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1 Introduction

A k × n Latin rectangle is a k × n matrix L , with symbols from {1, 2, . . . , n}, such
that each row and each column contains only distinct symbols. If k = n then L is a
Latin square of order n. Let Lk,n be the number of k × n Latin rectangles.

The main purpose of this article is to report the computation of previously unknown
values of Lk,n (for 4 ≤ k ≤ 6). To the end, we use a formula by Doyle, for which
we give a proof for in Sect. 3. We use these values to provide evidentiary support
for a question we pose regarding the divisors of Lk,n (Question 4). We also present
conjectures about divisors of K3,n (Conjecture 5). Questions about divisors of Ln,n

were previously raised by Alter [1] and about divisors of Lk,n in [35].
A Latin rectangle is called normalised if the first row is (1, 2, . . . , n), and reduced

if the first row is (1, 2, . . . , n) and the first column is (1, 2, . . . , k)T . Let Kk,n denote
the number of normalised k × n Latin rectangles and let Rk,n denote the number of
reduced k × n Latin rectangles. In the case of Latin squares, the numbers Ln,n , Kn,n

and Rn,n will be denoted Ln , Kn and Rn , respectively. The three numbers Lk,n , Kk,n

and Rk,n are related by

Lk,n = n!Kk,n = n!(n − 1)!
(n − k)! Rk,n .

In particular

Ln = n!Kn = n!(n − 1)!Rn .

So finding the value of Lk,n is essentially the same as finding the value of Rk,n or Kk,n .
McKay and Wanless [23] published a table of values for Rk,n when 2 ≤ k ≤ n ≤ 11,
which were obtained by lengthy computer enumerations. Some values of Rk,n for
k ∈ {4, 5, 6}were reported in [36]. Also see [36] for a survey of the formulae involving
the number of Latin rectangles.

Gessel [15] proved that for every k ≥ 1, there exists a finite M = M(k) such that
there exists M + 1 polynomials ci (n) such that

∑

0≤i≤M

ci (n)Lk,n+i = 0

for all n ≥ k (other than when each ci (n) = 0). So recurrence relations theoretically
exist for Lk,n for any fixed k. For example, we know that

(n + 1)L1,n − L1,n+1 = 0

since L1,n = n! and

(n + 2)(n + 1)2L2,n + (n + 2)(n + 1)L2,n+1 − L2,n+2 = 0

since L2,n = n!dn where dn is the number of derangements of n elements, and dn

satisfies the well-known recurrence dn = (n − 1)(dn−1 + dn−2) where d0 = 1 and
d1 = 0. Theorem 1 (in the next section) gives such a recurrence for k = 3.
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In the next section we give an historical survey of the formulae for R3,n , the case of
three-line Latin rectangles. Despite the numerous formulae for R3,n , we are still unable
to fully explain the growth in the largest power of 2 that divides R3,n . Afterwards, we
use a formula by Doyle (improving on the implementation used in [35]) to compute
values of Rk,n when 4 ≤ k ≤ 6. We give a proof of this formula in Sect. 3. We find
that the divisors of Rk,n with k ∈ {4, 5, 6} display similar behaviour to that of R3,n .
Based on this data, in Sect. 5 we discuss the asymptotic behaviour of the divisors of
Rk,n for fixed k and present some conjectures about the divisors of R3,n .

2 Three-line Latin Rectangles

The enumeration of three-line Latin rectangles has a long history, which we will now
review in detail. We also direct the reader to [36], which gives a survey of formulae
for Lk,n for general k, but does not go into detail about the three-line case. We list the
first few non-zero values of L3,n , K3,n and R3,n in Table 1.

There are many known general formulae for Lk,n (see [36]), of which L3,n is
a special case. For example, the following result originated with MacMahon [22] in
1898. Let X = (xi j ) be a k×n matrixwhose symbols are the kn variables xi j .We index
the rows of X by [k] := {1, 2, . . . , k} and the columns of X by [n] := {1, 2, . . . , n}.
Let Sk,n be the set of injections σ : [k] → [n]. We define the permanent of the
rectangular matrix X to be

per(X) =
∑

σ∈Sk,n

k∏

i=1

xiσ(i).

Then Lk,n is the coefficient of
∏k

i=1
∏n

j=1 xi j in per(X)n . Let Bk,n be the set of k × n
(0, 1)-matrices. Fu [13] and Shao and Wei [31] gave the formula

Lk,n =
∑

A∈Bk,n

(−1)σ0(A)per(A)n,

where σ0(A) is the number of 0 elements in A, which was generalised in [36] (see
also [23]).

The first published formula specifically for L3,n seems to be by Jacob [19] in 1930,
although some errors in [19] were later rectified byKerawala [20] to give the following
theorem.

Table 1 L3,n , K3,n and R3,n for small n

n 3 4 5 6 7 8 Sloane [34] ref.

