On the Ramsey-Goodness of Paths

Binlong Li ${ }^{1,2}$ • Halina Bielak ${ }^{3}$

Received: 28 July 2015 / Revised: 12 February 2016 / Published online: 6 June 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract

For a graph G, we denote by $\nu(G)$ the order of G, by $\chi(G)$ the chromatic number of G and by $\sigma(G)$ the minimum size of a color class over all proper $\chi(G)$ colorings of G. For two graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the least integer r such that for every graph G on r vertices, either G contains a G_{1} or \bar{G} contains a G_{2}. Suppose that G_{1} is connected. We say that G_{1} is G_{2}-good if $R\left(G_{1}, G_{2}\right)=\left(\chi\left(G_{2}\right)-1\right)\left(\nu\left(G_{1}\right)-1\right)+\sigma\left(G_{2}\right)$. In this note, we obtain a condition for graphs H such that a path is H-good.

Keywords Ramsey number • Goodness • Path
Mathematics Subject Classification 05C55 •05D10

1 Introduction

Throughout this paper, all graphs are finite and simple. Let G_{1} and G_{2} be two graphs. The Ramsey number $R\left(G_{1}, G_{2}\right)$, is defined as the least integer r such that for every

[^0]graph G on r vertices, either G contains a G_{1} or \bar{G} contains a G_{2}, where \bar{G} is the complement of G.

We denote by $\nu(G)$ the order of G, by $\delta(G)$ the minimum degree of G, by $\omega(G)$ the component number of G, by $\chi(G)$ the chromatic number of G and by $\sigma(G)$ the minimum size of a color class over all proper $\chi(G)$-colorings of G. For two disjoint graphs G_{1} and G_{2}, the union of G_{1} and G_{2} is defined as $V\left(G_{1} \cup G_{2}\right)=$ $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$; and the join of G_{1} and G_{2} is defined as $V\left(G_{1} \vee G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$, and $E\left(G_{1} \vee G_{2}\right)=E\left(G_{1}+G_{2}\right) \cup\{x y$: $\left.x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$. The union of k disjoint copies of the same graph G is denoted by $k G$.

Theorem $1($ Burr [5]) For all graphs G and H, with G connected and $\nu(G) \geq \sigma(H)$,

$$
R(G, H) \geq(\chi(H)-1)(\nu(G)-1)+\sigma(H) .
$$

We say G is H-good if $R(G, H)=(\chi(H)-1)(\nu(G)-1)+\sigma(H)$. Lin et al. proved the following theorem on Ramsey-goodness of trees.

Theorem 2 (Lin et al. [11]) Let T be a tree and H be a graph. If T is H-good and $\sigma(H)=1$, then T is also $K_{1} \vee H$-good.

By P_{n} and C_{n} we denote the path and cycle on n vertices, respectively. For the case of T being a path, we get an extension of Theorem 2 .

Theorem 3 Let $n \geq 2$, and H be a subgraph of $K_{a_{1}, a_{2}, \ldots, a_{k}}, k=\chi(H)$, such that

$$
a_{i} \leq\left\lceil\frac{k(n-1)+1}{k+i}\right\rceil, 1 \leq i \leq k,
$$

If P_{n} is H-good, then P_{n} is also $K_{1} \vee H$-good.
Note that H is a subgraph of $K_{a_{1}, a_{2}, \ldots, a_{k}}$ if and only if there is a proper coloring of H such that the size of the i th color class is at most $a_{i}, 1 \leq i \leq k$.

We prove Theorem 3 in Sect. 3. In Sect. 2, we will apply Theorem 3 to show some results of Ramsey values involving paths.

Note that $\sigma\left(K_{1} \vee H\right)=1$. By Theorem 2, we can see that under the conditions of Theorems 2 and $3, P_{n}$ is $K_{t} \vee H$-good for all $t \geq 1$.

Theorem 4 Let $n \geq 3$ and H be a graph with $\sigma(H) \leq 2$. If P_{n} is H-good, then P_{n} is also $\left(2 K_{1} \vee H\right)$-good.

