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Abstract In this paper, we determine the existence spectrums for large sets of Ham-
ilton cycle and path (resp. directed Hamilton cycle and path) decompositions of λKm,n

(resp. λK ∗
m,n).

Keywords Large set · Hamilton cycle · Hamilton path · Decomposition · Complete
automorphism group

1 Introduction

Throughout this paper, let λKm,n (resp. λK ∗
m,n) be the complete bipartite multigraph

(resp. multi-digraph) with two partite sets Zm and Zn . Without loss of generality,
we suppose m ≥ n in λKm,n and λK ∗

m,n . In this paper, we use the convention that
if λ is not specified, then λ = 1. A k-cycle (resp. k-path) is a subgraph of Km,n

with k vertices x1, x2, . . . , xk and k edges {x1, x2}, . . . , {xk−1, xk}, {xk, x1} (resp.
k − 1 edges {x1, x2}, . . . , {xk−1, xk}), which is denoted by (x1, x2, . . . , xk) (resp.
[x1, x2, . . . , xk]). A directed k-cycle (resp. directed k-path) is a subgraph of K ∗

m,n
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with k vertices x1, x2, . . . , xk and k arcs (x1, x2), (x2, x3), . . . , (xk−1, xk), (xk, x1)

[resp. k − 1 arcs (x1, x2), . . . , (xk−1, xk)], which is denoted by 〈x1, x2, . . . , xk〉 (resp.
≺ x1, x2, . . . , xk �). When k = m + n, a (directed) k-cycle is called a (directed)
Hamilton cycle, a (directed) k-path is called a (directed) Hamilton path. It is easy to
see that

if there exists a Hamilton cycle (resp. directed Hamilton cycle) in Km,n (resp.
K ∗

m,n), then m = n;
if there exists a Hamilton path (resp. directed Hamilton path) in Km,n (resp. K ∗

m,n),

then m = n or n + 1.

A Hamilton cycle (resp. directed Hamilton cycle) decomposition of λKn,n (resp.
λK ∗

n,n), HC(n, n, λ) (resp. DHC(n, n, λ)), is a (Zn ∪ Zn,A), where A is a collec-
tion of Hamilton cycles (resp. directed Hamilton cycles), called blocks, in Kn,n (resp.
K ∗

n,n), which form a partition of edge (resp. arc) set of λKn,n (resp. λK ∗
n,n). When

m = n or n + 1, we can similarly define a Hamilton path (resp. directed Hamilton
path) decomposition of λKm,n (resp. λK ∗

m,n), which is denoted by HP(m, n, λ) (resp.
DHP(m, n, λ)). A decomposition is said to be simple if it contains no repeated blocks.

A large set of Hamilton cycle (resp. directed Hamilton cycle) decomposition of
λKn,n (resp. λK ∗

n,n), LHC(n, n, λ) [resp. LDHC(n, n, λ)], is a partition of all Ham-
ilton cycles (resp. directed Hamilton cycles) of Kn,n (resp. K ∗

n,n) into HC(n, n, λ)s
[resp. DHC(n, n, λ)s]. When m = n or n + 1, we can similarly define a large set of
Hamilton path (resp. directed Hamilton path) decomposition of λKm,n (resp. λK ∗

m,n),
which is denoted by LHP(m, n, λ) [resp. LDHP(m, n, λ)]. It is easy to see that every
decomposition in a large set is simple.

Let λKn (resp. λK ∗
n ) denote the complete multigraph (resp. multi-digraph) on n

vertices. A Hamilton cycle (resp. path) of Kn is a n-cycle (resp. n-path) of Kn . An
almost Hamilton cycle (resp. path) of Kn is a (n − 1)-cycle [resp. (n − 1)-path] of
Kn . There are similar definitions of directed Hamilton cycle and path of K ∗

n . As well,
there are similar definitions of (almost) Hamilton cycle and path decomposition of
λKn, of directed Hamilton cycle and path decomposition of λK ∗

n .

