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Abstract
An improved nonintrusive parametric model order reduction (pMOR) approach is proposed for the flow field interpolation 
regarding fluid–structure interaction (FSI) objects. Flow field computation using computational fluid dynamics (CFD) 
requires excessive computational time and memory. Nonintrusive and data-driven MOR schemes have been proposed to 
overcome such limitations. The present methodology is implemented by both proper orthogonal decomposition (POD) and 
a modified Nouveau variational autoencoder (mNVAE). POD attempts to reduce the number of degrees of freedom (DOFs) 
on the precomputed series of the full-order model parametric result. The reduced DOF yields parametrically independent 
reduced bases and dependent coefficients. Then, mNVAE is employed for the interpolation of POD coefficients, which will 
be combined with POD modes for parametrically interpolated flow field generation. The present approach is assessed on 
the benchmark problem of a two-dimensional plunging airfoil and the highly nonlinear FSI phenomenon of the limit cycle 
oscillation. The comparison was executed against other POD-based generative neural network approaches. The proposed 
methodology demonstrates applicability on highly nonlinear FSI objects with improved accuracy and efficiency.

Keywords Nonintrusive parametric reduced-order modeling · Machine learning · Fluid–structure interaction · Proper 
orthogonal decomposition · Variational autoencoder

1 Introduction

Advancements in computing hardware and software have 
enabled a comprehensive analysis of complicated flow fields 
using computational fluid dynamics (CFD). However, the 

high nonlinearity inherent in both Navier–Stokes and Euler 
equations leads to an extensive number of degrees of free-
dom (DOF), resulting in a huge amount of computational 
time and memory. To overcome such limitations, various 
model order reductions (MOR) have been proposed.

MOR aims at converting a higher dimensional represen-
tation into a lower dimensional one while preserving the 
main feature of the original. Over the past decades, MOR 
schemes, such as proper orthogonal decomposition (POD) 
[1, 2], balanced method [3], and empirical Gramian [4], 
have been proposed. POD is one of the most widely used 
approaches, owing to its robustness and optimality [5]. 
POD, also known as the Karhunen–Loéve theorem or prin-
cipal component analysis, was introduced by Lumley [1] to 
analyze a turbulent flow field. This was later improved by 
Sirovich [2] using the snapshot method. POD extracts the 
reduced basis, referred to as the POD mode, using singular 
value decomposition (SVD) on the snapshot. An efficient 
surrogate representation is then constructed by combining 
a finite, small number of POD modes that will contain the 
majority of properties.
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There are two approaches to MOR: intrusive and non-
intrusive. POD in an intrusive MOR is combined with 
Galerkin projection [6–8], where the governing equation is 
projected onto the reduced subspace. Because of the depend-
ence on the governing equation, multiparametric analysis 
becomes tedious when the specific CFD algorithm is not 
explicitly established [9]. To address these difficulties, a 
nonintrusive MOR (NIMOR) was proposed. NIMOR is a 
purely data-driven approach based on high-fidelity analy-
sis results without knowledge of the governing equation. 
Similar to the intrusive method, POD for NIMOR extracts 
reduced bases. However, additional treatment will be per-
formed in the POD mode or coefficient to approximate the 
full order model (FOM), rather than projecting the higher 
dimensional representation.

NIMOR utilizes the latest developments in machine-
learning techniques. Gaussian process regression (GPR) 
has been used by several researchers [10, 11] owing to its 
simplicity and decent performance. However, GPR is known 
to be more inaccurate than the latest machine-learning 
techniques [12]. An artificial neural network (ANN) was 
employed for NIMOR, including a simple multilayer per-
ceptron [13–17], long short-term memory networks [18–20], 
and generative adversarial networks [21, 22].

Attempts to replace POD as a MOR method are found. 
One of the most popular choices is the autoencoder for 
nonlinear MOR [20, 23–25]. Extension of the conventional 
autoencoder, such as SINDy autoencoder [26], and com-
bined POD-autoencoder methodology [27] were inves-
tigated. Using the autoencoders, parametric MOR was 
attempted by identifying its latent space [28, 29]. Other 
methods include the physics-informed neural networks 
(PINN). In PINN, neural networks are designed to be univer-
sal function approximators to describe the partial differential 
equations [30, 31].