Proof Since P_{n} is H-good, $R\left(P_{n}, H\right)=(\chi(H)-1)(n-1)+\sigma(H)$. Set

$$
r=\left(\chi\left(2 K_{1} \vee H\right)-1\right)(n-1)+\sigma\left(2 K_{1} \vee H\right)=\chi(H)(n-1)+\sigma(H) .
$$

Then $r=R\left(P_{n}, H\right)+n-1$.
From Theorem 1, we have $R\left(P_{n}, 2 K_{1} \vee H\right) \geq r$. Now let G be an arbitrary graph of order r without P_{n} as a subgraph. We will prove that \bar{G} contains $2 K_{1} \vee H$. Let $P=v_{1} v_{2} \ldots v_{k}$ be a longest path of G. Thus $k \leq n-1$.

If $k=1$ then G is an empty graph and \bar{G} is complete. Note that $v(G)=r \geq$ $R\left(P_{n}, H\right)+2 \geq v(H)+2$. So \bar{G} contains $2 K_{1} \vee H$.

Now we assume that $2 \leq k \leq n-1$. Let G^{\prime} be a subgraph of G induced by $V(G)-V(P)$. Then $v\left(G^{\prime}\right)=r-k \geq R\left(P_{n}, H\right)$. So $\overline{G^{\prime}}$ contains H. Note that v_{1} and v_{k} are nonadjacent to every vertex of G^{\prime}. Thus \bar{G} contains $2 K_{1} \vee H$.

From Theorem 4 we get the following result.
Corollary 1 Let $n \geq 3$ and H be a graph with $\sigma(H) \leq 2$. If P_{n} is H-good, then P_{n} is also $\left(t K_{2} \vee H\right)$-good.

2 Some Corollaries

In this section, we will list some known results for the Ramsey numbers involving paths. After each result, we apply Theorems 2, 3 and 4 to get a new Ramsey numbers involving paths. We denote by $L_{s}^{t}(s \geq t+1)$ the graph obtained from K_{s+t} by removing the edges of a matching of size t, i.e., $L_{s}^{t}=\bar{t} K_{2} \vee K_{s-t}$. We use par (m) to denote the parity of m. In the following corollaries, we always assume that $n \geq 3$.

Theorem 5 (Gerencsér and Gyárfás [10]) If $2 \leq m \leq n$, then

$$
R\left(P_{n}, P_{m}\right)=n+\left\lfloor\frac{m}{2}\right\rfloor-1 .
$$

Corollary 2 Let $t \geq 0$ be an integer. If $2 \leq m \leq n$, then

$$
R\left(P_{n}, L_{s}^{t} \vee P_{m}\right)=(s+1)(n-1)+1 .
$$

Proof By Theorem 5, P_{n} is P_{m}-good. Take $a_{1}=\lceil m / 2\rceil$ and $a_{2}=\lfloor m / 2\rfloor$. By Theorem 3, P_{n} is ($K_{1} \vee P_{m}$)-good. So by Theorems 2 and 4 we get the assertion.

The kipas \widehat{K}_{m} is the graph obtained by joining a K_{1} and a path P_{m}. For the case $(s, t)=(1,0)$ in Corollary 2, we can get the values of path-kipas Ramsey numbers $R\left(P_{n}, \widehat{K}_{m}\right)$ for $3 \leq m \leq n$, which was already obtained by Saleman and Broersma [16].

Theorem 6 (Faudree et al. [9]) If $n \geq 2$ and $m \geq 3$, then

$$
R\left(P_{n}, C_{m}\right)= \begin{cases}2 n-1, & n \geq m \text { and } m \text { is odd } \\ n+m / 2-1, & n \geq m \text { and } m \text { is even } \\ \max \{m+\lfloor n / 2\rfloor-1,2 n-1\} & m>n \text { and } m \text { is odd } \\ m+\lfloor n / 2\rfloor-1, & m>n \text { and } m \text { is even }\end{cases}
$$

Corollary 3 Let $t \geq 0$ be an integer. If m is even, $4 \leq m \leq n$; or m is odd and $3 \leq m \leq\lceil 3 n / 2\rceil$, then

$$
R\left(P_{n}, L_{s}^{t} \vee C_{m}\right)=(s+\operatorname{par}(m)+1)(n-1)+1 .
$$

Proof From Theorem 6, one can check that P_{n} is C_{m}-good. For the case m is even, take $a_{1}=a_{2}=m / 2$ and apply Theorems 3,2 and 4 ; for the case m is odd, apply Theorems 2 and 4. In both case, we have the assertion.