Lemma 1 [1,10] There exists a large set of Hamilton cycle (resp. path) decomposi-
tions of λKn(λKn−1) if and only if 2|λ(n − 1) and λ|(n − 2)!.
Lemma 2 [11] There exists a large set of almost Hamilton cycle decomposition of
2Kn for any n ≡ 0, 1(mod4) except n = 5.

Lemma 3 [10] There exists a large set of directed Hamilton cycle (resp. path) decom-
position of λK ∗

n (resp. λK ∗
n−1) for any n ≥ 3 and n 
= 4, 6 with possible exceptions

n ∈ {p + 1 : prime p ≥ 23}.
Lemma 4 [3] There exists an LHC(2m,2m,1) for any positive integer m.

There are many other classical problems about large sets. Please refer [6–8] for
large sets of Steiner triple systems, [5] for large sets of Mendelsohn triple systems,
[4] for large sets of transitive triple systems, etc. In this paper, we will determine the
existence spectrums for large sets of Hamilton cycle and path (resp. directed Hamilton
cycle and path) decompositions of λKm,n (resp. λK ∗

m,n).
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2 Small Designs

Obviously, an HC(n, n, λ) consists of λn2

2n = λn
2 blocks. Hence,

if there exists an HC(n, n, λ), then

{
even n ≥ 2 for any λ;
odd n ≥ 3 for even λ.

So, the necessary conditions for the existence of a DHC(n, n, λ) are n > 1 for any λ.

Lemma 5 There exists an HC(2m, 2m, λ) for positive integers m and λ.

Proof Define the collection A of the following m Hamilton cycles

Ci = (0, 2i, 1, 2i + 1, . . . , 2m − 1, 2i + 2m − 1), 0 ≤ i ≤ m − 1,

where 2i + j ∈ Z2m for 0 ≤ i ≤ m − 1, 0 ≤ j ≤ 2m − 1. It is easy to verify
that (Z2m

⋃
Z2m,A) is an HC(2m, 2m, 1). Repeating every Ciλ times, we obtain an

HC(2m, 2m, λ). �
Lemma 6 There exists an HC(2m + 1, 2m + 1, 2λ) for positive integers m and λ.

Proof Define the collection A of the following 2m + 1 Hamilton cycles

Di = (0, i, 1, i + 1, . . . , 2m, i + 2m), 0 ≤ i ≤ 2m,

where i + j ∈ Z2m+1 for 0 ≤ i, j ≤ 2m. It is easy to verify that (Z2m+1
⋃

Z2m+1,A)

is an HC(2m + 1, 2m + 1, 2). Repeating every Diλ times, we obtain an HC(2m +
1, 2m + 1, 2λ). �
Lemma 7 There exists a DHC(n, n, λ) for positive integers n and λ, n > 1.

Proof We use the structure in Lemma 1 of [9], define the collection A of the following
n directed Hamilton cycles

Ci = 〈0, i, 1, i + 1, . . . , n − 1, i + n − 1〉, 0 ≤ i ≤ n − 1,

where i + j ∈ Zn for 0 ≤ i, j ≤ n − 1. It is easy to verify that (Zn
⋃

Zn,A) is a
DHC(n, n, 1). Repeating every Ciλ times, we obtain a DHC(n, n, λ). �

It is clear that |A| = λn(n−1)
2n−2 = λn

2 in an HP(n, n − 1, λ). Hence,

if there exists an HP(n, n − 1, λ), then

{
even n ≥ 2 for any λ;
odd n ≥ 3 for even λ.

Clearly, the necessary conditions for the existence of a DHP(n, n − 1, λ) are n > 1
for any λ. It is easy to see that the existence of an HC(n, n, λ) [resp. DHC(n, n, λ)] is
equivalent to the existence of an HP(n, n − 1, λ) [resp. DHP(n, n − 1, λ)]. In Sects. 3
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and 4, we will show that the existence of an LHC(n, n, λ) [resp. LDHC(n, n, λ)] is
equivalent to the existence of an LHP(n, n − 1, λ) [resp. LDHP(n, n − 1, λ)]. So, the
following lemma is an immediate consequence of Lemmas 5–7.