In this study, an ANN exploiting unsupervised learning 
method based on the modified Nouveau variational autoen-
coder (mNVAE) was adopted. Unlike supervised learning 
method, an ANN exploiting unsupervised learning method 
generates the result based on the pattern and feature of the 
given dataset, which is learned without a label. Autoen-
coder [32], VAE [33], and generative adversarial network 
(GAN) [34] are the most recognized unsupervised learn-
ing approaches. Several variations of these networks have 
been proposed to improve the performance. Based on pattern 
searching and clustering, they are applied to diverse tasks, 
including dimensionality reduction. In particular, they are 
widely used for image denoising, restoration, generating 
novel realistic data via interpolation, super-resolution of 
images, and anomaly detection [35–40].

Among generative neural networks, VAE is known to be 
much more stable during training than GAN. During the 
training of GAN, phenomena such as mode collapse and 

imbalance of the generator/critic network performance may 
occur. A situation referred to as posterior collapse occurs in 
vanilla VAE. This issue was alleviated by applying a tech-
nique known as Kullback–Leibler divergence (KL diver-
gence) annealing [41–44]. Deep hierarchical VAE such as 
Ladder VAE (LVAE) [42] and Nouveau VAE (NVAE) [44] 
were proposed to stack multiple layers in VAE for a bet-
ter formulation. These approaches force the encoder and 
decoder networks in VAE to produce analogous distribu-
tion results.

Several attempts have been made to apply unsuper-
vised learning method to MOR. Phillips et al. [45] devel-
oped a reduced-order model (ROM) known as the SVD-
autoencoder in which SVD was operated on the input of the 
autoencoder. Xu et al. [46] developed a multistage MOR for 
parametric estimation of the flow field based on a coarsely 
constructed overset grid and convolutional autoencoder. 
However, autoencoders are known to exhibit inferior per-
formance because of their sparse latent space and wide range 
of latent variables [47]. Lee et al. [21] employed WGAN-GP 
and POD for unobserved parametric values of the flow field. 
Although WGAN-GP is known for generating “sharper” 
details, it is also known for slower and unstable training. In 
contrast, VAE is characterized by stable and fast training. 
The authors found that VAE would also be capable of gen-
erating “sharp” details if the dataset was one-dimensional 
(1D). Cheng et al. [48] developed a hybrid VAE-GAN for 
parameterized flow analysis. However, its applications were 
limited to a small number of DOFs and VAE was not optimal 
for MOR use when the number of DOF exceeded a few hun-
dred thousand. The reconstruction error of VAE will become 
significantly large, and stability during training will degrade 
owing to the regularizing term, KL divergence.

In this study, a combination of POD and variation to 
VAE, referred to as the modified NVAE (mNVAE), was 
adopted to construct a nonintrusive parametric MOR 
(pMOR) for the analysis of FSI. The present methodology 
is henceforth referred to as POD-mNVAE. POD is used to 
reduce the order of the higher dimensional representation, 
and mNVAE will be used for interpolation. Two examples 
were examined: the flow field around a plunging airfoil, flow 
around a highly nonlinear FSI phenomenon, and limit cycle 
oscillation (LCO) of an airfoil. The computational time and 
accuracy were evaluated for both examples, and a compari-
son with those previously proposed was performed.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the formulation of POD and modification 
to its snapshot matrix for parametric information. The for-
mulation of VAE and modifications are provided in Sect. 3. 
Section 4 consists of the assumptions and procedures to 
execute POD-mNVAE. Section 5.1 demonstrates the appli-
cations of POD-mNVAE on two FSI objects. A comparison 
against previously proposed POD-based ANN methods is 



47Engineering with Computers (2024) 40:45–60 

1 3

also presented. The conclusion and a relevant discussion are 
presented in Sect.6.

2  Proper orthogonal decomposition (POD)

The proposed scheme first constructs a lower dimensional 
representation of FOM using a reduced-order basis. The 
snapshot matrix is an ensemble of FOM analysis results. 
On the snapshot matrix, POD extracts the characteristics 
of a higher dimensional FOM using SVD. Using SVD, the 
POD modes are collected based on the dynamic energy ratio. 
Then, the POD modes are used as the basis vectors for MOR.