L3,n 12 576 66240 15321600 5411750400 2834466324480

K3,n 2 24 552 21280 1073760 70299264 A000186

R3,n 1 4 46 1064 35792 1673792 A001623
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Theorem 1 For any n ≥ 3,

∑

0≤i≤5

ci (n)K3,n+i = 0

where

c0(n) = − 4(n + 1)(n + 2)(n + 3)(n + 4)2,

c1(n) = 2(n + 2)(n + 3)(n + 4)(n2 + 5n + 3),

c2(n) = (n + 3)(n + 4)(n2 + 8n + 13),

c3(n) = (n + 3)(n + 4)(n2 + 8n + 17),

c4(n) = (n + 4)(n2 + 8n + 17),

c5(n) = − (n + 3).

Riordan [26] proved that K3,n ∼ n!2 exp(−3), which he described as “a result
which Kerawala surmised but failed to prove, though his numerical evidence was
practically conclusive (agreeing with exp(−3) to seven decimal places).” Jacob [19]
also mentioned the possibility of n!2/K3,n → exp(3), but it was subsequently aban-
doned. This asymptotic formula was generalised by Erdős and Kaplansky [11], who
found that

Lk,n ∼ n!k exp ( − k(k − 1)/2
)

for k = O
(
(log n)3/2−ε

)
, which has since been extended (see [36] for an history). The

most up-to-date asymptotic enumeration is by Godsil and McKay [17], who proved

Lk,n ∼ n!k
(

n(n − 1) · · · (n − k + 1)/nk
)n

(1 − k/n)−n/2 exp(−k/2)

as n → ∞ with k = o(n6/7).
In [27] (see also [29]), Riordan gave a formula for K3,n that involves the problème

de ménages. Specifically

K3,n =
�n/2	∑

i=0

(
n

i

)
di dn−i un−2i (1)

where dn is the number of derangements of n elements (Sloane’s [34] A000166) and
un is given by

un =
n∑

i=0

(−1)i 2n

2n − i

(
2n − i

i

)
(n − i)!, (2)

where u0 = 1. The numbers un for n ≥ 2 are the ménages numbers (Sloane’s
A000179). The ménages numbers can also be defined as the number of permuta-
tions σ of [n] such that σ(i) 
≡ i (mod n) and σ(i) 
≡ i + 1 (mod n) for all i ∈ [n].
However, for (1) to be valid, we require u1 = −1, which is inconsistent with the
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“number of σ” definition, but is consistent with (2) (this issue was raised by Vladimir
Shevelev on Sloane’s A000186). Riordan’s formula (1) was generalised by Moser
[24] to count normalised three-line Latin rectangles where the derangement defined
by the second row does not have cycle lengths belonging to some set S. A related
generalisation was given by Shevelev [32] where instead the cycle lengths belong to
S.

Riordan [28] also gave the recurrence equation

K3,n = n2K3,n−1 + n(n − 1)K3,n−2 + 2n(n − 1)(n − 2)K3,n−3 + sn (3)

where
sn = −nsn−1 − (n − 1)2n (4)

and s0 = 1. We find that using (3)–(4) is the fastest way to compute K3,n in practice.
This is unsurprising as it requires only a finite number of arithmetic operations to
compute Kk,n (from previous terms and the auxiliary function sn). With the exception
of Kerawala’s recurrence (Theorem 1), all other formulae for Lk,n we survey require
a number of arithmetic operations which grows with n.

Dulmage [9] posed an “explicit (though complicated)” formula for L3,n as a prob-
lem, which was later refined by Dulmage and McMaster [10] who gave

K3,n =
�n/2	∑

j=0

n−2 j∑

i=0

(−1) j+i
(

n

j, j, i

)
a j+i,i a2

n− j−i,n−2 j−i ,

where

an,p =
p∑

i=0

(−1)i
(

p

i

)
(n − i)!,

which they used to compute K3,n for n ≤ 40 on an IBM 370/158 in approximately
five seconds.

Bogart and Longyear [3] gave

L3,n = n!2
∑

p+q+r+s+d=n

(−1)p+q+r 2s (p + d)! (q + d)! (r + d)!
d!2 p! q! r ! s!

where the sum is over all non-negative integers p, q, r , s and d which sum to n. Bogart
and Longyear used their formula to find L3,n for n ≤ 11 (although some typographical
errors were pointed out in [39]) and gave an approximation of L3,n for n ≤ 20.

Riordan [28] said Yamamoto [44] found the equation

R3,n =
∑

a+b+c=n

n(n − 3)!(−1)b 2
ca!
c!

(
3a + b + 2

b

)
,

where the sum is over all non-negative integers a, b and c which sum to n.
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Goulden and Jackson [18] showed that K3,n is the coefficient of xn/n! in the series
expansion of

e2x
∑

i≥0

xi

(1 + x)3i+3 .

Thiswas generalised byGessel [14] to count pairs of discordant derangements. Specif-
ically, the number of pairs (π, σ ) of derangements of [n] such that πσ−1 is also a
derangement, π has a cycles and σ has b cycles is the coefficient of αaβbxn in

e2αβx
∑

i≥0

(α)i (β)i

i !
xi

(1 + αx)i+β(1 + βx)i+α(1 + x)n+αβ

where (α)i = α(α + 1) · · · (α + i − 1).
Riordan [28] gave the recurrence congruence R3,n+p ≡ 2R3,n (mod p) for all odd

primes p, provided n ≥ 3, which was generalised by Carlitz [5] to R3,n+t ≡ 2t R3,n
(mod t) for all t ≥ 1. This was generalised to k-line Latin rectangles in [39], who
gave

Rk,n+t ≡ (
(−1)k−1(k − 1)!)t Rk,n (mod t) (5)

for all k ≥ 1 and t ≥ 1 provided n ≥ k. It was also noted in [39] that some primes p
do not divide R3,n for any n ≥ 3. For example, any prime

p ∈ {3, 5, 11, 29, 37, 41, 43, 53, 67, 79, 83, 97}

does not divide R3,n for all n ≥ 3 (see [36,39]).
There are also published formulae for four-line Latin rectangles by Light Jr. [21],

Pranesachar et al. [2,25] and Doyle [6]. We will discuss Doyle’s formula in the next
section, which is, by far, the best method for finding the exact value of Rk,n for
4 ≤ k ≤ 6.

3 Doyle’s Formula

The computation of Lk,n for k ∈ {1, 2, 3} can be considered as effectively “solved”:
we have L1,n = n!, and L2,n can be found by computing the number of derangements
dn . For n = 3, using Riordan’s recurrence (i.e., (3)–(4)), we computed L3,n for all
n ≤ 221 ≈ 2 × 106 on a desktop computer in under 38 hours (we use these results in
Section 5). Aswewill see, computing Lk,n for k ≥ 4 ismuchmore difficult practically.

Exact enumeration is difficult for k > 3. – Skau [33]

In [6], Doyle gave formulae for Kk,n for k ≤ 4 and indicated how they could be
generalised to arbitrary k. This generalisation was subsequently used in [36] to find
values Kk,n when k ≤ 6 (although a proof was not given). For the sake of rigour,
we will give a proof of Doyle’s generalised formula. The overall idea of the formula
is to use Inclusion-Exclusion on ordered n-tuples of columns. We include all such
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n-tuples, then exclude those that clash. To count the number of n-tuples that clash,
Möbius Inversion is used on each column, counting the number of arrangements that
“avoid” a certain substructure (e.g. symbol 1 in row 2).

LetR be the set of non-negative integer vectors s = (si )1≤i≤2k−1 such that
∑

i si =
n. For 1 ≤ i ≤ 2k−1, let Δi = (δi j )1≤ j≤2k−1 , where δi j is the Kronecker δ-function.
For any non-negative integer i let b j (i) be the j-th binary digit of i , for example(
b j (13)

)
j≥1 = (1, 0, 1, 1, 0, 0, . . .). Let ||s|| = ∑

1≤i≤2k−1
∑

1≤ j≤k−1 si b j (i).

Theorem 2

Kk,n =
∑

s∈R
(−1)||s||

(
n

s1, s2, . . . , s2k−1

) 2k−1∏

i=1

g
(
s − Δi

)si (6)

where for a = (a1, a2, . . . , a2k−1),

g(a) =
∑

P∈Pk−1

∏

p∈P

(−1)|p|−1(|p| − 1)! f p(a) (7)

where Pk−1 is the set of partitions of {1, 2, . . . , k − 1} and

f p(a) =
∑

i :b j (i)=0∀ j∈p

ai (8)

for all p ⊆ {1, 2, . . . , k − 1}.
Proof Let S be the set of n × (k − 1) (0, 1)-matrices and let D = (di j ) ∈ S. We say
a matrix D′ = (d ′

i j ) ∈ S avoids D if d ′
i j = 0 whenever di j = 1. Let

– Z = Z(D) = {D′ ∈ S : D′ avoids D},
– X = X (D) = {D′ ∈ Z : every column of D′ contains a unique 1 and every row
of D′ contains at most one 1} and

– YP = YP (D) = {D′ ∈ Z : every column of D′ contains a unique 1 and columns
c and c′ of D′ are identical if there exists a part p ∈ P for which both c, c′ ∈ p}
for any partition P ∈ Pk−1.

Let L = (li j ) be a normalised k × n Latin rectangle. From L we can construct
a k × n × n (0, 1)-array P = (pi jr ) where pi jr = 1 whenever li j = r . We will
find it helpful to think of P as an ordered n-tuple of n × (k − 1) (0, 1)-matrices
(M1, M2, . . . , Mn) ∈ Xn where the (r, i)-th coordinate of M j is p(i+1) jr . An example
of this equivalence is given in Fig. 1; the shaded entries must be zero since L is
normalised.

For 1 ≤ j ≤ n, and D ∈ S, let D j be the matrix formed from D after the j-th row
has been converted to a row of ones. By Inclusion-Exclusion

Kk,n =
∑

D∈S
(−1)σ(D)|X (D1)| · |X (D2)| · · · |X (Dn)| (9)
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L =
1 2 3 4
3 1 4 2
2 4 1 3

↔ M1 =

0 0
0 1
1 0
0 0

, M2 =

1 0
0 0
0 0
0 1

, M3 =

0 1
0 0
0 0
1 0

, M4 =

0 0
1 0
0 1
0 0

Fig. 1 Converting between L and M1, M2, . . . , Mn

Fig. 2 Finding s from D

D =

1 1 11 3
0 1 01 1
1 0 10 2
0 0 00 0
0 0 ↔ 00 ↔ 0
0 1 01 1
0 0 00 0
1 1 11 3
0 0 00 0

→
s1 2
s2 1
s3 2

s4 = s0 4

where σ(D) is the number of ones in D. The Inclusion-Exclusionworks as follows.We
include all the n-tuples (M1, M2, . . . , Mn) ∈ Xn for which the j-th row of each M j

does not contain a 1. Suppose D ∈ S where the (r, i)-th element of D is 1. Suppose also
that we attempt to construct a normalised Latin rectangle L from (M1, M2, . . . , Mn) ∈
Xn in which every M j avoids D. Then this would imply that symbol r does not appear
in row i + 1 of L , giving rise to a clash. Therefore, we then exclude all such n-tuples
for which there exists some D ∈ S containing a 1 for which every M j avoids D.

From any D ∈ S we construct a vector s = (s1, s2, . . . , s2k−1) in the following
way. Each row of D can be considered the binary digits of some number between 0
and 2k−1 − 1 (inclusive). Let st be the number of rows in D that are the binary digits
of t . To be consistent with [36], we use s2k−1 = s0 in the statement of the theorem.
This does not affect the proof since the first k − 1 binary digits of both 0 and 2k−1 are
zero. Hence σ(D) = ||s||. This process is depicted in an example in Fig. 2.

The number of D ∈ S that give rise to a given s ∈ R is given by the multinomial
coefficient

(
n

s1, s2, . . . , s2k−1

)
.

We can partition S according to s ∈ R, whence two matrices D and D′ in the same
part have |X (D)| = |X (D′)|. For each s ∈ R, choose a representative D∗ = D∗(s).
Hence (9) becomes

Kk,n =
∑

s∈R
(−1)||s||

(
n

s1, s2, . . . , s2k−1

)
|X (D∗

1)| · |X (D∗
2)| · · · |X (D∗

n)|. (10)

If we define g(a) = |X (D∗(a))|, then (10) becomes

Kk,n =
∑

s∈R
(−1)||s||

(
n

s1, s2, . . . , s2k−1

) 2k−1∏

i=1

g
(
s − Δi + Δ2k−1−1

)si (11)
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Fig. 3 An example of an
N ∈ YP (D) where
P = {{1, 2}, {3}}

D =

0 0 0
0 1 0
1 1 0
0 1 0
0 0 1
0 0 0
0 1 0

N =

0 0 0
0 0 0
0 0 0
0 0 0
1 1 0
0 0 1
0 0 0

↔ N{1,2} =

0 0
0 0
0 0
0 0
1 1
0 0
0 0

, N{3} =

0
0
0
0
0
1
0

since if two rows i and i ′ of D∗ are the same, then |X (D∗
i )| = |X (D∗

i ′)|. The first k −1
binary digits of 2k−1 − 1 are all ones, so we will later delete Δ2k−1−1 from (11) since
it makes no difference to (7) and (8). It is now sufficient to prove (7).

We can decompose any N ∈ YP into |P| submatrices Np for each p ∈ P . An
example of this decomposition is given in Fig. 3; we shade the entries that N and the
Np avoid. For a given D ∈ S, the number of possible submatrices Np is equal to the
number of rows of D that map to a number t for which the j-th binary digit of t is
zero for all j ∈ p (informally, we can choose a single row of ones in Np that avoids
the ones in D); this number is given by (8). Therefore |YP | = ∏

p∈P f p(a). It is now
sufficient to show that g(a) = ∑

P∈Pk−1
|YP | ∏p∈P (−1)|p|−1(|p| − 1)!.

If P, Q ∈ Pk−1 and P is a refinement of Q, then we write P � Q and Q � P . If
additionally P 
= Q, then we write P � Q and Q � P . For the remainder of this proof,
P ∈ Pk−1 will be the partition of cardinality k − 1, i.e., we will henceforth assume
P = {{1}, {2}, . . . , {k − 1}}.

By Inclusion-Exclusion,

|X | = |YP | −
∣∣∣

⋃

Q�P

YQ

∣∣∣ =
∑

Q�P

μ(P, Q)|YQ |

for some integer coefficients μ(P, Q), where μ(P, P) = 1. To ensure the matrices
M ∈ YP with some duplicated columns are counted 0 times overall, the coeffi-
cients μ(P, Q) must satisfy

∑
P�R�Q μ(P, R) = 0, whenever P � Q. Therefore

μ(P, Q) = −∑
P�R�Q μ(P, R). Hence μ is the Möbius Function for the lattice of

partitions Pk−1 (see [30, pp. 359–360] or [43, pp. 333–336] for example). Since P is
the partition of cardinality k − 1, we find μ(P, Q) = (−1)k−1−|Q| ∏

q∈Q(|q| − 1)! =∏
q∈Q(−1)|q|−1(|q| − 1)! ��
Doyle’s equation for Kk,n might seem intimidating at first, but if we fix a value of

k, then g(a) and the f p(a) are fixed multivariate polynomials. Afterwards, for each
vector s ∈ R, computing its contribution to (6) is a straightforward task.

Doyle’s formula was used in [36] to find R4,n for n ≤ 80, R5,n for n ≤ 28 and R6,n
for n ≤ 13. Motivation for finding more of these numbers comes from the following
question in [35], which was posed after considering the data for R4,n and R5,n in [36].

Question 3 How do the prime power divisors pa of Rk,n behave asymptotically for
a fixed k > p as n → ∞ or as both k → ∞ and n → ∞?

Some general results concerning the divisors of Rk,n were given by [39]. For exam-
ple, we know that p�n/p	 divides Rk,n+d and Kk,n when p is a prime and d ≥ k > p.

123



1196 Graphs and Combinatorics (2016) 32:1187–1202

4 Implementation

The first author gave a basic implementation of Doyle’s formula in C available from

http://code.google.com/p/latinrectangles/downloads/list (12)

which was used in [36] to find R4,n , R5,n and R6,n for n ≤ 80, n ≤ 28 and n ≤ 13,
respectively. Some basic, but significant improvements to the code were made, most
notably:

1. Parallelisation. In order to implement Doyle’s formula in parallel, we partition
R into x parts, where x is the number of processes to be run in parallel. Using
lexicographic ordering onR, we find x − 1 vectors z1, z2, . . . , zx−1, such that the
x sets

{s ∈ R : s < z1},
{s ∈ R : zi ≤ s < zi+1} for 1 ≤ i ≤ x − 2,

{s ∈ R : zx−1 ≤ s}

have roughly the same cardinality. The Maple code used to find the vectors zi is
also available from (12).

2. Symmetry. We identify a group G that acts on R such that the contribution to
(6) is invariant. For k ∈ {4, 5, 6}, the order of this group is |G| = (k − 1)!. If
G(s) denotes the orbit of s ∈ R, then we only include the contribution of s to (6)
whenever s = min G(s), but multiplied by |G(s)|. While useful, exploiting this
symmetry does not reduce run-time by a factor of |G| since (a) there is additional
overhead and (b) sometimes |G(s)| < |G|.

Using the aforementioned improvements, we were able to find Rk,n when

– k = 4 and n ≤ 150, as at Sloane’s [34] A000573,
– k = 5 and n ≤ 40, as in Fig. 4 (Fig. 5 gives the prime factorisations),
– k = 6 and n ≤ 15, as in Fig. 6.

The improved version of the code can also be downloaded from (12).
Theoretically, if we found enough values of R4,n , we could use Sister Celine’s

technique [45] to propose a recurrence for R4,n . However, it seems that very many
values of R4,n would be required to find the recurrence, well beyond the values for
n ≤ 150 we currently have.

We can use (5) to check that the values are indeed correct. It is highly unlikely
that an erroneous implementation would still return numbers that satisfy all of the
recurrences implied by (5). We can also check that the number of digits is roughly
what we expect based on the asymptotic formula and neighbouring data points.

Doyle’s formula iterates through each s ∈ R = R(k, n); a “stars andbars” argument
gives

|R(k, n)| =
(

n + 2k−1 − 1

2k−1 − 1

)
.

123



Graphs and Combinatorics (2016) 32:1187–1202 1197

n
R

5,
n

5
56

6
94
08

7
11
27
04
00

8
27
20
66
58
04
8

9
11
26
81
64
30
83
77
6

10
74
69
88
38
30
76
28
64
64

11
75
33
49
23
23
04
79
02
09
33
12

12
11
10
48
86
94
33
80
32
10
65
30
40
64
0

13
23
15
23
65
33
57
24
91
93
31
31
80
79
16
03
2

14
66
41
50
35
61
60
70
43
20
53
23
39
27
04
47
26
78
4

15
25
60
48
38
81
61
95
77
55
25
84
87
20
21
59
99
94
24
92
16

16
13
00
03
70
57
47
57
33
81
52
88
20
18
79
69
49
93
52
86
43
91
16
8

17
85
40
61
40
65
59
18
61
11
58
63
85
80
23
92
99
42
46
32
04
15
83
41
12
0

18
71
47
72
70
50
22
04
95
80
01
03
86
90
54
64
37
66
09
19
06
81
33
90
62
38
66
88

19
75
16
31
63
56
28
02
27
25
46
57
97
59
45
07
49
09
55
99
61
04
61
56
73
58
92
00
32
25
6

20
98
09
72
00
03
91
06
26
77
62
23
48
23
79
75
17
53
58
74
43
06
95
48
69
39
20
85
73
03
54
79
04

21
15
71
53
52
64
70
12
85
62
96
00
02
50
91
86
76
63
91
50
99
00
13
57
01
69
58
19
78
22
86
29
19
72
91
52

22
30
59
67
36
80
69
11
72
20
34
57
19
01
56
50
88
23
51
24
02
04
88
43
16
35
27
10
46
12
16
38
89
53
74
30
32
32
0

23
71
74
28
22
04
02
06
69
84
82
54
70
32
64
84
40
68
02
48
17
31
49
27
67
83
60
53
96
34
74
65
02
74
80
51
12
02
72
17
92

24
20
09
32
99
72
61
64
94
24
10
03
67
67
77
40
30
17
67
48
33
91
41
44
65
36
94
73
74
52
35
70
18
16
42
88
75
94
30
72
80
17
51
04

25
66
71
36
34
22
74
01
92
07
61
70
12
83
83
02
58
74
32
24
30
99
62
91
08
28
93
57
83
56
63
99
76
63
98
33
29
70
28
02
55
99
10
64
82
17
6

26
26
07
69
29
96
97
20
92
69
68
24
06
51
81
85
71
33
32
55
99
86
16
40
77
02
39
53
92
17
21
15
13
79
06
88
43
04
96
10
18
40
93
32
25
63
07
93
72
8

27
11
92
34
10
43
68
17
65
50
81
07
72
54
78
41
55
85
11
54
24
29
03
11
66
13
67
05
37
95
10
18
24
26
98
58
34
11
98
68
97
04
35
85
09
96
40
52
96
43
11
04
0

28
63
39
85
64
28
68
55
26
78
44
08
10
27
30
27
24
44
80
07
02
14
94
60
32
40
99
79
06
15
21
24
89
34
11
30
17
59
10
03
02
71
96
02
14
10
39
58
00
31
52
87
83
05
28

29
38
98
63
26
68
65
16
43
24
38
79
16
37
86
72
36
51
40
15
59
84
57
72
40
41
96
07
97
33
27
76
15
43
75
16
43
77
86
18
72
02
99
30
91
01
90
96
38
37
72
23
81
66
73
75
51
36

30
27
58
57
65
29
03
65
77
51
16
06
00
81
45
37
72
78
22
15
96
82
79
26
95
91
85
88
10
59
04
04
00
61
60
93
42
33
97
07
69
09
00
56
40
49
42
49
35
56
85
11
24
82
28
46
55
02
06
05
44

31
22
35
28
71
12
29
53
37
50
13
15
79
20
94
32
05
39
14
46
39
07
71
52
50
89
40
91
91
39
05
48
27
29
92
39
54
44
56
31
36
62
23
68
33
61
28
72
08
87
36
47
39
44
85
44
76
49
92
50
49
35
21
92

32
20
65
03
80
26
43
59
97
90
61
29
55
83
05
49
36
13
33
66
50
58
00
65
16
53
44
61
25
05
29
32
14
47
91
60
66
19
97
12
59
29
57
82
18
04
96
99
54
98
52
77
51
86
19
44
54
67
49
38
69
21
27
16
23
68
00

33
21
66
02
01
03
20
40
01
71
75
25
01
38
58
22
63
10
59
98
02
77
10
64
02
58
97
93
76
81
04
14
81
79
20
89
71
70
89
00
79
58
96
18
00
92
67
53
41
97
70
36
39
98
97
24
65
78
32
75
76
75
92
63
19

89
19
52
43
52

34
25
69
45
42
48
57
73
88
94
60
61
89
21
83
04
50
59
51
51
21
11
88
28
37
61
56
37
74
16
47
95
43
02
10
94
98
75
27
39
52
86
88
59
77
29
44
18
87
48
44
75
80
47
05
56
21
30
34
75
40
52
38
13
37

85
11
76
12
82
43
30
24

35
34
34
54
08
57
93
90
14
15
67
03
82
70
06
51
41
38
29
03
38
41
45
93
14
64
44
82
52
70
81
22
24
85
40
55
57
88
92
66
57
30
02
46
17
17
46
42
43
88
09
21
59
14
47
64
04
01
09
71
67
56
93
67
30
70
49
38
96
28
02
46
69
86
39
36

36
51
55
17
77
49
55
99
23
20
85
53
23
04
03
63
64
44
10
07
62
77
20
50
40
21
87
22
13
89
31
63
12
09
82
65
53
99
03
84
30
47
88
72
58
59
34
55
49
04
75
06
84
67
36
70
51
05
33
86
90
23
81
49
63

97
04
21
73
58
82
39
82
55
70
23
96
10
88

37
86
60
60
21
03
36
61
84
14
33
72
92
61
06
81
95
72
42
57
16
90
19
02
19
28
96
56
09
99
65
66
42
46
98
99
88
34
77
10
95
05
09
34
49
68
64
09
73
66
50
76
28
92
18
24
69
75
48
44
98
21
44
68
51

78
29
72
72
46
00
12
41
46
21
27
78
97
72
63
61
60

38
16
23
46
13
63
47
01
84
04
39
91
36
32
94
40
86
31
08
27
28
88
95
10
32
31
72
02
31
41
92
34
35
36
38
81
15
49
65
07
19
73
55
21
77
05
82
82
89
50
64
84
67
01
91
25
12
60
99
22
35
21
71
55
29