The wheel W_{m} is the graph obtained by joining K_{1} and a cycle C_{m}. For the case $(s, t)=(1,0)$ in Corollary 3, we can get the values of path-wheel Ramsey numbers $R\left(P_{n}, C_{m}\right)$ under the condition of Corollary 3 , which was already obtained by Chen et al. [6].

Theorem 7 If $n \geq 2$, then

$$
R\left(P_{n}, m K_{1}\right)=m .
$$

This theorem is trivial and the following corollary can be get immediately. We omit the proof.

Corollary 4 Let $t \geq 0$ be an integer. If $m \leq\lceil n / 2\rceil$, then

$$
R\left(P_{n}, L_{s}^{t} \vee m K_{1}\right)=s(n-1)+1 .
$$

For $m \geq 2$, the graph $K_{1, m}$ is called a star; the graph $K_{2} \vee m K_{1}$ is called a book; and the graph $K_{t} \vee m K_{1}, t \geq 3$, is called a generalized book. We remark here that the Ramsey numbers of paths versus stars and paths versus (generalized) books under the condition of Corollary 4 was already obtained by Parsons [12], and Rousseau and Sheehan [14], respectively.

Theorem 8 (Faudree and Schelp [8]) If $n, m_{i} \geq 2,1 \leq i \leq k$, then

$$
R\left(P_{n}, \bigcup_{i=1}^{k} P_{m_{i}}\right)=\max \left\{n+\sum_{i=1}^{k}\left\lfloor\frac{m_{i}}{2}\right\rfloor-1, \sum_{i=1}^{k} m_{i}+\left\lfloor\frac{n}{2}\right\rfloor-1\right\} .
$$

Corollary 5 Let $t \geq 0$ be an integer. If $m_{i} \geq 2,1 \leq i \leq k$ and $\sum_{i=1}^{k}\left\lceil m_{i} / 2\right\rceil \leq\lceil n / 2\rceil$, then

$$
R\left(P_{n}, L_{s}^{t} \vee \bigcup_{i=1}^{k} P_{m_{i}}\right)=(s+1)(n-1)+1 .
$$

Proof By Theorem $8, P_{n}$ is $\left(\bigcup_{i=1}^{k} P_{m_{i}}\right)$-good. Take

$$
a_{1}=\sum_{i=1}^{k}\left\lceil\frac{m_{i}}{2}\right\rceil \text { and } a_{2}=\sum_{i=1}^{k}\left\lfloor\frac{m_{i}}{2}\right\rfloor .
$$

By Theorem 3, P_{n} is $\left(K_{1} \vee \bigcup_{i=1}^{k} P_{m_{i}}\right)$-good. By Theorems 2 and 4 we get the assertion.

The graph $F_{m}=K_{1} \vee m K_{2}$ is called a fan. From the above corollary, we can see that if $m \leq\lceil n / 2\rceil$, then $R\left(P_{n}, F_{m}\right)=2 n-1$. This result was already obtained by Saleman and Broersma [15].

Let P_{n}^{k} be the k-th power of P_{n}, i.e., the graph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $\left\{v_{i} v_{j}:|i-j| \leq k\right\}$.

Theorem 9 (Pokrovskiy [13]) If $n \geq k+1$, then

$$
R\left(P_{n}, P_{n}^{k}\right)=k(n-1)+\left\lfloor\frac{n}{k+1}\right\rfloor .
$$

Corollary 6 Let $t \geq 0$ be an integer. If $n \geq k+1$, then

$$
R\left(P_{n}, L_{s}^{t} \vee P_{n}^{k}\right)=(t+k)(n-1)+1
$$

Proof Note that $\chi\left(P_{n}^{k}\right)=k+1$ and $\sigma\left(P_{n}^{k}\right)=\lfloor n /(k+1)\rfloor$. By Theorem 9, P_{n} is P_{n}^{k}-good. Take

$$
a_{i}=\left\lfloor\frac{n+i-1}{k+1}\right\rfloor, 1 \leq i \leq k+1 .
$$

It is easy to see that P_{n}^{k} is a subgraph of $K_{a_{1}, a_{2}, \ldots, a_{k+1}}$. By Theorems 3, 2 and 4, we have the assertion.