A snapshot matrix with a size of N × S is expressed in Eq. 
(1). Here, v denotes the physical variable of interest from 
the flow field, N corresponds to the number of DOF, and S 
corresponds to the number of time steps as follows:

The snapshot matrix was modified to accommodate para-
metric variations. The snapshot matrices for each paramet-
ric value are concatenated in the row direction. A single 
appended snapshot matrix, Wtotal will be constructed, and 
it contains parametric as well as spatio-temporal informa-
tion. Equation (2) represents the snapshot matrix modified 
by parameter Np in which the second superscript denotes the 
parameter as follows:

After the construction of the snapshot matrix was com-
pleted, SVD was performed. Then, the POD modes �i were 
extracted using the process in Eq. (3) as follows:

The number of POD modes to be considered for MOR is 
determined by the energy ratio �i . The accumulated energy 
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ratio E is defined by Eq. (4). The number of POD modes, 
Nm , is determined by the total energy considered, E:

The POD coefficients for time t and parameter p were 
obtained by projecting the FOM solutions onto the space 
generated by the POD modes. The variable of interest is 
then generated by the combination of POD coefficients and 
modes. Then, the original variable of interest, v∗ ≈ v , is 
obtained by the sum of the averaged value, v̄ , and perturba-
tions, v̂ , as expressed in Eq. (6) as follows:

POD modes Φi(x) in Eq. (6) contain spatial information that 
is invariant with respect to the parameter and time, whereas 
POD coefficients, ai(t, p) , contain the parametric and tem-
poral information invariant with respect to the location. 
Naturally, POD coefficients comprise temporal information 
appended with respect to the parameter. These are decom-
posed later for mNVAE training.

3  Modified Nouveau variational 
autoencoder (mNVAE)

3.1  Variational autoencoder (VAE)

The current neural network, mNVAE, is an improved version 
of the VAE. VAE largely comprises two components: an 
encoder and decoder. The output of the encoder is expressed 
by the mean � and the variance � which will be used to 
generate the latent code, z. VAE aims to infer an intractable 
posterior distribution efficiently. As it is difficult to deter-
mine the true posterior, p(z ∣ x) , VAE utilizes an approxi-
mate posterior, q(z ∣ x) . Regarding the structure of VAE, 
q(z ∣ x) indicates an encoder or an inference network. p(x ∣ z) 
denotes the decoder network. A typical structure of VAE is 
found in Fig. 1.

The objective function of VAE was formulated as 
expressed in Eq. (7). The first term denotes the negative 
log-likelihood that operates as a reconstruction error. It is 
designed to minimize the discrepancy between the given 
input and the generated output. The second term is KL 
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divergence, which is the distance between two distributions. 
KL divergence forces the approximate posterior to become 
closer to the prior, p(z). During the optimization process, KL 
divergence acts as a regularization term:

Usually, KL divergence term in the loss function can be inte-
grated analytically [33]. The reconstructed error on the other 
hand, is not directly differentiable since z is sampled from 
� and � . To enforce it to be differentiable, reparameteriza-
tion trick was adopted for the latent code sampling. First, 
Gaussian-sampled random noise, � was introduced to the 
latent code. The latent code z, was formulated by � , � , and 
� , so that, z = � + (� × �) . The new z enabled reconstruction 
loss to be differentiable by Monte Carlo method. Thus, the 
reconstruction loss would be backpropagated.

3.2  Hierarchical network

The conventional VAE is constrained to a shallow model 
with only a few layers of stochastic latent variables. Such 
constraints result in a restrictive mean-field approximation 
and degrade the VAE performance [42]. Deep hierarchical 
VAE such as LVAE [42] and NVAE [44] have been pro-
posed to overcome these limitations. The ladder network 
connects the inference and generative networks via bidirec-
tional information transfer [49]. The network structure is 
shown in Fig. 2.

The latent variables in the deep hierarchical VAE are par-
titioned. The latent variables are sampled from the layers in 
both bottom-up and top-down network as shown in Fig. 2. 
Especially, to generate ith latent variable, zi , ith layer in the 
top-down network is used. The ith layer in the top-down 
network originates from predecessing latent variable, zi+1 , 
thus the network contains top-down information. Similarly, 
zi also requires ith layer in the bottom-up network.

(7)min[−�q(z∣x)[log p(x ∣ z)] + DKL(q(z ∣ x)‖p(z))]

Since both bottom-up and top-down layers are used 
to sample latent variables in each layer, bidirectional 
information will be shared. Conventional deep VAE lack 
long-range correlations as first few encoder layers affect 
very little on the output. For the ladder VAEs, even the 
first encoder layer will be used to sample latent variable 
enabling better quality latent variables.

The latent variables are separated into L groups: 
z =

{
z1, z2, z3,⋯ , zL

}
 . The prior and posterior can be fully 

factorized, as expressed in Eq. (8) and subsequently speci-
fied as expressed in Eq. (9), using a Gaussian distribution 
for each group:

Fig. 1  Structure of a typical VAE

Fig. 2  Structure of deep hierarchical VAE
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From the factorized distribution, the objective is specified 
in Eq. (10) in which the KL divergence is obtained indi-
vidually. As aforementioned, KL divergence will force the 
approximate posterior to approach the prior. Therefore, split-
ting the KL divergence into groups will lead to bidirectional 
information transfer between the inference and generative 
networks. A detailed explanation of the ladder network for 
the VAE can be found in [42]:

3.3  Modified NVAE (mNVAE)

The present ANN, mNVAE, is a modified version of NVAE 
[44] for improved accuracy when used with a 1D transient 
dataset. The network comprises 1D convolutional layers for the 
temporal continuity of the transient dataset. Instead of the con-
ventional binary cross-entropy KL divergence, which is widely 
used for VAE, a hybrid weighted mean squared error KL diver-
gence loss function is considered. The hybrid weighted loss 
function empirically shows better results regarding continuous 
data. The loss function for mNVAE is expressed as in Eq. (11) 
as follows:

In Eq. (11), the reconstruction loss, � , is replaced by the 
mean squared error, MSE, between the input and out-
put datasets. � and � denote the weight functions of MSE 
and KL divergence losses, respectively. The weight ratio 
for each loss function was set as approximately 1,000 
� ∶ �target ≈ 1, 000 ∶ 1 . For the mNVAE, KL annealing [41] 
is used, and � is expressed as in Eq. (12) as follows:
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+

L−1�
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KL annealing prevents a posterior collapse in which some 
of latent variables become inactive. At the start of training, 
the weight for KL divergence will be quite small and will 
act like an autoencoder. Then, the weight will be increased 
gradually introducing regularization term, resulting in a 
VAE. For interpolation in the latent space, spherical linear 
interpolation (slerp) is considered. Gaussian sampling forms 
latent space of mNVAE into a multi-dimension hypersphere. 
Linear interpolation within a hypersphere usually results 
in poor interpolation quality, where the interpolated vec-
tor length is ignored. Instead, linear interpolation along the 
sphere will be performed. By slerp interpolation, arc length 
will be interpolated linearly.

4  Framework

The proposed scheme makes the following two assumptions: 

1. A sufficient number of the samplings is performed 
within the parametric space.

2. Change in the physical dynamics should be semi-contin-
uous, i.e., no divergence or shock within the parametric 
space.

These assumptions are adopted such that the combination 
of POD modes may be sufficient to represent the flow field. 
The second assumption signifies that there should not exist 
any drastic change in the physical properties with respect to 
the parameter. Discontinuity in the phenomenon will lead to 
incapability of using POD modes semi-universally within 
the parametric space. Since the proposed scheme does not 
interpolate POD modes, the physical properties will be semi-
continuous to ensure accuracy of the interpolation. Other-
wise, collected POD modes will not be sufficient to construct 
the target flow field. A further explanation is discussed in 
Lee et al. [21].

4.1  Present POD approach

The snapshot matrix for the variable of interest, Wpj
 , are 

collected from the FOM result for each parameter. The 
snapshot matrices for each parameter are appended in the 
row direction to create a single snapshot matrix 
Wtotal =

[
Wp1

,Wp2
,⋯ ,WpNp

]
 . Then, SVD is performed on 

Wtotal to obtain the spatially dependent POD modes, �i . 
The corresponding POD coefficients, ai , in contrast, are 
temporally and parametrically dependent. Based on the 
aforementioned assumptions, the POD modes are 

(12)𝛽 =

{
1 × 10−4𝛽target if epoch < 0.3nepochs
𝛽target

epoch

nepochs
if epoch > 0.3nepochs
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quasi-universal with respect to the parameter. The POD 
coefficients are then partitioned with regard to the param-
eter, as in Eq. 13:

The number of POD modes and coefficients was selected 
based on the energy ratio. By aligning the energy ratio of the 
POD modes to its size, the higher POD modes will exhibit 
a small value. These higher modes are neglected for MOR 
construction, and only a few lower modes are used.

4.2  Present mNVAE

The mNVAE encoder and decoder blocks are shown in 
Fig. 3. The current network comprises a bidirectional 
structure: bottom-up or top-down. The entire network 
of mNVAE comprises the blocks shown in Fig. 3. The 
encoder block contained a series of SN-LeakyReLU-
dropout-Conv1D layers, where SN denotes the spectral 
normalization and Conv1D represents a 1D convolutional 
layer. The decoder block comprises an identical block, 
except for TransConv1D. TransConv1D is a transposed 
version that replaces Conv1D in the encoder for recon-
struction. The numbers in parentheses next to Conv1D 
and TransConv1D layers are the kernel sizes. The dropout 
rates for the encoder and decoder were set as 0.2 and 0.1, 
respectively. This was designed to prevent overfitting and 
the SN layer was designed to stabilize the training process. 
Conv1D was employed to consider the temporal continuity 
of the POD coefficients.

(13)�i =
{(

�1
1
, �1

2
,⋯ , �1

S

)
,⋯ ,

(
�
Np

1
, �

Np

2
,⋯ , �

Np

S

)}

4.3  Training mNVAE and the flow field 
reconstruction

POD coefficients ai are collected for Nm × Np sets with a 
length of S time steps. The input dataset for mNVAE com-
prises 20 POD coefficients per network. The batch size 
for the training is denoted by Nb . The input dataset was 
reshaped into 

(
Nb, S, 20

)
 and normalized to [0,1] for each 

POD coefficient. After the encoder, the shape of the latent 
code becomes 

(
Nb,Nl

)
 , where Nl denotes the latent dimen-

sion size. The change in the data dimension in mNVAE is 
expressed in Eq. (14) as follows:

mNVAE is trained for POD coefficient interpolation, as 
shown in Algorithm 1. In Algorithm 1, a standard Adam 
optimizer is used and the ladder network architecture is 
adopted.

Algorithm 1 Training of mNVAE

qencφ,i : ith encoder layer of mNVAE
pdecθ,i : ith decoder layer of mNVAE

Require: Hyperparameter, αLR, β1, β2
x = N(am) = ām → [0, 1] (m = 1, · · · , Nm)
for i = 1, Nepoch do

for j = 1, L do
if j = 1 then

qencφ,1 (x) = u1 → µq,1, σq,1
else if j > 1 then

qencφ,j (uj−1) = uj → µq,j , σq,j

end if
end for
zL = µq,L + σq,Lε, ε ∼ N (0, 1)
for k = L,−1, 1 do

if k = L then
pdecθ,k (zL) = dk → µp,k, σp,k

else if 1 ≤ k < L then
pdecθ,k (dk+1, zk+1) = dk → µp,k, σp,k

end if
f(uk, dk) = ûk → µq̂,k, σq̂,k

zk = µq̂,k + σq̂,kε, ε ∼ N (0, 1)
end for
∆µl = µq̂,l − µp,l, ∆σl = σq̂,l/σp,l (l = 1, 2, · · · , L− 1)
Adam(∇φ,θLV AE , αLR, β1, β2) → φ, θ

end for

The training process of the mNVAE can be divided 
into two parts: encoder and decoder training. First, the 
input dataset x is the normalized POD coefficient for each 
POD mode. In Algorithm 1, N(am) denotes the normaliza-
tion function of the POD coefficient. The normalized 
POD coefficient is provided to the first layer of L-layer 
encoder qenc

�,1
 . The first encoder layer outputs u1 and trans-

forms it into �q,1, �q,1 . Then, for the remaining encoder 
layers, the output of the former layer, uj−1 , is provided as 
the input. Finally, the Lth encoder layer, the latent code zL , 
is formulated by the mean and variance �q,L, �q,L . In the 
formulation of the latent code, a Gaussian normally dis-
tributed random number, � , is added. The decoder is 

(14)
(
Nb, S, 20

) encoder
�������������������������→

(
Nb,Nl

) decoder
�������������������������→

(
Nb, S, 20

)

Fig. 3  Block construction in mNVAE



51Engineering with Computers (2024) 40:45–60 

1 3

trained in a similar manner, where the input of the first 
decoder layer is substituted by zL . A detailed explanation 
of the training of a VAE using a ladder network can be 
found in [42, 44].

