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Abstract A distance magic labeling of a graph G = (V, E) of order n is a bijection
l : V → {1, 2, . . . , n} with the property that there is a positive integer k (called magic
constant) such that w(x) = k for every x ∈ V . If a graph G admits a distance magic
labeling, then we say that G is a distance magic graph. In the case of non-regular
graph G, the problem of determining whether there is a distance magic labeling of the
lexicographic product G ◦C4 was posted in Arumugam et al. (J Indonesian Math Soc
11–26, 2011). We give necessary and sufficient conditions for the graphs Km,n ◦ C4

to be distance magic. We also show that the product C (t)
3 ◦ C4 of the Dutch Windmill

Graph and the cycle C4 is not distance magic for any t > 1.

Keywords Distance magic labeling · Magic constant · Sigma labeling · Graph
labeling · Composition of graphs · Lexicographic product of graphs
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1 Introduction

All graphs considered in this paper are simple finite graphs. Given a graph G, we
denote its order by |G| = n, its vertex set by V (G) and the edge set by E(G). The
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neighborhood N (x) of a vertex x is the set of vertices adjacent to x , and the degree
d(x) of x is |N (x)|, the size of the neighborhood of x .

Let w(x) = ∑
y∈NG (x) l(y) for every x ∈ V (G).

A distance magic labeling (also called sigma labeling) of a graph G = (V, E) of
order n is a bijection l : V → {1, 2, . . . , n} with the property that there is a positive
integer k (called magic constant) such that w(x) = k for every x ∈ V . If a graph G
admits a distance magic labeling, then we say that G is a distance magic graph (see
[13]).

The concept of distance magic labeling has been motivated by the construction of
magic squares. Finding a distance magic labeling of an r -regular graph turns out to be
equivalent to finding equalized incomplete tournament EIT(n, r) [4]. In an equalized
incomplete tournament EIT(n, r) of n teams with r rounds, each team plays with
exactly r other teams and the total strength of the opponents that team i plays is k.
Thus, it is easy to observe that finding an EIT(n, r) is the same as finding a distance
magic labeling of any r -regular graph on n vertices. For a survey, we refer the reader
to [2].

The following observations were independently proved:

Observation 1.1 ([8–10,13]) Let G be an r-regular distance magic graph on n
vertices. Then k = r(n+1)

2 .

Observation 1.2 ([8–10,13])No r-regular graph with r-odd can be a distance magic
graph.

The problem of distance magic labeling of r -regular graphs was studied recently
(see [1–4,9,11]). It is interesting that if you blow up an r -regular G graph into some
specific p-regular graph, then the obtained graph H is distance magic. More formally,
we have the following definition.

Definition 1.3 ([7], p. 185) The lexicographic product G ◦ H of two graphs G and H
is defined on V (G ◦ H) = V (G) × V (H), two vertices (u, x), (v, y) of G ◦ H being
adjacent whenever uv ∈ E(G), or u = v and xy ∈ E(H).

G ◦ H is also called the composition of graphs G and H and denoted by G[H ] (see
[6]).

Miller at al. [9] proved the following results.

Theorem 1.4 ([9]) The cycle Cn of length n is a distance magic graph if and only if
n = 4.

Theorem 1.5 ([9]) Let r ≥ 1, n ≥ 3, G be an r-regular graph and Cn the cycle of
length n. Then G ◦ Cn admits a distance magic labeling if and only if n = 4.

Theorem 1.6 ([9]) Let G be an arbitrary regular graph. Then G ◦ Kn is distance
magic for any even n.

Shafiq et al. [12] considered distance magic labeling for disconnected graphs and
obtained the following theorems.
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Theorem 1.7 ([12]) Let m ≥ 1, n ≥ 2 and p ≥ 3. Then mCp ◦ Kn has a dis-
tance magic labeling if and only if either n is even or mnp is odd or n is odd and
p ≡ 0(mod 4).

The following problem was posted in [2].