Theorem 10 (Sudarsana et al. [18]) If $m \geq 2$, then

$$
R\left(P_{n}, 2 K_{m}\right)=(m-1)(n-1)+2 .
$$

Corollary 7 Let $t \geq 0$ be an integer. If $m \geq 2$ and $n \geq 3$, then

$$
R\left(P_{n}, L_{s}^{t} \vee 2 K_{m}\right)=(s+m-1)(n-1)+1 .
$$

Proof By Theorem 10, P_{n} is $2 K_{m}$-good. Take $a_{i}=2,1 \leq i \leq m$. Note that $2 K_{m}$ is a subgraph of $K_{a_{1}, a_{2}, \ldots, a_{m}}$. By Theorems 3, 2 and 4, we have the assertion.

Theorem 11 (Sudarsana [17]) If $m, k \geq 2$ and $n \geq(k-2)((k m-2)(m-1)+1)+3$, then

$$
R\left(P_{n}, k K_{m}\right)=(m-1)(n-1)+k .
$$

Corollary 8 Let $t \geq 0$ be an integer. If $m, k \geq 2$ and $n \geq(k-2)((k m-2)(m-1)+$ 1) +3 , then

$$
R\left(P_{n}, L_{s}^{t} \vee k K_{m}\right)=(s+m-1)(n-1)+1
$$

Proof By Theorem 11, P_{n} is $k K_{m}$-good. Take $a_{i}=k, 1 \leq i \leq m$. Note that $k K_{m}$ is a subgraph of $K_{a_{1}, a_{2}, \ldots, a_{m}}$. By Theorems 3, 2 and 4, we have the assertion.

The cocktail party graph (or hyperoctahedral graph) H_{m} is the graph obtained by removing a perfect matching from a complete graph $K_{2 m}$ (i.e., $H_{m}=\overline{m K_{2}}$).

Theorem 12 (Ali et al. [1]) If $n, m \geq 3$, then

$$
R\left(P_{n}, H_{m}\right)=(n-1)(m-1)+2 .
$$

Corollary 9 Let $t \geq 0$ be an integer. If $n, m \geq 3$, then

$$
R\left(P_{n}, L_{s}^{t} \vee H_{m}\right)=(s+m-1)(n-1)+1 .
$$

Proof By Theorem 12, P_{n} is H_{m}-good. Take $a_{i}=2,1 \leq i \leq m$. Note that $H_{m}=$ $K_{a_{1}, a_{2}, \ldots, a_{m}}$. By Theorems 3, 2 and 4, we have the assertion.

The sunflower graph $S F_{m}$ is the graph on $2 m+1$ vertices obtained by taking a wheel W_{m} with hub x, an m-cycle $v_{1} v_{2} \cdots v_{m} v_{1}$, and additional m vertices $w_{1}, w_{2}, \ldots, w_{m}$, where w_{i} is joined by edges to $v_{i}, v_{i+1}, 1 \leq i \leq m$, where $v_{m+1}=v_{1}$.

Theorem 13 (Ali et al. [4]) If $m \geq 3$, then

$$
R\left(P_{n}, S F_{m}\right)= \begin{cases}2 n+m / 2-2, & m \text { is even and } n \geq 4 m^{2}-7 m+4 \\ 3 n-2, & m \text { is odd and } n \geq 2 m^{2}-9 m+11\end{cases}
$$

Corollary 10 Let $t \geq 0$ be an integer. If $m \geq 4$ is even and $n \geq 4 m^{2}-7 m+4$, or $m \geq 3$ is odd and $n \geq 2 m^{2}-9 m+11$, then

$$
R\left(P_{n}, L_{s}^{t} \vee S F_{m}\right)=(s+2+\operatorname{par}(m))(n-1)+1
$$

Proof By Theorem 13, P_{n} is $S F_{m}$-good. If m is even, then take $a_{1}=m+1$ and $a_{2}=a_{3}=m / 2$; if m is odd, then $\sigma\left(S F_{m}\right)=1$. By Theorems 3, 2 and 4 , we have the assertion.

The Beaded wheel $B W_{m}$ is a graph on $2 m+1$ vertices which is obtained by inserting one vertex in each spoke of the wheel W_{m}.