40
54
63
74
02
46
48
57
02
72
35
36
24
27
63
99
52
10
05
56
8

39
33
85
76
35
08
81
48
15
99
75
34
41
46
84
05
77
43
37
78
85
03
04
61
37
77
99
19
94
01
96
93
94
10
25
90
36
40
55
42
75
23
49
47
41
39
75
66
97
15
05
26
31
12
77
79
96
06
06
32
17
36
83
01
48
73
35
92
49
70
29
66
67
82
35
63
98
78
69
68
02
41
41
02
80
36
44
41
6

40
78
34
10
33
18
04
97
71
48
50
00
77
90
95
69
65
87
38
19
45
74
29
74
94
44
85
99
93
59
09
86
70
41
38
12
19
85
91
30
09
62
63
33
05
39
21
50
02
09
26
99
21
20
27
88
71
84
59
46
92
46
82
92
59
88
40
53
32
34
32
36
39
31
65
12
41
76
89
63
59
20
84
59
54
25
37
52
52
64
38
4

F
ig
.4

R
5,

n
fo
r
sm

al
ln

123



1198 Graphs and Combinatorics (2016) 32:1187–1202

n
R

5,
n

5
2·
7

6
2·
3·
72

7
2·
3·
5·
58

7
8

21
1
·3
·23

·19
25

29
9

21
1
·3
·13

·52
25

10
29

10
21

6
·3
·19

·97
·84

83
61

7
11

21
3
·3
·29

·16
82

93
·20

93
62

95
85

7
12

21
7
·3
·5
·7
·47

·59
·31

3·
38

25
73

10
46

7
13

21
9
·3
·7
·23

36
48

84
85

15
71

66
26

72
05

1
14

22
7
·3
·10

1·
44
9·
10
39

·30
19

·22
81

1·
18

82
69

86
37

15
22

2
·3
·19

·42
38
43
89

68
63

·34
66

20
16

42
78

39
51

1
16

22
8
·3
·36

04
09
9·
40
72
18

62
00

1·
45

26
51

52
23

20
57

43
17

22
5
·3
·5
·15

00
10
87

·13
96
49
76
14

03
47

89
39

08
94

71
10

11
08

27
18

22
8
·3
·10

19
17
30
84
33
9·
23
73
16
91

98
75

33
1·
55

93
19

73
08

17
25

9
19

22
8
·3
·7
·47

·14
9·
53
24
51

·34
71
00
90
41
21
70
7·
42

39
55

31
64

51
81

80
46

88
47

7
20

23
2
·3
·7
·67

·16
3

21
23

3
·3
·83

·28
1·
20
42
92
08
10
63
93
3·
58
52
32
30
51
96
09
13

17
76

71
48

69
27

34
31

20
66

9
22

23
6
·3
·5
·13

·24
15
59

·12
96
61
16
04
24
79
10
80
99
27
64
64
51
20
87

19
29

23
64

25
76

30
66

45
36

31
23

23
9
·31

0
·54

07
·12

04
27

·90
11
45
30
9·
37
66
35
29
36
02
22
15
58
32
64
81

40
11

87
61

89
44

97
70

13
83

91
24

24
1
·31

1
·10

7·
73

99
51

·24
18

11
90

33
20

3
25

24
1
·3
·94

51
3·
54

26
00

27
·25

09
36

54
80

56
21

26
24

4
·31

0
·7
·67

93
3·
20
25
43
72
3·
26
85
26
54
41

·15
67
23
69
01
61
87
9·
61
93
05
03
41
79
43
23
54
94

75
67

43
95

52
17

13
21

68
38

1
27

24
3
·31

2
·5
·7
·53

28
24

8
·31

0
·17

49
1·
28

00
1

29
24

9
·31

1
·19

·50
87

30
25

2
·31

2
·55

63
51

·21
78

41
35

18
1

31
25

1
·31

1
·23

·19
31

56
17

7
32

25
8
·31

3
·5
·10

69
1·
23

37
1·
22

52
59

31
30

43
92

83
33

25
5
·31

4
·7
·55

33
39

70
53

·26
72

44
27

27
81
1·
12
14
27
44
98
31
07
69
42
97
35
70
62
13
58
66
04
17
39
51
06
64
46
86
58
12
31
12
07
14
12
76
21
42
92

66
88

62
39

45
63

21
53

51
29

51
34

25
8
·31

5
·7
·19

·31
·62

09
47

02
7

35
26

2
·31

4
·13

·61
·10

1·
16
31
63
33
71
97
71

·60
05

68
92

62
61

15
94

42
76

17
36

26
4
·31

7
·73

·46
1·
69

11
·14

08
3·
38

91
7·
62

35
97

17
36

64
62

82
9·
11
59
60
93
86
50
05
05
42
7·
23
47
72
65
92
12
94
30
43
21
38
24
86
41
96
30
97
38
46
52
60
50
89
78
54
15
55

08
70

83
52

56
94

42
21

85
66

55
9

37
26

5
·31

5
·5

38
26

8
·31

5

39
27

2
·31

7
·27

1·
33
7·
40

93
08

1·
60

83
33

63
·93

48
93

71
40

27
3
·31

6
·7
·29

·10
1·
94

1·
13

20
71

·53
01

65
65

3

F
ig
.5

Fa
ct
or
is
at
io
n
of

R
5,

n
fo
r
sm

al
ln

123



Graphs and Combinatorics (2016) 32:1187–1202 1199

n R6,n Factorisation
6 9408 2·3·72
7 16942080 210 ·3·5·1103
8 335390189568 211 ·3·7·173·45077
9 12952605404381184 214 ·3·3253351007

10 870735405591003709440 214 ·3·5·26053·15110358097
11 96299552373292505158778880 217 ·3·5·31·2334139·225638611943
12 16790769154925929673725062021120 217 ·3·5·131·110630813·65475601447957
13 4453330421956050777867897829494620160 221 ·3·5·7·43331·51859042054524469407499
14 1742101863056111789338065277444595027804160 221 ·3·5·9923·361387484390839·1715907088965739
15 978514587314819902819845847828230416011100160000 226 ·3·5·7·47·251·70351·16525752021611030850733157

Fig. 6 R6,n for small n

So the number of iterations required to compute R4,150, R5,40 and R6,15 is as given
below:

|R(4, 150)| = (157
7

) = 407, 340, 975, 756,

|R(5, 40)| = (55
15

) = 11, 899, 700, 525, 790,

|R(6, 15)| = (46
31

) = 511, 738, 760, 544,

although we do reduce the number of required iterations by a factor of (k −1)! through
symmetry. For the purpose of inspecting the divisors of Rk,n , we are particularly
interested in finding more values of R5,n .

We can estimate howmany times longer it would take to compute Rk,n+1 than Rk,n

with the ratio

rk,n := |R(k, n + 1)|
|R(k, n)| = n + 2k−1

n + 1
,

which is close to 1 when n is much larger than 2k−1. For example, r4,150 ≈ 1.1,
r5,40 ≈ 1.4 and r6,15 ≈ 2.9. So it would be possible to find more values of R4,n , but
we had to stop somewhere.

5 Divisors

The question of divisors of Rn , and in particular powers of 2 and 3, was originally
raised by Alter [1] about Latin squares. This question, along with analogous questions
for Latin rectangles, has been a hot research topic for Stones [35], and is linked to
the autotopisms and automorphisms of Latin rectangles [4,39] (see also [12,38]), and
orthomorphisms and partial orthomorphisms of finite cyclic groups [40,41]. Divisors
for the number of even/odd Latin squares have been used in proving special cases of
the Alon-Tarsi Conjecture [7] (see also [8,16,37,42]).

For any prime p, let ωp(n) be the largest non-negative integer such that pωp(n)

divides n, that is the p-adic valuation of n. In Fig. 7, we plot ω2(Rk,n) for k ∈
{3, 4, 5, 6} and small n. In Fig. 8, we plot ω3(Rk,n) for k ∈ {4, 5} and small n. This
data leads us to the following question.
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Fig. 7 ω2(Rk,n) for k ∈ {3, 4, 5, 6} and small n a ω2(R3,n) vs. n. b ω2(R4,n) vs. n. c ω2(R5,n) vs. n. d
ω2(R6,n) vs. n

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16

18

5 10 15 20 25 30 35 40

(a) (b)

Fig. 8 ω3(Rk,n) for k ∈ {4, 5} and small n. a ω3(R4,n) vs. n. b ω3(R5,n) vs. n

Fig. 9 Approximations of the
gradients in Figs. 7 and 8

p = 2 p = 3

k gradient
3 1
4 1
5 2
6 2

k gradient
3 0
4 1/2
5 1/2

Question 4 For any fixed k and fixed prime p < k, is

ωp(Rk,n) ≥ �(k − 1)/p	
p − 1

n − o(n)?

The gradients implied by Question 4 match those in Fig. 9, which are suggested by
the empirical data.

From [39], we already know that ωp(Rk,n+k) ≥ �n/p	 for all primes p < k.
Furthermore, it was shown in [4] that ωp(Rn) ≥ n/(p − 1) − O(log2 n) as n → ∞.
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The divisors of Rk,n for primes p ≥ k do not display the same characteristics as when
p < k. For example, 3 does not divide R3,n for any n ≥ 3, whereas a growing power
of 3 divides R4,n [39].

In the case of three-line Latin rectangles, Riordan’s recurrence (3) gives us the
ability to quickly compute values of K3,n . We will now list some conjectures for
three-line Latin rectangles that are motivated by these numbers.

Conjecture 5 1. ω2(K3,n) = ω2(n!) = n − 1 whenever n = 2i and i ≥ 2. (True for
i ≤ 21.)

2. ω2(K3,n) ≥ ω2(n!) for all n ≥ 3. (True for n ≤ 218.)
3. ω2(K3,n) = n − i + 1 whenever n = 2i − 3 and i ≥ 3. (True for i ≤ 21.)

Kerawala’s recurrence (Theorem 1) suggests thatω2(K3,n)might be less than usual
when n has the form 2i − 3, which is what we see in the numerical data.

Conjecture 5 implies thatω2(K3,n) is not bounded below by n−c for any constant c.
Furthermore, Conjecture 5 implies that the error term for the first order approximation
in Question 4 is at least O(log n).
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