Lemma 8 There exist an H P(2m, 2m − 1, λ), an H P(2m + 1, 2m, 2λ) and
a DH P(n, n − 1, λ) for positive integers m, n and λ, n > 1.

An HP(n, n, λ) consists of λn2

2n−1 blocks. But, gcd(n2, 2n − 1) = 1. Hence,

if there exists an HP(n, n, λ), then(2n − 1)|λ.

Similarly, the necessary condition for the existence of a DHP(n, n, λ) is also (2n−1)|λ.

Lemma 9 There exists an HP(n, n, λ(2n − 1)) for positive integers n and λ.

Proof Define the collection A of the following n2 Hamilton paths

Ci, j = [i, j, i + 1, j + 1, . . . , i + n − 1, j + n − 1], 0 ≤ i, j ≤ n − 1,

where i + k ∈ Zn, j + k ∈ Zn for 0 ≤ i, j, k ≤ n − 1. It is easy to verify that
(Zn

⋃
Zn,A) is an HP(n, n, 2n − 1). Repeating every Ci, jλ times, we obtain an

HP(n, n, λ(2n − 1)). �
Lemma 10 There exists a DH P(n, n, λ(2n − 1)) for positive integers n and λ.

Proof It is easy to see that the existence of an HP(n, n, λ(2n−1)) implies the existence
of an DHP(n, n, λ(2n − 1)). �

In Lemmas 5−10, when λ > 1, all decompositions are not simple (i.e., containing
repeated blocks). In the following sections, we will mention the simple cases.

3 LHC(n, n, λ) and LHP(n, n − 1, λ)

Let Sym(S) be the symmetric group on a given set S. For a subgroup T of Sym(S),

the set of representatives of the right cosets for T in Sym(S) is denoted by SymT (S).

For any s ∈ S and two permutations ξ1, ξ2 ∈ Sym(S), define ξ1ξ2(s) = ξ2(ξ1(s)).
Let C = (x0, x0, x1, x1, . . . , xn−1, xn−1) be a Hamilton cycle of Kn,n, where

xi ∈ Zn, xi ∈ Zn for 0 ≤ i ≤ n − 1. For permutations ξ ∈ Sym(Zn)

and η ∈ Sym(Zn), denote ξC = (ξ(x0), x0, ξ(x1), x1, . . . , ξ(xn−1), xn−1) and
ηC = (x0, η(x0), x1, η(x1), . . . , xn−1, η(xn−1)), respectively. Take

σ = (1, n − 1)(2, n − 2) · · ·
(⌊

n − 1

2

⌋
, n −

⌊
n − 1

2

⌋)
∈ Sym(Zn),

which generates a subgroup G = 〈σ 〉of Sym(Z ′
n)with order two, where Z ′

n = Zn\{0}.
Then, |SymG(Z ′

n)| = (n−1)!
2 . Let SymG(Z ′

n) = {σ1, σ2, . . . , σ(n−1)!/2}. Below, by the
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shift-equivalence of Hamilton cycles, each Hamilton cycle in Kn,n will be denoted by
a fixed form as follows.

Under the action of Sym(Zn), all Hamilton cycles in Kn,n can be separated into
the following (n−1)!

2 orbits, where σi ∈ SymG(Z ′
n).

Oi = {(0, η(0), σi (1), η(1), σi (2), η(2), . . . , σi (n − 1), η(n − 1)) : η ∈ Sym(Zn)}.

Obviously, |Oi | = n! for 1 ≤ i ≤ (n−1)!
2 . So, |SymG(Z ′

n)| · |Oi | = (n−1)!n!
2 is just the

total number of distinct Hamilton cycles in Kn,n .