Theorem 14 (Ali et al. [3]) If $m \geq 3$, then

$$
R\left(P_{n}, B W_{m}\right)=\left\{\begin{array}{l}
2 n-1 m \text { is even and } n \geq 2 m^{2}-5 m+4 \\
2 n \quad m \text { is odd and } n \geq 2 m^{2}-5 m+3
\end{array}\right.
$$

Corollary 11 Let $t \geq 0$ be an integer. If $m \geq 4$ is even and $n \geq 2 m^{2}-5 m+4$, or $m \geq 3$ is odd and $n \geq 2 m^{2}-5 m+3$, then

$$
R\left(P_{n}, L_{s}^{t} \vee B W_{m}\right)=(s+2)(n-1)+1
$$

Proof By Theorem 14, P_{n} is $B W_{m}$-good. If m is even, then $\sigma\left(B W_{m}\right)=1$; if m is odd, then take $a_{1}=m$ and $a_{2}=a_{3}=(m+1) / 2$. By Theorems 3, 2 and 4, we have the assertion.

The Jahangir graph $J_{2 m}$ is a graph on $2 m+1$ vertices consisting of a cycle $C_{2 m}$ with one additional vertex which is adjacent alternatively to m vertices of $C_{2 m}$.

Theorem 15 (Surahmat and Tomescu [19]) If $m \geq 2$ and $n \geq(4 m-1)(m-1)+1$, then

$$
R\left(P_{n}, J_{2 m}\right)=n+m-1
$$

Corollary 12 Let $t \geq 0$ be an integer. If $m \geq 2$ and $n \geq(4 m-1)(m-1)+1$, then

$$
R\left(P_{n}, L_{s}^{t} \vee J_{2 m}\right)=(t+1)(n-1)+1 .
$$

Proof By Theorem 15, P_{n} is $J_{2 m}$-good. Take $a_{1}=m$ and $a_{2}=m+1$. By Theorems 3, 2 and 4 , we have the assertion.

The generalized Jahangir graph $J_{k, m}$ is a graph on $k m+1$ vertices consisting of a cycle $C_{k m}$ with one additional vertex which is adjacent to m vertices of the $C_{k m}$ each of which is at distance k to the next one on $C_{k m}$.

Theorem 16 (Ali et al. [2]) If $m, k \geq 2$, then

$$
R\left(P_{n}, J_{k, m}\right)= \begin{cases}n+k m / 2-1, & k \text { is even and } n \geq(2 k m-1)(k m / 2-1)+1 \\ 2 n-1 & k \text { is odd, } m \text { is even and } n \geq k m(k m-2) / 2 \\ 2 n & k, m \text { are odd and } n \geq(k m-1)^{2} / 2\end{cases}
$$

Corollary 13 Let $t \geq 0$ be an integer. If $n, m, k \geq 2$, and if k is even and $n \geq$ $(2 k m-1)(k m / 2-1)+1$, or k is odd, m is even and $n \geq k m(k m-2) / 2$, or k, m are odd and $n \geq(k m-1)^{2} / 2$, then

$$
R\left(P_{n}, L_{s}^{t} \vee J_{k, m}\right)=(s+1+\operatorname{par}(k))(n-1)+1 .
$$

Proof By Theorem 16, P_{n} is $J_{k, m}$-good. If k is even, then take $a_{1}=k m / 2+1$ and $a_{2}=k m / 2$; if k is odd, then take

$$
a_{1}=m \cdot\left\lfloor\frac{k+2}{3}\right\rfloor+1, a_{2}=m \cdot\left\lfloor\frac{k+1}{3}\right\rfloor \text { and } a_{3}=m \cdot\left\lfloor\frac{k}{3}\right\rfloor .
$$

By Theorems 3, 2 and 4, we have the assertion.

3 Proof of Theorem 3

From Theorem 1, it is sufficient to prove that $R\left(P_{n}, K_{1} \vee H\right) \leq k(n-1)+1$. Let G be a graph of order $k(n-1)+1$. Suppose that G contains no P_{n} and \bar{G} contains no $K_{1} \vee H$.