Proposition 1.8 ([2]) If G is non-regular graph, determine if there is a distance magic
labeling of G ◦ C4.

TheDutchWindmillGraphC (t)
3 , also called a friendship graph, is the graphobtained

by taking t > 1 copies of the cycle graph C3 with a vertex in common [5]. We show
that the product C (t)

3 ◦ C4 is not distance magic for any t > 1.
The paper is organized as follows. In the next section we focus on the products of

complete bipartite graphs and cycle C4. In the third section we prove that the product
of the Dutch Windmill Graph and the cycle C4 cannot be distance magic.

2 The Product Km,n ◦ C4

Let Km,n have thevertexpartite sets A={x0, x1, . . . , xn−1} and B={y0, y1, . . . , ym−1}.
LetC4 = v0v1v2v3v0 and H = Km,n ◦C4. For 0 ≤ i ≤ n−1 and j = 0, 1, 2, 3, let x j

i

be the vertices of H that replace xi in A. For 0 ≤ i ≤ m − 1 and j = 0, 1, 2, 3, let y j
i

be the vertices of H that replace yi in B. Let A[C4] = {x j
i : i = 0, 1, . . . , n − 1, j =

0, 1, 2, 3, xi ∈ A} and B[C4] = {y j
i : i = 0, 1, . . . ,m − 1, j = 0, 1, 2, 3, yi ∈ B}.

The following Lemma holds true.

Lemma 2.1 If H = Km,n ◦C4, where 1 ≤ m < n is a distance magic graph and k is
the magic constant, then the following conditions hold:

(1) l(x0i )+l(x2i ) = l(x1i )+l(x3i ) = a for some constant a for all 0 ≤ i ≤ n−1 and
l(y0i ) + l(y2i ) = l(y1i ) + l(y3i ) = b for some constant b for all 0 ≤ i ≤ m − 1,

(2) b + 2an = a + 2mb = k and a < b,
(3) bm + an = (m + n)(4m + 4n + 1),

Proof (1)
Notice that: w(x j

i ) = l(x j+1
i ) + l(x j+3

i ) + ∑m
i=1

∑4
j=1 l(y

j
i ) for all 0 ≤ i ≤ n − 1,

j = 0, 1, 2, 3, where the addition in the superscripts is performed modulo 4. Since
the graph H is distance magic we obtain that l(x0i ) + l(x2i ) = l(x1i ) + l(x3i ) = a for
some constant a for all 0 ≤ i ≤ n − 1. Similarly l(y0i ) + l(y2i ) = l(y1i ) + l(y3i ) = b
for some constant b for all 0 ≤ i ≤ m − 1.

(2) Fact (1) implies that w(x j
i ) = a + 2bm for all 0 ≤ i ≤ n − 1, j = 0, 1, 2, 3

and w(y j
i ) = b + 2an for all 0 ≤ i ≤ m − 1, j = 0, 1, 2, 3. As m < n, this implies

that a < b.
(3) The labeling l is a bijection, so the sum of all labels has to be equal to

∑4m+4n
i=1 i :

2an + 2bm = (4m + 4n)(4m + 4n + 1)

2
.

�	
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The following theorem completely characterizes the pairs (m, n), for which Km,n ◦
C4 is distance magic.

Theorem 2.2 Let m and n be integers such that 1 ≤ m < n. Then Km,n ◦ C4 is
distance magic if and only if the following conditions hold.

(1) The numbers

a = (m + n)(4m + 4n + 1)(2m − 1)

4mn − m − n

and

b = (m + n)(4m + 4n + 1)(2n − 1)

4mn − m − n

are integers.
(2) There exist integers p, q, t ≥ 1, such that

p + q = b − a,

4n = pt,

4m = qt.

Proof First, let us assume that for givenm and n, 1 ≤ m < n there exist a, b, p, q and
t with desired properties. Then the following labeling is distance-magic: If t = 4s for
some integer s, then let

l(x j
kp+i ) =

⎧
⎨

⎩

k(2p + 2q) + i + 1 for j = 0
k(2p + 2q) + p + q + i + 1 for j = 1,
a − f (x j−2

kp+i ) for j = 2, 3,

for 0 ≤ k ≤ t/4 − 1, i = 0, 1, . . . , p − 1,

l(y j
kq+i ) =

⎧
⎨

⎩

k(2p + 2q) + p + i + 1 for j = 0,
k(2p + 2q) + 2p + q + i + 1 for j = 1,
b − f (y j−2

kq+i ) for j = 2, 3.

for 0 ≤ k ≤ t/4 − 1, i = 0, 1, . . . , q − 1. Observe that the sets of labels of vertices
x j
i and y j

i for j = 0, 1 do not intersect and their elements are consecutive numbers
from the set {1, . . . , 2(m + n)}. And as b − a = p + q, also the sets of labels for
j = 2, 3 do not intersect and they are consecutive numbers from the set {a − (2m +
2n)+q, . . . , a+q −1 = b− p−1}. In order to prove that l is a bijection it is enough
to show that a + q − 1 = 4m + 4n. It is true, as we have:

a(n + m) + (b − a)m = an + bm = (m + n)(4m + 4n + 1).
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But on the other hand,

(b − a)m = (p + q)m = 4(m + n)m

t
= (m + n)q,

so finally

a(n + m) + (m + n)q = (m + n)(4m + 4n + 1)

and a + q = 4m + 4n + 1.
If t 
≡ 0(mod 4), then p and q are even. In such a situation, let

l(x j
kp/2+i ) =

{
k(p + q) + 2i + j + 1 for j = 0, 1,
a − f (x j−2

kp/2+i ) for j = 2, 3,

for 0 ≤ k ≤ �t/2� − 1, i = 0, 1, . . . , p/2 − 1, and for k = �t/2� = t/2� − 1,
i = 0, 1, . . . , p/4 − 1,

l(y j
kq/2+i ) =

{
k(p + q) + p + 2i + j + 1 for j = 0, 1,
b − f (y j−2

kq/2+i ) for j = 2, 3,

for 0 ≤ k ≤ �t/2� − 1, i = 0, 1, . . . , q/2 − 1, and

l(y j
kq/2+i ) =

{
k(p + q) + p/2 + 2i + j + 1 for j = 0, 1,
b − f (y j−2

kq/2+i ) for j = 2, 3,

for k = �t/2� = t/2� − 1, i = 0, 1, . . . , q/4− 1 (observe that in both cases the last
range is in use if and only if t is odd and thus p and q are divisible by 4). Also in this
case it is straightforward to see that the above labeling is bijective and that in both
cases the magic constant equals to k = a + 2mb = b + 2na.

Now, let us assume that Km,n ◦ C4 is distance magic for some integers m and n,
1 ≤ m < n. Let the magic constant be k. From the Lemma 2.1 it follows that the
following system of equations must be satisfied:

{
b + 2an = a + 2mb,
bm + an = (m + n)(4m + 4n + 1).

The above system has only one solution with respect to a and b:

{
a = (m+n)(4m+4n+1)(2m−1)

4mn−m−n ,

b = (m+n)(4m+4n+1)(2n−1)
4mn−m−n .

Obviously, a and b must be integers.
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Now we choose any distance magic labeling l of Km,n ◦ C4. Let L A = {l(x)|x ∈
A[C4]} and LB = {l(y)|y ∈ B[C4]}. Let us divide the set of all labels {1, 2, . . . , 4m+
4n} into intervals in the following way:

(i) for each interval I , either I ⊆ L A or I ⊆ LB ,
(ii) each interval is maximal, i.e., for any two neighboring intervals I1, I2 we have

either I1 ⊆ L A and I2 ⊆ LB or I1 ⊆ LB and I2 ⊆ L A.

In the remainder we will use the notation I1 < I2 ⇔ max{l(x)|l(x) ∈ I1} <

min{l(y)|l(y) ∈ I2}. For any interval I and integer c, let c − I = {c − l(x)|l(x) ∈ I }
(it is possible that c − I = I ). From the Lemma 2.1 it follows that for each x ∈
{1, 2, . . . , 4m + 4n}, l(x) ∈ L A ⇔ a − l(x) ∈ LA (in fact, l(x j

i ) = a − l(x j+2
i ),

where the addition in the superscripts is performedmodulo 4). Similarly, l(x) ∈ LB ⇔
b−l(x) ∈ LB . This implies that a− I ⊆ LA ⇔ I ⊆ L A and b− I ⊆ LB ⇔ I ⊆ LB .
Also, if I1, I2 ⊆ L A and I1 < I2 then a − I2 < a − I1. Similarly, if I1, I2 ⊆ LB and
I1 < I2 then b − I2 < b − I1.

Let the first two intervals be I1 = {1, . . . , r} and I2 = {r + 1, . . . , r + s} for some
r, s ≥ 1.

Observe first that I1 ⊆ L A and I2 ⊆ LB . Otherwise we would have b − I1 =
{b − r, . . . , b − 1} and a − I2 = {a − r − s, . . . , a − r − 1} < b − I1. Moreover, as
a − r − 1 < b − r − 1, this would imply that there is an interval I ∈ LA, a − I2 < I
and thus a − I < I2, a contradiction (I2 is the first interval being subset of L A).

We have a − I1 = {a − r, . . . , a − 1} and b− I2 = {b− r − s, . . . , b− r − 1}. As
min{l(x)|l(x) ∈ a− I1}− 1 = a− r − 1 < b− r − 1 = max{l(y)|l(y) ∈ b− I2} and
the intervals a − I1 and b − I2 are disjoint, it follows that a − I1 < b − I2. Moreover
there is no integer u such that a − 1 < u < b − r − s, as it would mean that there
is an interval I ⊆ LA, a − I1 < I and thus a − I < I1, a contradiction. Thus the
intervals a − I1 and b − I2 consist of r + s consecutive integers. Moreover, the first
entry b − r − s of b − I2 follows immediately after the last entry of a − I1, which is
a − 1. Hence, we have b − r − s = a and thus r + s = b − a. Observe also that the
intervals a − I1 and b − I2 are the last ones contained in L A and LB respectively.

If r+s = 4m+4n, this proves the hypothesis (r = 4n, s = 4m, so t = 1, p = r/2,
q = s/2). Otherwise let us assume that we are given d ≥ 1 pairs of intervals (I i1, I

i
2),

i = 1, . . . , d, such that I i1 ⊆ L A, I i2 ⊆ LB , a − I i1 ⊆ L A, b − I i2 ⊆ LB , |I i1| = r ,
|I i2| = s, I i1 < I i2, a − I i1 < b − I i2 for i = 1, . . . , d and I i1 < I i+1

1 , I i2 < I i+1
2 ,

a − I i+1
1 < a − I ij , b − I i+1

2 < b − I i2 for i = 1, . . . , d − 1. Moreover, let us assume

that there are no elements u < max{l(y)|l(y) ∈ I d2 }, u /∈ ⋃d
i=1 (I i1 ∪ I i2) and no

elements v > max{l(x)|l(x) ∈ a − I d1 }, v /∈ ⋃d
i=1 (a − I i1 ∪ b − I i2). We are going

to prove that we are able to extend this sequence to d + 1 pairs of intervals.
Indeed, let us assume, that next two intervals are I1 = {d(r+s)+1, . . . , d(r+s)+

