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Abstract
Few-shot segmentation (FSS) aims to segment unseen classes using a few annotated samples. Typically, a prototype repre-
senting the foreground class is extracted from annotated support image(s) and is matched to features representing each pixel
in the query image. However, models learnt in this way are insufficiently discriminatory, and often produce false positives:
misclassifying background pixels as foreground. Some FSS methods try to address this issue by using the background in the
support image(s) to help identify the background in the query image. However, the backgrounds of these images are often
quite distinct, and hence, the support image background information is uninformative. This article proposes a method, QSR,
that extracts the background from the query image itself, and as a result is better able to discriminate between foreground and
background features in the query image. This is achieved by modifying the training process to associate prototypes with class
labels including known classes from the training data and latent classes representing unknown background objects. This class
information is then used to extract a background prototype from the query image. To successfully associate prototypes with
class labels and extract a background prototype that is capable of predicting a mask for the background regions of the image,
the machinery for extracting and using foreground prototypes is induced to become more discriminative between different
classes. Experiments achieves state-of-the-art results for both 1-shot and 5-shot FSS on the PASCAL-5i and COCO-20i

dataset. As QSR operates only during training, results are produced with no extra computational complexity during testing.

Keywords Few-shot learning · Semantic segmentation · Metric learning

1 Introduction

The ability to segment objects is a long-standing goal of com-
puter vision, and recentmethods have achieved extraordinary
results [1–3]. These results depend on a large number of
pixel-level annotations which are time-consuming and costly
to produce. When facing the situation where few exemplars
from a novel class are available, these methods overfit and
perform poorly. To deal with this situation, few-shot segmen-
tation (FSS) methods aim to predict a segmentation mask for
a novel category using only a few images and their corre-
sponding segmentation ground-truths.
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Most current FSS algorithms [4–11] follow a similar
sequence of steps. Features are extracted from support and
query images by a shared convolutional neural network
(CNN) which is pre-trained on ImageNet [4,12–14]. Then
the support image ground-truth segmentation mask is used to
identity the foreground information in the support features.
Generally, the object class is represented by a single fore-
ground prototype feature vector [9,11,13,15,16]. Finally, a
decoder is used to calculate the similarity of the foreground
prototype and every pixel in the query feature-set to pre-
dict the locations occupied by the foreground object in the
query image. This standard approach ignores the importance
of background features that can be mined for negative sam-
ples in order to reduce false positives, and hence, make the
model more discriminative.

Some FSS methods [13,15,17] extract background infor-
mation from support images by using the support masks to
identify the support image background. RPMMs [13] uses
the Expectation-Maximization (EM) algorithm tominemore
background information in the support images. MLC [18]
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Fig. 1 Motivation for our
method. Most previous FSS
methods (as shown above the
dashed line) use a decoder to
classify features of the query
image, by comparing them to a
foreground prototype extracted
from the support image and
mask. This process often
produces false positives:
misclassifying the background
(e.g. cat) as the foreground
(e.g. dog). QSR (as shown below
the dashed line) uses
background information
extracted from the query image
at training time to learn a more
descriminative decoder which is
achieved by the semantic
separation and foreground
elimination

extracts a global background prototype by averaging together
the backgrounds extracted from the whole training data in
an offline process and then updates this global background
prototypewith the support background during training.How-
ever, the same category object may appear against different
backgrounds in different images. The background informa-
tion extracted from or aligned with the support image(s)
is, therefore, unlikely to be useful for segmenting the
query image. Existing FSS methods ignore the fact that the
background information of an image is most relevant for seg-
menting that specific image.

In this paper, we are motivated by the issue illustrated
in Fig. 1 and design a method that can extract background
information from the query image itself to make exist-
ing FSS algorithms be more discriminative. Our method,
Query Semantic Reconstruction (QSR), separates the feature
extracted from a query image according to known classes and
latent classes. Known classes are the categories that appear
in the training data, like dog and cat in the example used in
Fig. 1. Latent classes are unknown categories like mat and
wall which are not explicitly labelled in the training data, but
which can appear in the background in the training images.
QSR learns to eliminate the foreground information accord-
ing to the class labels. The remaining classes are used to
define a prototype for the background of the query image
that excludes contributions from the foreground class.

The extracted foreground and background prototypes are
used as input to the prototype decoder module from the
underlying, baseline, FSS method. The decoder produces
predictions of foreground and background masks. The pre-
dictions are compared to a ground-truth mask and the loss
is used to tune the parameters of the model. For these
foreground andbackgroundprototypes to be effective at iden-

tifying the foreground and background regions of the query
image, the whole model must be able to make the prototypes
discriminative of features representing different semantics
in the images. Hence, our method trains the underlying FSS
method so that at test time it is able to more accurately seg-
ment images. Our method only predicts background masks
during training to optimize the whole model. Hence, during
testing the method is identical to that of the baseline.