Since H is a subgraph of $K_{a_{1}, a_{2}, \ldots, a_{k}}$, we have

$$
\sigma(H) \leq a_{k} \leq\left\lceil\frac{k(n-1)+1}{2 k}\right\rceil=\left\lceil\frac{n}{2}-\frac{k-1}{2 k}\right\rceil=\left\lceil\frac{n}{2}\right\rceil .
$$

Since P_{n} is H-good,

$$
R\left(P_{n}, H\right)=(\chi(H)-1)(n-1)+\sigma(H) \leq(k-1)(n-1)+\left\lceil\frac{n}{2}\right\rceil
$$

If there is a vertex v in G with $d(v) \leq\lfloor n / 2\rfloor-1$, then let G^{\prime} be a subgraph of G induced by $V(G)-\{v\}-N(v)$, where $N(v)$ is the set of vertices adjacent to v in G. Note that

$$
\begin{aligned}
v\left(G^{\prime}\right) & =v(G)-1-d(v) \geq k(n-1)+1-\left\lfloor\frac{n}{2}\right\rfloor \\
& =(k-1)(n-1)+\left\lceil\frac{n}{2}\right\rceil \geq R\left(P_{n}, H\right)
\end{aligned}
$$

This implies that G^{\prime} contains a path P_{n} or $\overline{G^{\prime}}$ contains a subgraph isomorphic to H. Note that v is nonadjacent to every vertex of G^{\prime}. G contains a P_{n} or \bar{G} contains a $K_{1} \vee H$, a contradiction. Thus we assume that $\delta(G) \geq\lfloor n / 2\rfloor$.

If there is a component B of G with $\nu(B) \geq n$, then by Dirac's Theorem (see [7]), B contains a P_{n}, a contradiction. Thus we assume that every component of G has order at most $n-1$. Note that the minimum degree of G is at least $\lfloor n / 2\rfloor$. Every component of G has order between $\lfloor n / 2\rfloor+1$ and $n-1$.

If $\omega(G) \leq k$, then $\nu(G) \leq k(n-1)$; and if $\omega(G) \geq 2 k$, then $\nu(G) \geq k(n+1)$, both a contradiction. This implies that

$$
k+1 \leq \omega(G) \leq 2 k-1
$$

Let $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{\omega}\right\}, \omega=\omega(G)$, be the set of the components of G. We assume without loss of generality that $v\left(B_{1}\right) \geq v\left(B_{2}\right) \geq \cdots \geq v\left(B_{\omega}\right)$. Thus we have
$\nu\left(B_{i}\right) \geq\left\lceil\frac{\nu(G)-(i-1)(n-1)}{\omega-i+1}\right\rceil=\left\lceil\frac{(k-i+1)(n-1)+1}{\omega-i+1}\right\rceil, 1 \leq i \leq k<\omega$.
Now we partition \mathcal{B} into $k+1$ parts such that the order sum of the components in the i th part is at least $a_{i}, 1 \leq i \leq k$.

Let $t=\omega-k-1$. For $1 \leq i \leq t$, let $\mathcal{B}_{i}=\left\{B_{\omega-2 i+1}, B_{\omega-2 i}\right\}$; for $t+1 \leq i \leq k$, let $\mathcal{B}_{i}=\left\{B_{i-t}\right\}$; and let $\mathcal{B}_{k+1}=\left\{B_{\omega}\right\}$.

If $1 \leq i \leq t$, then \mathcal{B}_{i} contains two components each of which has order at least $\lfloor n / 2\rfloor+1$. Thus $\sum\left\{v\left(B_{j}\right): B_{j} \in \mathcal{B}_{i}\right\} \geq n+1$. On the other hand,

$$
a_{i} \leq\left\lceil\frac{k(n-1)+1}{k+i}\right\rceil \leq\left\lceil\frac{k(n-1)+1}{k}\right\rceil=n<\sum_{B_{j} \in \mathcal{B}_{i}} \nu\left(B_{j}\right) .
$$

If $t+1 \leq i \leq k$, then $\mathcal{B}_{i}=\left\{B_{i-t}\right\}$. Note that

$$
\nu\left(B_{i-t}\right) \geq\left\lceil\frac{(k-i+t+1)(n-1)+1}{\omega-i+t+1}\right\rceil=\left\lceil\frac{(\omega-i)(n-1)+1}{2 \omega-k-i}\right\rceil .
$$