Let A be a collection of Hamilton cycles (resp. directed Hamilton cycles) in Kn,n

(resp. K ∗
n,n). A subgroup H of Sym(Zn) is called a complete automorphism group

over Zn of A if the following conditions are satisfied:

1. ηC ∈ A for any η ∈ H and C ∈ A;
2. ∀C, C ′ ∈ B, if there exists η ∈ Sym(Zn) such that ηC = C ′, then η ∈ H.

When A is a collection of Hamilton paths (resp. directed Hamilton paths) in Kn,n

(resp. K ∗
n,n), we can similarly define the complete automorphism group for A.

In the following discussions, A consists of all Hamilton cycles in some HC(n, n, λ).

We now give a very useful lemma in this paper. The idea of the construction, introduced
in [2], is to make use of symmetric groups.

Lemma 11 (1) If (Zn
⋃

Zn,A) is an HC(n, n, λ) then so is (Zn
⋃

Zn, ηA) (resp.
(Zn

⋃
Zn, ξA)), where η ∈ Sym(Zn), ηA = {ηC : C ∈ A}(resp. ξ ∈

Sym(Zn), ξA = {ξC : C ∈ A});
(2) If the system A is simple and has a complete automorphism group H over Zn,

then all Hamilton cycles in {ηA : η ∈ Sym H (Zn)} are pairwise distinct.

Proof (1) The permutation η on Zn induces a permutation on the set (Zn ×
Zn)\{(y, y) : y ∈ Zn}. Hence, the system (Zn

⋃
Zn, ηA) is also an HC(n, n, λ)

by the definition. For ξ ∈ Sym(Zn), the proof is similar.
(2) Suppose there exist C, C ′ ∈ A and η1 
= η2 ∈ Sym H (Zn) such that η1C =

η2C ′. Then (η1η
−1
2 )C = C ′ and η1η

−1
2 ∈ H by the definition of complete automor-

phism group H over Zn . This implies Hη1 = Hη2, i.e., η1 and η2 belong to the same
coset, which is a contradiction. �

An HC(n, n, λ) contains λn
2 Hamilton cycles. The total number of distinct Hamil-

ton cycles in Kn,n is (n−1)!n!
2 . Hence, an LHC(n, n, λ) contains ((n − 1)!)2/λ pairwise

disjoint HC(n, n, λ)s. Clearly, there exists an LHC(n, n, λ) only if

λ|((n − 1)!)2and

{
even n ≥ 2 for any λ;
odd n ≥ 3 for even λ.

The conditions are also necessary for the existence of LHP(n, n − 1, λ). Thus, the
existence spectrum for LHC(n, n, λ) [resp. LHP(n, n − 1, λ)] only depends on two
cases: even n ≥ 2 for λ = 1 and odd n ≥ 3 for λ = 2.

Lemma 12 There exists an L HC(2m + 1, 2m + 1, 2) for any positive integer m.
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Proof Take the HC(2m+1, 2m+1, 2) = (Z2m+1
⋃

Z2m+1,A) constructed in Lemma
6 as the base small set, where A = {D0, D1, . . . , D2m}. Let τ = (0, 1, . . . , 2m) ∈
Sym(Z2m+1), which generates a subgroup H = 〈τ 〉 of Sym(Z2m+1) with order 2m +
1. Clearly, D j = τ j−i Di for i, j ∈ Z2m+1. Now, we have shown that H is a complete
automorphism group of A over Z2m+1. Let Sym H (Z2m+1) = {τ1, τ2, . . . , τ(2m)!},
where τ1 is identical permutation. Let SymG(Z ′

2m+1) = {σ1, σ2, . . . , σ(2m)!/2} (refer
the beginning of this section).
Define

�i, j = {σiτ j D0, σiτ j D1, . . . , σiτ j D2m}, 1 ≤ i ≤ (2m)!
2

, 1 ≤ j ≤ (2m)!.

Each �i, j is an HC(2m + 1, 2m + 1, 2) by Lemma 11 (1). Similarly, we can prove
that H is a complete automorphism group of �i,1, over Z2m+1, for 1 ≤ i ≤ (2m)!

2 .

We have the facts:

∗ all Hamilton cycles in each �i, j fall into orbit Oi , where 1 ≤ i ≤ (2m)!
2 , 1 ≤ j ≤

(2m)!;
∗ for given σi , all Hamilton cycles in {�i, j : 1 ≤ j ≤ (2m)!} are distinct by Lemma

11 (2).

As well, |SymG(Z ′
2m+1)| · |Sym H (Z2m+1)| = | ⋃

i, j
�i, j | = ((2m)!)2

2 , which is just

the desired number of disjoint HC(2m +1, 2m +1, 2)s in an LHC(2m +1, 2m +1, 2).

Therefore, by these facts, an LHC(2m + 1, 2m + 1, 2) is constructed. �
Theorem 1 There exists an L HC(n, n, λ) if and only if λ|((n − 1)!)2 and

{
even n ≥ 2 f or any λ

odd n ≥ 3 f or even λ
.

Proof The necessity has been shown before Lemma 12, the sufficiency is proved
below.

For even n ≥ 2, there exists an LHC(n, n, 1) = {(Zn
⋃

Zn,Ai ) : 1 ≤ i ≤
((n − 1)!)2} by Lemma 4. Define

Bk =
(k+1)λ⋃
i=kλ+1

Ai , 0 ≤ k ≤ ((n − 1)!)2/λ − 1,

then {(Zn
⋃

Zn,Bk) : 0 ≤ k ≤ ((n − 1)!)2/λ−1} is an LHC(n, n, λ), where λ|((n −
1)!)2.

For odd n ≥ 3 and even λ|((n − 1)!)2, there exists an LHC(n, n, 2)

= {(Zn
⋃

Zn,Ai ) : 1 ≤ i ≤ ((n−1)!)2

2 } by Lemma 12. Define

Bk =
(k+1) λ

2⋃
i= kλ

2 +1

Ai , 0 ≤ k ≤ ((n − 1)!)2/λ − 1,
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then {(Zn
⋃

Zn,Bk) : 0 ≤ k ≤ ((n − 1)!)2/λ−1} is an LHC(n, n, λ). This completes
the proof. �
Theorem 2 There exists an L H P(n, n − 1, λ) if and only if λ|((n − 1)!)2 and

{
even n ≥ 2 f or any λ

odd n ≥ 3 f or even λ
.

Proof We start proving the sufficiency first. By Theorem 1, there exists an
LHC(n, n, λ) = {(Zn

⋃
Zn,Ai ) : 1 ≤ i ≤ ((n − 1)!)2/λ}. Delete the element 0

from the set Zn, let Z
′
n = Zn\{0}. Then, each Hamilton cycle in each Ai will become

a Hamilton path of Kn,n−1 with two partite sets Zn, Z
′
n, and each Hamilton cycle

decomposition (Zn
⋃

Zn,Ai ) of λKn,n will become a Hamilton path decomposi-
tion (Zn

⋃
Z

′
n,A′

i ) of λKn,n−1. It is easy to verify that {(Zn
⋃

Z
′
n,A′

i ) : 1 ≤ i ≤
((n − 1)!)2/λ} indeed forms an LHP(n, n − 1, λ). As for the necessity, see before
Lemma 12. The conclusion holds. �
Corollary 1 (1) There exist simple HC(2m, 2m, λ) and simple HP (2m, 2m − 1, λ)

if and only if 1 ≤ λ ≤ ((2m − 1)!)2;
(2) There exist simple HC(2m + 1, 2m + 1, 2λ) and simple HP (2m + 1, 2m, 2λ)

if and only if 1 ≤ λ ≤ ((2m)!)2/2.