The main contributions of our work are as follows:

1. To address the long-standing high false positive problem
in FSS and to demonstrate that background information
from the query image itself can be employed usefully for
segmentation, we propose QSR that can be applied to
many existing FSS algorithms to ensure they are better
able to discriminate between foreground and background
objects.

2. QSR improves existing FSS methods through optimized
training. During testing our method is identical to the
baseline, so no additional parameters or extra computa-
tion is needed at test-time.

3. We demonstrate the effectiveness of QSR using three dif-
ferent baselines methods: CaNet [4], ASGNet [9] and
PFENet [16]. For the PASCAL-5i dataset, QSR improves
mIOU results of 1-shot and 5-shot FSS by 1.0% and 1.5%
for CaNet, 1.8% and 2.1% for ASGNet, and by 1.9%
and 4.8% for PFENet. For the COCO-20i dataset, QSR
improves ASGNet by 2.8% and 1.6%, PFENet by 4.5%
and 3.8%.

4. Our method achieves new state-of-the-art performance
on PASCAL-5i , with mIOU of 62.7% in 1-shot, and
66.7% in 5-shot. On the COCO-20i dataset, our method
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achieves strong results of 36.9% in 1-shot, and 41.2% in
5-shot.

2 Related work

2.1 Semantic segmentation

Semantic segmentation requires the prediction of per-pixel
class labels. The introduction of end-to-end trained fully
convolutional networks [3] has provided the foundation for
recent success on this task.Additional innovations to improve
segmentation accuracy further have included a multi-scale
cascade model named U-Net [19], dilated convolution [20]
and pyramid pooling [21]. In contrast to these methods, we
explore semantic segmentation in the few-shot scenario.

2.2 Few-shot learning

Few-shot learning (FSL) explores methods to enable models
to quickly adapt to perform classification of new data. FSL
methods can be categorized into generation, optimization
or metric learning approaches. Generation methods [22–
25] generate samples or features to augment the novel class
data. Optimization approaches [26,27] learn commonalities
among different tasks, and then a novel task can be fine-tuned
on a fewannotated samples basedon the commonalities.Met-
ric learning methods [28,29] learn to produce a feature space
that allows samples to be classified by comparing the dis-
tance between their features. Most FSL methods focus on
image classification and cannot be easily adapted to produce
the per-pixel labels required for segmentation.

2.3 Few-shot segmentation learning

The first FSS method [30] employed a two-branch compari-
son framework that has become the basis for FSS methods.
PaNet [15] used prototype feature-vectors to represent sup-
port object classes and then compared their similarity with
query features to make predictions. Other methods have
improved different aspects of this process, for example, by
extracting multiple prototypes representing different seman-
tic classes [9,13], by iteratively refining the predictions [4],
or using a training-free prior mask generation method [16].
Some methods extract information not only from support
images, mining latent classes from the training dataset to
search for more prototypes [18], or supplementing proto-
types with support predictions [11].

3 Problem setting

Formally, we define a base datasetDbase with known classes
Cknown . The FSS task is to use Dbase to train a model which
is able to segment new classes Cnovel , for which only a few
annotated examples are available. The key point of FSS is
that Cnovel /∈ Cknown . Specifically, Dbase is a large set of

image-mask pairs (I j , M j )
Num
j=1 , where M j is the semantic

segmentationmask for the training image I j , and Num is the
number of image-mask pairs. During testing, the model has
access to a support set S = (I is , M

i
s )

k
i=1 ∈ Cnovel , where Mi

s
is the semantic segmentation mask for support image I is , and
k is the number of image-maskpairs,which is small (typically
either 1 or 5 for 1-shot and 5-shot tasks respectively). A
query (or test) set Q = (Iq , Mq) ∈ Cnovel is used to evaluate
the performance of the model, where Mq is the ground-truth
mask for image Iq . Themodel uses the support set S to predict
a segmentation mask, M̂ f , for each image Iq in query set Q.