Since $\omega-k \leq i \leq k$, one can check that

$$
a_{i} \leq\left\lceil\frac{k(n-1)+1}{k+i}\right\rceil \leq\left\lceil\frac{(\omega-i)(n-1)+1}{2 \omega-k-i}\right\rceil \leq \nu\left(B_{i-t}\right) .
$$

Clearly $v\left(B_{\omega}\right) \geq 1$. Thus \bar{G} contains a $K_{a_{1}, a_{2}, \ldots, a_{k}, 1}$, which is a supergraph of $K_{1} \vee H$, our final contradiction.

The proof is complete.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Ali, K., Baig, A.Q., Baskoro, E.T.: On the Ramsey number for a linear forest versus a cocktail party graph. J. Comb. Math. Comb. Comput. 71, 173-177 (2009)
2. Ali, K., Baskoro, E.T., Tomescu, I.: On the Ramsey numbers for paths and generalized Jahangir graphs $J_{s, m}$. Bull. Math. Soc. Sci. Math. Roumanie Tome 51(3), 177-182 (2008)
3. Ali, K., Baskoro, E.T., Tomescu, I.: On the Ramsey number for paths and beaded wheels. J. Prime Res. Math. 5, 133-138 (2009)
4. Ali, K., Tomescu, I., Javaid, I.: On path-sunflower Ramsey numbers. Math. Rep. 17(4), 385-390 (2015)
5. Burr, S.A.: Ramsey numbers involving graphs with long suspended paths. J. Lond. Math. Soc. 24, 405-413 (1981)
6. Chen, Y., Zhang, Y., Zhang, K.: The Ramsey numbers of paths versus wheels. Discret. Math. 290(1), 85-87 (2005)
7. Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2, 69-81 (1952)
8. Faudree, R.J., Schelp, R.H.: Ramsey numbers for all linear forests. Discret. Math. 16(2), 149-155 (1976)
9. Faudree, R.J., Lawrence, S.L., Parsons, T.D., Schelp, R.H.: Path-cycle Ramsey numbers. Discret. Math. 10(2), 269-277 (1974)
10. Gerencsér, L., Gyárfás, A.: On Ramsey-type problems. Ann. Univ. Sci. Budapest Eötvös Sec. Math. 10, 167-170 (1967)
11. Lin, Q., Li, Y., Dong, L.: Ramsey goodness and generalized stars. Eur. J. Comb. 31(5), 1228-1234 (2010)
12. Parsons, T.D.: Path-star Ramsey numbers. J. Combin. Theory Ser. B 17(1), 51-58 (1974)
13. Pokrovskiy, A.: Calculating Ramsey numbers by partitioning coloured graphs, eprint arXiv:1309.3952
14. Rousseau, C.C., Sheehan, J.: A class of Ramsey problems involving trees. J. Lond. Math. Soc. 18, 392-396 (1978)
15. Salman, A.N.M., Broersma, H.J.: Path-fan Ramsey numbers. Discret. Appl. Math. 154(9), 1429-1436 (2006)
16. Salman, A.N.M., Broersma, H.J.: Path-kipas Ramsey numbers. Discret. Appl. Math. 155(14), 18781884 (2007)
17. Sudarsana, I.W.: The goodness of long path with respect to multiple copies of complete graphs. J. Indones. Math. Soc. 20(1), 31-35 (2014)
18. Sudarsana, I.W., Assiyatun, H., Adiwijaya, Musdalifah, S.: The Ramsey number for a linear forest versus two identical copies of complete graphs. Discret. Math. Alg. Appl. 2(4), 437-444 (2010)
19. Surahmat, Tomescu, I.: On path-Jahangir Ramsey numbers. Appl. Math. Sci. 8(99), 4899-4904 (2014)

[^0]: The first author is supported by NSFC (No. 11271300) and the project NEXLIZ - CZ.1.07/2.3.00/30.0038.
 Halina Bielak
 hbiel@hektor.umcs.lublin.pl
 Binlong Li
 libinlong@mail.nwpu.edu.cn
 1 Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
 2 European Centre of Excellence NTIS, University of West Bohemia, 30614 Pilsen, Czech Republic
 3 Institute of Mathematics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland

