_n, L_s^t \vee J_{k,m}) = (s+1+\operatorname{par}(k))(n-1)+1.$$

Proof By Theorem 16, P_n is $J_{k,m}$ -good. If k is even, then take $a_1 = km/2 + 1$ and $a_2 = km/2$; if k is odd, then take

$$a_1 = m \cdot \left\lfloor \frac{k+2}{3} \right\rfloor + 1, a_2 = m \cdot \left\lfloor \frac{k+1}{3} \right\rfloor \text{ and } a_3 = m \cdot \left\lfloor \frac{k}{3} \right\rfloor.$$

By Theorems 3, 2 and 4, we have the assertion.

3 Proof of Theorem 3

From Theorem 1, it is sufficient to prove that $R(P_n, K_1 \vee H) \leq k(n-1) + 1$. Let *G* be a graph of order k(n-1) + 1. Suppose that *G* contains no P_n and \overline{G} contains no $K_1 \vee H$.

Since *H* is a subgraph of $K_{a_1,a_2,...,a_k}$, we have

$$\sigma(H) \le a_k \le \left\lceil \frac{k(n-1)+1}{2k} \right\rceil = \left\lceil \frac{n}{2} - \frac{k-1}{2k} \right\rceil = \left\lceil \frac{n}{2} \right\rceil.$$

Since P_n is *H*-good,

$$R(P_n, H) = (\chi(H) - 1)(n - 1) + \sigma(H) \le (k - 1)(n - 1) + \left\lceil \frac{n}{2} \right\rceil.$$

If there is a vertex v in G with $d(v) \le \lfloor n/2 \rfloor - 1$, then let G' be a subgraph of G induced by $V(G) - \{v\} - N(v)$, where N(v) is the set of vertices adjacent to v in G. Note that

$$\nu(G') = \nu(G) - 1 - d(\nu) \ge k(n-1) + 1 - \left\lfloor \frac{n}{2} \right\rfloor$$
$$= (k-1)(n-1) + \left\lceil \frac{n}{2} \right\rceil \ge R(P_n, H).$$

This implies that G' contains a path P_n or $\overline{G'}$ contains a subgraph isomorphic to H. Note that v is nonadjacent to every vertex of G'. G contains a P_n or \overline{G} contains a $K_1 \vee H$, a contradiction. Thus we assume that $\delta(G) \ge \lfloor n/2 \rfloor$.

If there is a component *B* of *G* with $\nu(B) \ge n$, then by Dirac's Theorem (see [7]), *B* contains a P_n , a contradiction. Thus we assume that every component of *G* has order at most n - 1. Note that the minimum degree of *G* is at least $\lfloor n/2 \rfloor$. Every component of *G* has order between $\lfloor n/2 \rfloor + 1$ and n - 1.

If $\omega(G) \le k$, then $\nu(G) \le k(n-1)$; and if $\omega(G) \ge 2k$, then $\nu(G) \ge k(n+1)$, both a contradiction. This implies that

$$k+1 \le \omega(G) \le 2k-1.$$

Let $\mathcal{B} = \{B_1, B_2, \dots, B_{\omega}\}, \omega = \omega(G)$, be the set of the components of G. We assume without loss of generality that $\nu(B_1) \ge \nu(B_2) \ge \cdots \ge \nu(B_{\omega})$. Thus we have

$$\nu(B_i) \ge \left\lceil \frac{\nu(G) - (i-1)(n-1)}{\omega - i + 1} \right\rceil = \left\lceil \frac{(k-i+1)(n-1) + 1}{\omega - i + 1} \right\rceil, 1 \le i \le k < \omega.$$

Now we partition \mathcal{B} into k + 1 parts such that the order sum of the components in the *i*th part is at least a_i , $1 \le i \le k$.

Let $t = \omega - k - 1$. For $1 \le i \le t$, let $\mathcal{B}_i = \{B_{\omega-2i+1}, B_{\omega-2i}\}$; for $t + 1 \le i \le k$, let $\mathcal{B}_i = \{B_{i-t}\}$; and let $\mathcal{B}_{k+1} = \{B_{\omega}\}$.

If $1 \le i \le t$, then \mathcal{B}_i contains two components each of which has order at least $\lfloor n/2 \rfloor + 1$. Thus $\sum \{ v(B_j) : B_j \in \mathcal{B}_i \} \ge n + 1$. On the other hand,

$$a_i \leq \left\lceil \frac{k(n-1)+1}{k+i} \right\rceil \leq \left\lceil \frac{k(n-1)+1}{k} \right\rceil = n < \sum_{B_j \in \mathcal{B}_i} \nu(B_j).$$

If $t + 1 \le i \le k$, then $\mathcal{B}_i = \{B_{i-t}\}$. Note that

$$\nu(B_{i-t}) \ge \left\lceil \frac{(k-i+t+1)(n-1)+1}{\omega-i+t+1} \right\rceil = \left\lceil \frac{(\omega-i)(n-1)+1}{2\omega-k-i} \right\rceil.$$

🖄 Springer

Since $\omega - k \le i \le k$, one can check that

$$a_i \leq \left\lceil \frac{k(n-1)+1}{k+i} \right\rceil \leq \left\lceil \frac{(\omega-i)(n-1)+1}{2\omega-k-i} \right\rceil \leq \nu(B_{i-t}).$$

Clearly $\nu(B_{\omega}) \geq 1$. Thus \overline{G} contains a $K_{a_1,a_2,\ldots,a_k,1}$, which is a supergraph of $K_1 \vee H$, our final contradiction.

The proof is complete.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Ali, K., Baig, A.Q., Baskoro, E.T.: On the Ramsey number for a linear forest versus a cocktail party graph. J. Comb. Math. Comb. Comput. 71, 173–177 (2009)
- Ali, K., Baskoro, E.T., Tomescu, I.: On the Ramsey numbers for paths and generalized Jahangir graphs J_{s,m}. Bull. Math. Soc. Sci. Math. Roumanie Tome **51**(3), 177–182 (2008)
- Ali, K., Baskoro, E.T., Tomescu, I.: On the Ramsey number for paths and beaded wheels. J. Prime Res. Math. 5, 133–138 (2009)
- 4. Ali, K., Tomescu, I., Javaid, I.: On path-sunflower Ramsey numbers. Math. Rep. 17(4), 385–390 (2015)
- 5. Burr, S.A.: Ramsey numbers involving graphs with long suspended paths. J. Lond. Math. Soc. 24, 405–413 (1981)
- Chen, Y., Zhang, Y., Zhang, K.: The Ramsey numbers of paths versus wheels. Discret. Math. 290(1), 85–87 (2005)
- 7. Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2, 69–81 (1952)
- Faudree, R.J., Schelp, R.H.: Ramsey numbers for all linear forests. Discret. Math. 16(2), 149–155 (1976)
- Faudree, R.J., Lawrence, S.L., Parsons, T.D., Schelp, R.H.: Path-cycle Ramsey numbers. Discret. Math. 10(2), 269–277 (1974)
- Gerencsér, L., Gyárfás, A.: On Ramsey-type problems. Ann. Univ. Sci. Budapest Eötvös Sec. Math. 10, 167–170 (1967)
- Lin, Q., Li, Y., Dong, L.: Ramsey goodness and generalized stars. Eur. J. Comb. 31(5), 1228–1234 (2010)
- 12. Parsons, T.D.: Path-star Ramsey numbers. J. Combin. Theory Ser. B 17(1), 51–58 (1974)
- Pokrovskiy, A.: Calculating Ramsey numbers by partitioning coloured graphs, eprint arXiv:1309.3952
- Rousseau, C.C., Sheehan, J.: A class of Ramsey problems involving trees. J. Lond. Math. Soc. 18, 392–396 (1978)
- Salman, A.N.M., Broersma, H.J.: Path-fan Ramsey numbers. Discret. Appl. Math. 154(9), 1429–1436 (2006)
- Salman, A.N.M., Broersma, H.J.: Path-kipas Ramsey numbers. Discret. Appl. Math. 155(14), 1878– 1884 (2007)
- Sudarsana, I.W.: The goodness of long path with respect to multiple copies of complete graphs. J. Indones. Math. Soc. 20(1), 31–35 (2014)
- Sudarsana, I.W., Assiyatun, H., Adiwijaya, Musdalifah, S.: The Ramsey number for a linear forest versus two identical copies of complete graphs. Discret. Math. Alg. Appl. 2(4), 437–444 (2010)
- 19. Surahmat, Tomescu, I.: On path-Jahangir Ramsey numbers. Appl. Math. Sci. 8(99), 4899–4904 (2014)