4 Method

4.1 Overview

Figure2 illustrates our method for 1-shot segmentation. Both
support and query images are input into a shared CNN. In
common with our baselines, CaNet [4], ASGNet [9] and
PFENet [16], we use a ResNet [1] pre-trained on Ima-
geNet [12] for this encoder backbone and choose features
generated by block2 and block3. All parameter values in

Fig. 2 An overview of our method for 1-shot segmentation. Like other
FSS methods, our method extracts a foreground prototype from the
support image and uses this to predict a foreground segmentation mask
for the query image. QSR (dashed box) operates at training time to
learn to represent different semantic categories in the query image, and
uses this class information to define a background prototype. The back-
ground prototype is then used to predict a segmentation mask for the
background regions of the query image via the same decoder as is used
for the foreground prediction. To improve the accuracy of this addi-
tional prediction, the decoder is induced to become more discriminate.
This ability to discriminate between foreground and background objects
results in improved performance at test time, when the process illus-
trated in the dashed region is not used
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block2, block3, and earlier layers are fixed. These features
are concatenated and encoded using a convolution layer. The
convolution layer parameters are optimized by the loss func-
tion (details in Sect. 4.3). For CaNet [4] and ASGNet [9], this
layer has a 3× 3 convolution kernel shared between support
and query branches. For PFENet [16], two independent 1×1
convolution layers are defined for support and query features,
respectively. After the convolution layer, the CNN produces
support features Fs and query features Fq of size d × h ×w,
where d is the number of channels, and h, w are the height
and width.

As for the baseline methods [4,9,16], masked average
pooling (MAP) was used to extract the foreground prototype
Pf :

Pf =
∑hw

i=1 Fs(i) · 1[Ms(i) = 1]
∑hw

i=1 1[Ms(i) = 1] (1)

where i indexes the spatial locations of features, and 1[·] is
the indicator function, which equals 1 if the argument is True
and 0 otherwise.

Global average pooling (GAP) was used to extract a query
prototype Pq from the query features Fq :

Pq = GAP(Fq) (2)

Both the foreground and query prototypes were input to
our QSR method (defined in Sect. 4.2). QSR maps different
regions of the query image to semantic classes, and uses this
class information to generate a background prototype Pb:

Pb = QSR(Pq , Pf ) (3)

In Sect. 4.3, we describe how we utilise the prototype
decoder module from the baseline FSS method. These mod-
ules are used to predict final semantic segmentation masks.
The foreground prototype Pf is used to make a foreground
prediction M̂ f and the background prototype Pb is used for a
background prediction M̂b. The prototype decoder modules
for foreground and background prediction are identical and
share parameters. Our method only predicts a background
mask during training. During testing, the method is identi-
cal to the baseline and only uses the foreground prototype to
predict the foreground mask.

In this paper, we limited ourselves to being consistent with
the baselines: using a frozen backbone CNN and masked
average pooling to extract a single foreground prototype.
In addition, we also extract only one background prototype
making is possible to share parameters in the decodermodule
that is applied to both the foreground and background proto-
type. Future work might usefully explore improved methods
of representing foreground objects, for example, by using
multiple prototypes.

4.2 Query semantic reconstruction

Ourmethod assumes that images contain objects fromknown
classes and latent classes. Known classes are ones corre-
sponding to the labels provided in the training data and we
define them as C

k = {Ck
0 ,C

k
1 , . . . ,C

k
Nk

}. The number of
known classes, Nk , is defined by the training dataset, for
example Nk = 15 in PASCAL-5i [31]. During training,
the foreground class C f is contained in C

k . Latent classes
are given the generic label of ‘background’ in the training
data. However, we define multiple latent classes to repre-
sent possible background objects and they are defined as
C
l = {Cl

0,C
l
1, . . . ,C

l
Nl

}. The number of latent classes, Nl ,
is a hyper-parameter and the effects of different values were
explored in experiments, the results of which are reported in
Table 6. The background class must be a member of the set
of latent classes or the set of known classes, excluding the
class of the foreground object, which can be expressed as:

Cb ∈ C
l ∪ C

k\C f (4)

Mapping between prototype feature-vectors and classes
is achieved using a layer of weights. A known class weight
matrix Wk whose size is Nk × d maps from the 1 × d
prototype to the Nk known class labels. Hence, each row
vector in Wk represents the corresponding category in Ck =
{Ck

0 ,C
k
1 , . . . ,C

k
Nk

}. In the same way, a latent classes weight
matrix Wl , with size Nl × d, maps from a prototype to the
latent categories in C

l = {Cl
0,C

l
1, . . . ,C

l
Nl

}. Wk and Wl are
both randomly initialized.

The known class weights can be learnt directly from the
training data. In each episode, (Pf ,C f ) is calculated from
(Fs, Ms), whereC f ∈ C

k . Pf ×Wk is used as the prediction
for the categoryof the foregroundobject.Cross-Entropy (CE)
loss can then be used to update the known class weights to
provide better representations of object class labels:

Lknown = CE(C f , Pf × Wk) (5)

The true latent class labels are unknown, so learning
the latent classes weights assumes that all categories (both
known and latent) should be independent of each other. A
possible method to achieve this is the application of con-
trastive loss [32,33] to constrain each class representation
to be independent by maximizing the orthogonality of their
representations. A previous FSS method, ASR [8], has used
contrastive loss to generate orthogonal semantic prototypes
for foreground classes. In this paper, we apply the technique
used in [32], a more efficient method, to constrain all class
weights to be independent. Specifically, we define Wc as the
concatenation ofWk andWl , (i.e.Wc has size (Nk +Nl)×d),
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Fig. 3 Query semantic reconstruction (QSR). A query prototype Pq is
multiplied with the semantic class weightsWc (which are optimized by
Lknown andLlatent ) to generates score values measuring the correlation
between Pq and each class. The score for the current foreground class
C f is set to zero. The score Sb is multiplied with Wc to reconstruct a
background prototype Pb eliminating any contribution from the fore-
ground class. Note that the foreground class is one of the known classes,
but is shown using a different colour for clarity

we first calculate the cross-correlation matrix, W , as:

W = Wc × WT
c (6)

The loss function for learning the latent class weights is
defined as:

Llatent =
Nk+Nl∑

i

(1 − Wii )
2 +

Nk+Nl∑

i

Nk+Nl∑

j �=i

W 2
i j (7)

where i, j index the spatial location of the cross-correlation
matrix. The latent loss tries to make the cross-correlation
matrix close to the identity matrix. This causes each category
to be statistically independent of all others.

As illustrated in Fig. 3, a background score, Sb, is
calculated to measure the correlation between each non-
foreground class and the query image prototype:

Sb = (Pq × Wc) · 1[Cl ∪ C
k\C f ] (8)

where Pq is the query prototype from Eq. (2). Finally the
background prototype is calculated, by back-projecting the
scores (which represent the classes predicted to be present
in the background) through the weights that represent the
classes:

Pb =
Nk+Nl∑

i=1

(Wc(i, :) × Sb(i)) (9)

where the colon means the whole dimension. This generates
a prototype that represents a mixture of feature-vectors rep-
resenting the classes believed to be present in the background
of the query image.

In order to be able to share the same decoderwith the base-
line, d is set to 256. However, such a large value may cause
the background prototypes to be redundant. On PASCAL-5i ,

the ratio between the class number (Nk + Nl ) and d in Wc is
30:256, compared to about 8:1 in [32]. Although these two
ratios are used in unrelated tasks, andwe also have the known
loss to constrain the Wk part of Wc, in future work it would
be worth-while setting d as a hyper-parameter that can be
tuned for different datasets.

4.3 Prototypes decoder module

We use CaNet [4], ASGNet [9] and PFENet [16] as base-
lines on which to test our method. These methods have been
widely used as the underlying model enhanced by various
previous techniques [10,11,13]. Unlike most previous meth-
ods thatmodify the structure of the baseline decoder network,
we try to improve it through better training. Each baseline
incorporates a prototype decoder module (called the Itera-
tive OptimizationModule in CaNet, FPN in ASGNet and the
Feature Enrichment Module in PFENet) that takes as input
the foreground prototype and query features, and outputs a
predicted segmentation mask M̂ f . In addition to using this
module in the standard way, we also use it with the fore-
ground prototype replaced by the background prototype, so
that it outputs a background prediction M̂b. When predicting
the background mask in the ASGNet baseline, we use only
one background prototype ignoring its ability to use multiple
prototypes. PFENet also uses a priormask (H ) to supplement
M̂ f and this input is replaced by (1 - H ) to predict M̂b when
using PFENet as the baseline.

Based on the twopredicted segmentationmasks,we define
two loss functions which are consistent with those used by
the baselines:

Lbase( f ) = CE(M̂ f , Mq) (10)

Lbase(b) = CE(M̂b, 1 − Mq) (11)

The overall loss combines the losses defined in Eqs. 5, 7,
10 and 11, as follows:

L = Lbase( f ) + αLbase(b) + β(Lknown + Llatent ) (12)

where α and β are parameters to balance the losses. Results
for experiments investigating the effects of these hyper-
parameters are reported in Table 7. When α = β = 0,
L = Lbase( f ) and the whole method degenerates to the
baseline.