4 LDHC(n, n, λ) and LDHP(n, n − 1, λ)

For ξ ∈ Sym(Zn), η ∈ Sym(Zn) and a directed Hamilton cycle C = 〈x0, x0, . . . ,

xn−1, xn−1〉 of K ∗
n,n, where xi ∈ Zn, xi ∈ Zn for 0 ≤ i ≤ n − 1, the definitions of

ξC and ηC are similar to those introduced in Sect. 3. Let Z ′
n = Zn\{0}. Then, by the

shift-equivalence of directed Hamilton cycles, each directed Hamilton cycle in K ∗
n,n

will be denoted by a fixed form as follows.
Under the action of Sym(Zn), all directed Hamilton cycles in K ∗

n,n can be separated
into the following orbits:

O′
i ={〈0, η(0), σi (1), η(1), . . . , σi (n − 1), η(n − 1)〉 : η∈ Sym(Zn)}, σi ∈ Sym(Z ′

n).

It is easy to see that |O′
i | = n! for any σi ∈ Sym(Z ′

n). And, |Sym(Z ′
n)| · |O′

i | =
(n − 1)!n! is just the total number of distinct directed Hamilton cycles in K ∗

n,n .

Similarly to Lemma 11, we can prove the following one which is on oriented cycles.

Lemma 13 (1) If (Zn
⋃

Zn,A) is a DHC(n, n, λ) then so is (Zn
⋃

Zn, ηA)[resp.
(Zn

⋃
Zn, ξA)], where η ∈ Sym(Zn)[resp. ξ ∈ Sym(Zn)];

(2) If the system A is simple and it has a complete automorphism group H over
Zn, then all directed Hamilton cycles in {ηA : η ∈ Sym H (Zn)} are pairwise distinct.

A DHC(n, n, λ) contains λn directed Hamilton cycles. The total number of dis-
tinct directed Hamilton cycles in K ∗

n,n is (n − 1)!n!. Hence, an LDHC(n, n, λ)
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contains ((n − 1)!)2/λ pairwise disjoint DHC(n, n, λ)s. Clearly, there exists an
LDHC(n, n, λ) only if λ|((n − 1)!)2. The conditions are also necessary for the exis-
tence of LDHP(n, n−1, λ). Therefore, the existence spectrum for LDHC(n, n, λ) and
LDHP(n, n − 1, λ) only depends on one case: λ = 1 and n ≥ 1.

Lemma 14 There exists an L DHC(n, n, 1) for any positive integer n.

Proof Take the DHC(n, n, 1) = (Zn
⋃

Zn,A) constructed in Lemma 7 as the base
small set, where A = {C0, C1, . . . , Cn−1}. Let τ = (0, 1, . . . , n − 1) ∈ Sym(Zn),

which generates a subgroup H = 〈τ 〉 of Sym(Zn) with order n. Clearly, C j = τ j−i Ci

for i, j ∈ Zn . Now, we have shown that H is a complete automorphism group of A
over Zn . Let Sym H (Zn) = {τ1, τ2, . . . , τ(n−1)!}, where τ1 is identical permutation.
Let Sym(Z ′

n) = {σ1, σ2, . . . , σ(n−1)!}. Define

�i, j = {σiτ j C0, σiτ j C1, . . . , σiτ j Cn−1}, 1 ≤ i, j ≤ (n − 1)!.

Each �i, j is a DHC(n, n, 1) by Lemma 13 (1). Similarly, we can prove that H is a
complete automorphism group of �i,1 over Zn for 1 ≤ i ≤ (n − 1)!. We have the
following facts:

∗ all directed Hamilton cycles in each �i, j fall into orbit O′
i , where 1 ≤ i, j ≤

(n − 1)!;
∗ all directed Hamilton cycles in {�i, j : 1 ≤ j ≤ (n − 1)!} are distinct by Lemma

13 (2).

As well, |Sym(Z ′
n)| · |Sym H (Zn)| = |⋃i, j �i, j | = ((n − 1)!)2, which is just the

number of disjoint DHC(n, n, 1)s in an LDHC(n, n, 1). Therefore, an LDHC(n, n, 1)

is constructed. �
Similar to Theorems 1, 2 and Corollary 1, we can obtain the following conclusion.

The proof is similar.

Theorem 3 There exists an LDHC(n, n, λ) if and only if λ|((n − 1)!)2.