r1} and I2 = {d(r+s)+r1+1, . . . , d(r+s)+r1+s1} for some r1, s1 ≥ 1. Obviously
I1 ⊆ L A and I2 ⊆ LB . Moreover we have a − I1 = {a − d(r + s) − r1, . . . , a −
d(r + s) − 1} and b − I2 = {b − d(r + s) − r1 − s1, . . . , b − d(r + s) − r1 − 1}. As
min{l(x)|l(x) ∈ a− I1}−1 < max{l(y)|l(y) ∈ b− I2}, it follows that a− I1 < b− I2.
Moreover there is no integer u between a− I1 and b− I2, as there is no interval I ⊆ LA,
a − I1 < I , I /∈ {I 11 , . . . , I d1 }. Thus the intervals a − I1 and b − I2 consist of r + s
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consecutive integers. Thus a − d(r + s) − 1 = b − d(r + s) − r1 − s1 − 1 and in
consequence r1+s1 = b−a. Similar reasoning leads us to the conclusion that there are
no elements betweenb−I2 anda−I d1 , sob−d(r+s)−r1−1 = a−(d−1)(r+s)−r−1
and thus b − a = r1 + s. This means that r1 = r and s1 = s. Obviously the intervals
a − I1 and b − I2 are the last ones contained in L A and LB , that do not belong to
{I 11 , . . . , I d1 } and {I 12 , . . . , I d2 }, respectively.

By induction we obtain that we are able to construct such a sequence of pairs for
every d. As the number of pairs (I i1, I

i
2) has to be finite, after some number of steps

(say t) we exhaust all labels. Obviously

r t =
t∑

i=1

|I i1| = 4n,

and

st =
t∑

i=1

|I i2| = 4m.

Putting p = r and q = s, we arrive at the hypothesis. �	
The pairs (m, n) that satisfy the assumptions of the Theorem 2.2 are very rare. We

checked all the pairs where 1 ≤ m < n ≤ 80000 and only for the following ones
the graphs Km,n ◦C4 are distance magic: (9, 21), (20, 32), (428, 548), (2328, 2748),
(6408, 10368), (7592, 8600), (10098, 24378), (18860, 20840), (39540, 42972),
(73808, 79268).

3 The Product C(t)
3 ◦ C4

Let C (t)
3 have the central vertex x and vertices x, yi , zi for i = 1, . . . , t belong to i th

copy of cycle C3. Let C4 = v0v1v2v3v0 and H = C (t)
3 ◦ C4. For 0 ≤ i ≤ t − 1 and

j = 0, 1, 2, 3, let y j
i , z

j
i be the vertices of H that replace y j

i , z
j
i 0 ≤ i ≤ t − 1 in C (t)

3
and x0, x1, x2, x3 be the vertices of H that replace x .

Theorem 3.1 The graph C (t)
3 ◦ C4 is not distance magic for any t > 1.

Proof Suppose that l is a distance magic labeling of the graph H = C (t)
3 ◦ C4 and

k = w(x), for all vertices x ∈ V (H). It is easy to observe that there exist natural
numbers b, aiy and a

i
z , 0 ≤ i ≤ t − 1, such that:

– l(x0) + l(x2) = l(x1) + l(x3) = b.
– l(y0i ) + l(y2i ) = l(y1i ) + l(y3i ) = aiy for 0 ≤ i ≤ t − 1.
– l(z0i ) + l(z2i ) = l(z1i ) + l(z3i ) = aiz for 0 ≤ i ≤ t − 1.

Since aiy + 2aiz + 2b = w(y j
i ) = w(z ji ) = aiz + 2aiy + 2b, we obtain that aiy =

aiz = ai . This implies that for any 0 ≤ i, l ≤ t − 1 and 0 ≤ j, h ≤ 3, 3ai + 2b =
w(z ji ) = w(zhl ) = 3al + 2b, hence ai = al = a.
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Since 3a + 2b = b + 4ta = k and 4ta + 2b = 1 + 2 + · · · + 4(2t + 1) we
obtain that b = (2t+1)(4t−3)(8t+5)

6t−3 . Recall that the biggest label we can use is 4(2t+1),
hence b ≤ 16t + 7. One can calculate that the only positive integer t that satisfies the
inequality

(2t + 1)(4t − 3)(8t + 5) ≤ (16t + 7)(6t − 3)

is t = 1, a contradiction. �	
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