Formulti-shot tasks (i.e.when applied to k-shot FSSwhen
k > 1), we use the same method as the corresponding base-
line. Specifically, CaNet [4] designs an attention mechanism
to fuse different features generated by each of the k support
images. ASGNet [9] uses super-pixels to generate multiple
prototypes of support images. PFENet [16] averages the fore-
ground prototypes from k support images together. As QSR
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obtains the backgroundprototype from the query image,QSR
is unaffected by the number of support images which makes
QSR easy to integrate with different baseline methods.

5 Experiments

5.1 Experimental setup

5.1.1 Datasets

Weevaluate ourmethodon twobenchmarkdatasets, PASCAL-
5i [30] and COCO-20i [35]. PASCAL-5i includes the
PASCALVOC2012 [31] and the extendedSDSdatasets [36].
It contains 20 classes which are divided into 4 folds each con-
taining 5 classes. COCO-20i is the MS-COCO dataset [37]
with the 80 classes divided into 4 folds each containing 20
classes. Following previous standard practice [4,16], we use
fourfold cross-validation to measure performance on both
datasets: testing each fold in turn using amodel that had been
trained on the other three folds. A random sample of 1,000
query-support pairs is used to test each fold in PASCAL-5i

and 20,000 in COCO-20i .

5.1.2 Implementation details

As mentioned above, we use CaNet [4], ASGNet [9] and
PFENet [16] as baselines. The whole model is trained end-
to-end.AsQSR is only used in the trainingphase, themodel is
identical to the baseline during testing. The details specific to
QSR were as follows: the class weights Wc (Sect. 4.2) were
initialized from the uniform distribution (−√

1/d,
√
1/d).

The loss weights α & β (Eq. (12)) were set to 1.0 & 0.5 in
PASCAL-5i and 1.0 & 0.1 in COCO-20i . The motivation
for reducing β for COCO-20i was because this dataset has
more categories. The number of latent classes Nl (Sect. 4.2)
was set to 15 in PASCAL-5i and 60 in COCO-20i to make
Nl = Nk for each dataset. Consistent with the baselines, d
was set to 256. In common with many previous FSSmethods
[5–11], and the baselines, feature extraction was performed
using a ResNet [1] pre-trained on ImageNet [12]. During
training, we used the methods and hyper-parameters used
by the baselines. Specifically, for CaNet [4], weights were
optimised using SGD with momentum of 0.9 and a weight
decay of 0.0005. Trainingwas performed for 200 epochswith
a learning rate of 0.00025 and a batch size of 4. For ASGNet
[9], the model was trained with the SGD optimizer and an
initial learning rate to 0.0025 with batch size 4 on Pascal-5i ,
and 0.005 with batch size 8 on COCO-20i . For PFENet [16],
SGDwas also used as the optimizer. Themomemtumwas set
to 0.9 and the weight decay to 0.0001. On PASCAL-5i , 200
epochs were used with a learning rate of 0.0025 and a batch
size of 4. On COCO-20i , the PFENet baseline was trained

for 50 epochs with a learning rate of 0.005 and a batch size
8. On both datasets, the learning rate was reduced following
the “poly” policy [38].

5.1.3 Evaluation metrics

Following standard practice, we use mean intersection over
union (mIoU) as the primary evaluation metric. It computes
the IoU for each individual foreground class and then cal-
culates an average of these values over all classes (5 in
PASCAL-5i and 20 in COCO-20i ).We also report the results
of FB-IoU, which calculates the mean IoU for the fore-
ground (i.e. for all objects ignoring class labels) and the
background.Weuse false positive rate (FPR)which is defined
as FPR = FP

FP+TN ,where FP is the number of background pix-
els incorrectly labelled as foreground, and TN is the number
of background pixels correctly labelled as background.

5.2 Comparison with the state-of-the-art

Tables 1 and 2 compare ourmethodwith other approaches on
PASCAL-5i . When QSR is applied to PFENet, the method
outperforms the previous state-of-the-art in both the 1-shot
and 5-shot settings. For each baseline, the QSR method
improves performance on every fold, and overall, for both
1-shot and 5-shot segmentation tasks. This is achieved with
only a small increase in the number of learnable parameters,
as indicated in the last column of Table 2. These additional
parameters are due to matrixWc (see Sect. 4.2), and are only
used during training: at test time the proposed method uses
an identical number of parameters as the corresponding base-
line. The ability to improve performance for three existing
FSS methods suggests that QSR may have the potential to
provide a general-purpose method of improving the accu-
racy of FSS approaches. Additional results using a different
backbone architecture are shown in Table 3. These results
show that increasing the size of the backbone does not, in
this case, improve performance, but that QSR continues to
improve performance in comparison with the baseline.

Table 4 compares our method with other approaches on
COCO-20i . QSR is able to increase performance when used
in conjunctionwith both baselines, and for theASGNet base-
line increase performance a level that is state-of-the-art. This
is achieved with only a small increase in the number of
learnable parameters used during training. The number of
additional parameters is 15.36k. The reason for the larger
increase in parameters here compared to that for PASCAL-
5i is due to matrix Wc being larger due to an increase in the
number of classes. More detailed results for the proposed,
showing performance on individual folds and with different
backbones, are shown in Table 5. These results show that
QSR is consistent in improving performance across folds.
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Table 1 mIoU (%) results for
1-shot and 5-shot FSS on
PASCAL-5i . ‘Mean’ is the
mIoU averaged across folds.
The best result for each column
is in bold. Methods of first two
rows use VGG16 [34] for
feature extraction, while all
others use ResNet50 [1]

1-shot 5-shot

Method P-50 P-51 P-52 P-53 Mean P-50 P-51 P-52 P-53 Mean

OSLSM [30] 33.6 55.3 40.9 33.5 40.8 35.9 58.1 42.7 39.1 43.9

PANet [15] 42.3 58.0 51.1 41.2 48.1 51.8 64.6 59.8 46.5 55.7

RPMMs [13] 55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3

CWT [7] 56.3 62.0 59.9 47.2 56.4 61.3 68.5 68.5 56.6 63.7

ASR [8] 53.8 69.6 51.6 52.8 56.9 56.2 70.6 53.9 53.4 58.5

RePRI [17] 59.8 68.3 62.1 48.5 59.7 64.6 71.4 71.1 59.3 66.6

MMNet [10] 58.0 70.0 58.0 55.0 60.2 60.0 70.6 56.3 60.3 61.8

SCL [11] 63.0 70.0 56.5 57.7 61.8 64.5 70.9 57.3 58.7 62.9

MLC [18] 59.2 71.2 65.6 52.5 62.1 63.5 71.6 71.2 58.1 66.1

CANet [4] 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1

CANet+QSR (ours) 56.1 66.3 51.5 52.3 56.4 59.3 68.7 52.8 53.6 58.6

ASGNet [9] 58.8 67.9 56.8 53.7 59.3 63.7 70.6 64.2 57.4 63.9

ASGNet+QSR (ours) 62.0 68.4 57.8 56.1 61.1 66.5 71.2 65.1 61.0 66.0

PFENet [16] 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9

PFENet+QSR (ours) 63.1 69.9 58.7 58.9 62.7 68.3 71.7 63.1 63.6 66.7

5.3 Ablation study

The following ablation studies were conducted with the
PFENet baseline using the 1-shot setting on PASCAL-5i .

5.3.1 Numbers of latent classes

Table 6 compares the performance achieved when using dif-
ferent numbers of latent classes, Nl . When Nl = 0 there are
no latent classes, only known classes, and Wc = Wk (see
Sect. 4.2). It can be seen that the best results were produced
when Nl = 15, which is equal to the number of categories
in the training data (15 in PASCAL-5i ). As the number Nl

increased, the results become poorer. However, for every
value of Nl tested, the performance of the proposed method
improves on the results produced by the the baseline model
(60.8%, see Table 1).

5.3.2 Effects of loss weight

Table 7 shows the impact of different loss weights, α and
β (see Eq. (12)) on the results. When α = β = 0, the loss
function becomes equivalent to the baseline loss Lbase( f ),
the results produced are therefore identical to those of the
baseline model. All combinations of non-zero values for α

and β produced mIoU results that were better than those
of the baseline. For the loss weights tested, the best results
were produced with α = 1, meaning that the background and
foreground information was weighted equally, and β = 0.5.

Table 2 FB-IoU (%) results of 1-shot and 5-shot FSS on PASCAL-5i .
‘Params’ is the number of learnable parameters (values preceded by a
plus show the number QSR added during training). − denotes results
thatwere not provided in the original paper. Formethods listed inTable 1
but not here, no relevant data was provided in the published work