Theorem 4 There exists an LDHP(n, n − 1, λ) if and only if λ|((n − 1)!)2.

Corollary 2 There exist simple DHC(n, n, λ) and simple DHP(n, n − 1, λ) if and
only if 1 ≤ λ ≤ ((n − 1)!)2.

5 LHP(n, n, λ) and LDHP(n, n, λ)

For ξ ∈ Sym(Zn), η ∈ Sym(Zn) and a Hamilton path C = [x0, x0, . . . , xn−1, xn−1]
of Kn,n, where xi ∈ Zn, xi ∈ Zn for 0 ≤ i ≤ n − 1, the definitions of ξC and ηC
are similar to those introduced in Sect. 3. Take σ = (0, 1, . . . , n − 1) ∈ Sym(Zn),

which generates a subgroup G = 〈σ 〉 of Sym(Zn) with order n. Then, |SymG(Zn)| =
(n − 1)! and Sym(Zn) can be partitioned into (n − 1)! right cosets: Sym(Zn) =⋃(n−1)!

i=1 Gi , where Gi = {σi,0, σi,1, . . . , σi,n−1}, 1 ≤ i ≤ (n − 1)!. We can modify
the sequence σi,0, σi,1, . . . , σi,n−1 such that σi, j+1 = σσi, j for j ∈ Zn . Furthermore,
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σi, j = σ j−kσi,k for j, k ∈ Zn . Let SymG(Zn) = {σ1,0, σ2,0, . . . , σ(n−1)!,0}, where
σ1,0 is identical permutation. Below, by the shift-equivalence of Hamilton paths, each
Hamilton path in Kn,n will be denoted by a fixed form as follows.

Under the action of Sym(Zn), all Hamilton paths in Kn,n can be separated into the
following orbit families:

Oi = {Oi, j : 0 ≤ j ≤ n − 1}, 1 ≤ i ≤ (n − 1)!, where

Oi, j = {[σi, j (0), η(0), σi, j (1), η(1), . . . , σi, j (n − 1), η(n − 1)] : η ∈ Sym(Zn)}. It
is easy to see that |Oi | = n and |Oi, j | = n! for 1 ≤ i ≤ (n − 1)!, 0 ≤ j ≤ n − 1.

The number of right cosets is (n − 1)!. Then, (n − 1)! · |Oi | · |Oi, j | = (n!)2 is just the
total number of distinct Hamilton paths in Kn,n .

The next lemma is an analog of Lemma 11 too. Its proof is similar.

Lemma 15 (1) If (Zn
⋃

Zn,A) is an H P(n, n, λ) then so is (Zn
⋃

Zn, ηA) [resp.
(Zn

⋃
Zn, ξA)], where η ∈ Sym(Zn) [resp. ξ ∈ Sym(Zn)];

(2) If the system A is simple and it has a complete automorphism group H over
Zn, then all Hamilton paths in {ηA : η ∈ Sym H (Zn)} are pairwise distinct.

An HP(n, n, λ) contains λn2

2n−1 Hamilton paths. The total number of distinct Ham-
ilton paths in Kn,n is (n!)2. Hence, an LHP(n, n, λ) contains (2n − 1)((n − 1)!)2/λ

pairwise disjoint HP(n, n, λ)s. Clearly, there exists an LHP(n, n, λ) only if λ|(2n −
1)((n − 1)!)2 and (2n − 1)|λ. The conditions are also necessary for the exis-
tence of LDHP(n, n, λ). Therefore, the existence spectrum for LHP(n, n, λ) and
LDHP(n, n, λ) only depends on one case: λ = 2n − 1 and n ≥ 1.

Lemma 16 There exists an L H P(n, n, 2n − 1) for any positive integer n.