Method 1-shot 5-shot Params

OSLSM [30] 61.3 61.5 276.7M

PANet [15] 66.5 70.7 14.7M

RPMMs [13] − − 19.6M

SCL [11] 71.9 72.8 −
MLC [18] − − 8.7M

CANet [4] 66.2 69.6 19.0M

CANet+QSR 69.1 70.8 +7.68K

ASGNet [9] 69.2 74.2 10.4M

ASGNet+QSR 71.3 75.0 +7.68K

PFENet [16] 73.3 73.9 10.8M

PFENet+QSR 75.4 77.2 +7.68K

The best result for each column is in bold

5.3.3 Background prototype from support images

Table 8 explores the effects of extracting background infor-
mation from different images. In the baseline, background
information was not used, and the results are the same as the
underlying FSS method. For the results labelled ‘Support’,
the background information was extracted from the support
image, rather than the query image. This was achieved by
replacing the query features Fq in Eq. (3) with the support
features Fs , but keeping other settings unchanged to allow for
a fair comparison. It can be seen that this method produces
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Table 3 mIoU (%) results for 1-shot and 5-shot FSS on PASCAL-5i . These results were produced using a different feature extraction backbone
than was used for the corresponding results in Table 1

1-shot 5-shot

Method P-50 P-51 P-52 P-53 Mean P-50 P-51 P-52 P-53 Mean Backbone

PFENet 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.4 ResNet101

PFENet+QSR (ours) 60.6 70.1 57.1 59.1 61.7 64.2 72.1 61.3 62.2 65.0 ResNet101

The best result for each column is in bold

Table 4 Mean mIoU (%) results for 1-shot and 5-shot FSS on COCO-
20i . Results for SCL and PFENet (including our variant) were obtained
using a ResNet101 [1] for feature extraction, and other results were
obtained using a ResNet50

Method 1-shot 5-shot

RPMMs [13] 30.6 35.5

CWT [7] 32.9 41.3

ASR [8] 32.6 34.4

RePRI [17] 34.1 41.6

MMNet [10] 37.2 38.0

SCL [11] 37.0 39.9

MLC [18] 33.9 40.6

ASGNet [9] 34.6 42.5

ASGNet+QSR 37.4 44.1

PFENet [16] 32.4 37.4

PFENet+QSR 36.9 41.2

The best result for each column is in bold

little improvement over the baseline. For the results labelled
‘Query’, the background information was extracted from the
query image. This is our proposed QSRmethod of extracting
background prototypes, which produces a more significant
improvement in the results. Hence, extracting background
information from the query image is more effective than
extracting it from the support image. We believe that this
is due to there being a diverse range of backgrounds against
which objects from the same category can appear in different
images. Extracting foreground and background information

from different training images enables the decoder to be
trained to correctly distinguish foreground objects from a
larger variety of backgrounds.

5.3.4 Importance of prototype reconstruction

Table 9 shows the effects of using differentmethods to extract
the background prototypes. The results labelled ‘Mask’ used
the query image segmentation masks (which are available
during training) to obtain the background prototypes directly.
Specifically, masked average pooling (Eq. (1)) was used
to generate background prototypes replacing those gener-
ated by QSR in Eq. (3). The final loss function in Eq. (12)
becomes L = Lbase( f ) + Lbase(b). As Table 9 shows, this
method improves the results compared to the baseline, which
reinforces the idea that using background information can
improve the training of the model. However, QSR provides a
further improvement in the results, suggesting that the back-
ground prototypes created through the proposed method are
more informative for training the model, presumably as the
background prototypes are more representative of the entire
training dataset, rather than just the current query image.

5.4 Model analysis

The following experiments to analyse QSR were per-
formed with the PFENet baseline using the 1-shot setting
in PASCAL-5i .

Table 5 mIoU (%) results for 1-shot and 5-shot FSS in COCO-20i .
This table shows more detailed results, with performance on each fold,
compared to Table 4. In addition, it also shows additional results for

our proposed method when using a ResNet101 as the feature extraction
backbone. This allows a more direct comparison with the published
results for PFENet using a ResNet101

1-shot 5-shot

Method C-50 C-51 C-52 C-53 Mean C-50 C-51 C-52 C-53 Mean Backbone

ASGNet − − − − 34.6 − − − − 42.5 ResNet50

ASGNet+QSR (ours) 34.8 39.8 40.7 34.3 37.4 40.2 47.5 48.0 40.7 44.1 ResNet50

PFENet 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4 ResNet101

PFENet+QSR (ours) 34.1 38.4 35.5 32.3 35.1 36.9 40.1 38.0 37.7 38.2 ResNet50

PFENet+QSR (ours) 33.6 41.0 39.2 33.8 36.9 36.3 44.9 44.3 39.4 41.2 ResNet101

The best result for each column is in bold
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Table 6 Effects of different numbers of latent classes, Nl