Proof Take the HP(n, n, 2n − 1) = (Zn
⋃

Zn,A) constructed in Lemma 9 as the
base small set, where A = {Ci, j : 0 ≤ i, j ≤ n − 1}. Let τ = (0, 1, . . . , n − 1) ∈
Sym(Zn), which generates a subgroup H = 〈τ 〉 of Sym(Zn) with order n. Clearly,
Ci, j = τ j−kCi,k for i, j, k ∈ Zn . Now, we have shown that H is a complete auto-
morphism group over Zn of A. Let Sym H (Zn) = {τ1, τ2, . . . , τ(n−1)!}, where τ1 is
identical permutation. As well, let SymG(Zn) = {σ1,0, σ2,0, . . . , σ(n−1)!,0} (refer the
beginning of this section), where σ1,0 is identical permutation too. Define

�i, j = {σi,0τ j Ck,l : 0 ≤ k, l ≤ n − 1}, 1 ≤ i, j ≤ (n − 1)!.

Each �i, j is an HP(n, n, 2n − 1) by Lemma 15 (1). Similarly, we can prove that H is
a complete automorphism group of �i,1 over Zn for 1 ≤ i ≤ (n − 1)!. We have the
following facts.

∗ For given σi,0, 1 ≤ i ≤ (n − 1)!, all Hamilton paths in �i, j fall into orbit family
Oi , where 1 ≤ j ≤ (n − 1)!. In fact, in �i, j , for given l ∈ Zn,

σi,0τ j Ck+1,l = σi,0τ j (σCk,l) = σσi,0τ j Ck,l = σi,1τ j Ck,l fork ∈ Zn,

σi,0τ j Ck2,l = σi,0τ j (σ
k2−k1Ck1,l) = σ k2−k1σi,0τ j Ck1,l

= σi,k2−k1τ j Ck1,l for k1, k2 ∈ Zn .
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That is to say, the n Hamilton paths σi,0τ j Ck,0, σi,0τ j Ck,1, . . . , σi,0τ j Ck,n−1 belong
to orbit Oi,k, which is a member of orbit family Oi .

∗ For given σi,0, 1 ≤ i ≤ (n − 1)!, all Hamilton paths in {�i, j : 1 ≤ j ≤ (n − 1)!}
are pairwise distinct by Lemma 15 (2).

As well, |SymG(Zn)| · |Sym H (Zn)| = |⋃i, j �i, j | = ((n −1)!)2, which is just the
desired number of disjoint HP(n, n, 2n − 1)s in an LHP(n, n, 2n − 1). Therefore, by
the facts, an LHP(n, n, 2n − 1) is constructed. �
Theorem 5 There exists an LHP(n, n, λ) if and only if λ|(2n − 1)((n − 1)!)2 and
(2n − 1)|λ.

Proof Combining Lemma 16 and the necessity for the existence of LHP(n, n, λ), we
obtain the conclusion. The proof is similar to that of Theorem 1. �
Theorem 6 There exists an LDHP(n, n, λ) if and only if λ|(2n − 1)((n − 1)!)2 and
(2n − 1)|λ.

Proof If n, λ satisfy the necessary conditions, then there exists an LHP(n, n, λ) =
{(Zn

⋃
Zn,Ai ) : 1 ≤ i ≤ (2n − 1)((n − 1)!)2/λ} by Theorem 5. For each Hamilton

path

C j = [x0, x0, x1, x1, . . . , xn−1, xn−1] ∈ Ai ,

define two directed Hamilton paths in K ∗
n,n :

C j,1 = ≺ x0, x0, x1, x1, . . . , xn−1, xn−1 �,

C j,2 = ≺ xn−1, xn−1, xn−2, xn−2, . . . , x0, x0 � .

Let A′
i = {C j,1, C j,2 : C j ∈ A}, then each {(Zn

⋃
Zn,A′

i ) forms a DHP(n, n, λ).

Furthermore, it is easy to verify that {(Zn
⋃

Zn,A′
i ) : 1 ≤ i ≤ (2n −1)((n −1)!)2/λ}

is an LDHP(n, n, λ). �
Corollary 3 There exist simple HP(n, n, λ(2n−1)) and simple DHP(n, n, λ(2n−1))

if and only if ≤ λ ≤ ((n − 1)!)2.
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