Nl P-50 P-51 P-52 P-53 Mean

0 62.2 69.3 57.7 58.4 61.9

15 63.1 69.9 58.7 58.9 62.7

30 63.6 69.5 57.7 58.6 62.4

45 61.8 69.5 57.2 57.5 61.5

60 61.6 69.1 58.0 57.7 61.6

The best result for each column is in bold

Table 7 Effects of different loss weights, α and β

α β P-50 P-51 P-52 P-53 Mean

0.0 0.0 61.7 69.5 55.4 56.3 60.8

0.5 0.5 62.1 69.6 55.0 58.8 61.4

0.5 1.0 62.3 69.8 55.0 58.3 61.4

1.0 0.5 63.1 69.9 58.7 58.9 62.7

1.0 1.0 61.8 66.3 58.1 58.5 61.2

The best result for each column is in bold

Table 8 Effects of different sources for background prototypes

Method P-50 P-51 P-52 P-53 Mean

Baseline 61.7 69.5 55.4 56.3 60.8

Support 62.1 69.8 54.5 57.1 60.9

Query 63.1 69.9 58.7 58.9 62.7

The best result for each column is in bold

Table 9 Effects of methods to reconstruct background prototypes

Method P-50 P-51 P-52 P-53 Mean

Baseline 61.7 69.5 55.4 56.3 60.8

Mask 63.4 69.5 54.9 57.4 61.3

QSR 63.1 69.9 58.7 58.9 62.7

The best result for each column is in bold

5.4.1 What latent classes represent

Latent classes (see Sect. 4.2) are used to represent classes
that are undefined in the training dataset, but may correspond
to unlabelled background features. To visualise these latent

Table 10 False positive rate (%) results. The smaller the value, the
lower the rate of mispredicting background regions as foreground. The
results for baselines were produced using the original authors code, as
no FPR results were reported in their papers

Method P-50 P-51 P-52 P-53 Mean

CaNet 10.9 7.9 9.8 10.1 9.7

CaNet+QSR 7.4 7.1 9.7 8.9 8.3

ASGNet 8.7 8.8 9.6 9.2 9.1

ASGNet+QSR 6.2 7.8 8.8 8.2 7.8

PFENet 5.8 7.7 7.6 8.6 7.4

PFENet+QSR 5.2 7.9 6.9 6.0 6.5

The best result for each column is in bold

classes, we identified the three highest scores (see Eq. (8))
for latent classes, then generated a background prototype for
each of these high-scoring latent classes in turn, and used
those prototypes to segment the image. The results for two
example images are shown in Fig. 4. SinceQSR only predicts
the background in the training phase, the figure shows the
results for two training images.

It can be seen that each latent class represents a certain
area of the background. This shows that the latent weights
do represent the unknown categories of the background.
However, these categories do not correspond to meaningful
categories, that might be given distinct labels by a human.
This is because QSR constrains the latent classes to be statis-
tically independent from each other and the known classes.
This constraint does not force latent classes to correspond to
specific background classes, but allows them to learn com-
binations of background features. It can also be seen that
when the background prototype is generated using all non-
foreground classes, in thewaywe propose, that this prototype
does an excellent job of identifying almost all background
regions in the two example images. This is even the case (as
shown for the chair example) when the situation is challeng-
ing due to the object occupying a very small proportion of
the image and both the background and foreground in the
query image having little similarity with the support image.

Fig. 4 Visualized results of latent classes and background predictions. For each class, a the prediction results for three latent classes, b the final
background prediction, c the query with foreground masks, d the support image with foreground masks
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Fig. 5 Qualitative results for 1-shot FSS on PASCAL-5i . a Support images and their ground-truths. b Query images and their ground-truths. c
Predictions produced by PFENet. d Predictions produced by PFENet+QSR

5.4.2 False positive rate

QSR uses background information during training in order
to make the model more descriminative and the foreground
prototypes extracted during testing less likely to be matched
with the background. The results shown in Table 10 demon-
strate that QSR does indeed reduce the FPR compared to the
corresponding baseline FSS algorithm.

5.4.3 Qualitative results

Fig. 5 shows some qualitative results. In the far right column
above the line is an example of an unsuccessful segmentation,
but a result where the false positive rate is reduced.

6 Conclusion

This paper proposes query semantic reconstruction (QSR) for
few-shot segmentation. By associating the query image with
semantics during training, QSR obtains background infor-
mation from the query image to mine negative samples in
order to make a more discriminative model that reduces false
positives. QSR improves the performance of three different
baselines, and for oneof them the improvement is sufficient to
produce state-of-the-art results for both the 1-shot and 5-shot
settings on PASCAL-5i . Future work might usefully explore
improved methods of representing foreground objects or the
use of background information at test time. In addition, due
to limited computing resources, we did not tune the num-
ber of latent classes Nl (see Sect. 4.2) on COCO-20i . Trying
more Nl may produce better performance.
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