Beyond the encoder, the latent variables are distributed 
over the latent dimension. Since Gaussian random noise was 
introduced, certain latent codes may not accurately repre-
sent the target POD coefficient. Therefore, an adequate latent 
code is sought for each parameter and coefficient prior to 
interpolation. Latent code search is performed by first pro-
viding the input dataset to the encoder. Latent code zL is 
sampled from the encoder and then fed to the decoder. The 
discrepancy between the input and output of mNVAE is esti-
mated. If the discrepancy is sufficiently small, zL is stored 
as an adequate latent code. The latent code search process 
is summarized in Algorithm 2. Here, Niter represents the 
number of iterations required to search for the latent code, 
which is set as 1,000.

Algorithm 2 Latent code searching

Require: Trained qencφ , pdecθ from Algorithm 1
for i = 1, Np do

qencφ ᾱi
)
→ µq,L, σq,L

ε = 1
for j = 1, Niter do

zL = µq,L + σq,Lε, ε ∼ N (0, 1)
if pdecθ (zL)− ᾱi

)2
< ε then

ε = pdecθ (zL)− ᾱi

zi = zL
end if

end for
end for

In Algorithm 2, � is the discrepancy between the input and 
the output. Interpolation will be performed to obtain adequate 
latent codes. Slerp is performed in the latent dimension, as it 
has been widely accepted for Gaussian-sampled generative 
models owing to its accuracy [50]. The interpolated latent 
code is then sent to the decoder to generate the interpolated 
POD coefficient. The relevant procedure is summarized in 
Algorithm 3, where slerp denotes slerp. The interpolated flow 
field is then constructed by the combination of ai,ptgt and the 
pre-obtained POD modes, �i , as in Eq. (15):

Algorithm 3 Interpolation of POD coefficients

Require: N() from Algorithm 1, zi from Algorithm 2
for n = 1, Nm do

Set the target parametric value, ptgt, and two adjacent values, p1 and p2
Find the ratio, k, such that ptgt = k × p1 + (1− k)× p2
zn,ptgt

= slerp(zn,p1 , zn,p2 , k) = p1
sin(1−k)θ

sin θ + p2
sin kθ
sin θ , θ = cos−1(p1 · p2)

an,ptgt
= N−1(fdec

φ zn,ptgt

)
)

end for

(15)q∗
ptgt
(x, t) = q̄(x) +

Nm∑
i=1

ai,ptgt (t)𝜙i(x)

The present pMOR procedure comprises two stages: offline 
and online. The offline stage includes FOM construction, 
POD, mNVAE training, and latent code searching. The offline 
stage must only be performed once. In contrast, the online 
stage is executed repeatedly for each parametric estimation. 
It includes latent code interpolation and the construction of 
the interpolated flow field. Because the online stage requires 
a relatively smaller amount of computational time, the POD-
mNVAE pMOR scheme becomes efficient. Figure 4 illustrates 
a flowchart of the proposed methodology.

5  Numerical results

This section presents the application of the proposed POD-
mNVAE for two FSI situations. First, it was applied to the flow 
field of a plunging airfoil. The plunging airfoil demonstrated 
the variation in the flow field with respect to the deformed 
grid. The results obtained by POD-mNVAE were compared 
with those of other POD-based ANNs in terms of accuracy 
and efficiency. Then, the POD-mNVAE is examined by the 
highly nonlinear FSI phenomenon, LCO. The LCO examines 
the applicability of the POD-mNVAE to various engineering 
problems with nonlinearity.

For both applications, Navier–Stokes CFD analysis was 
performed. CFD analysis and POD were performed using 
an AMD 3950X CPU at 4.11 GHz. The ANN model was 
constructed using Tensorflow 2.7.0 and the training was 

Fig. 4  Flowchart for POD-mNVAE
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performed using an NVIDIA GeForce GTX 3090 GPU. The 
results obtained by the POD-mNVAE were evaluated by com-
parison with those obtained by FOM in terms of accuracy and 
computational time.

5.1  Plunging airfoil

5.1.1  Problem description

First, the prescribed plunging airfoil was analyzed. An 
airfoil with a chord length of 0.156 m was subjected to 
standard atmospheric inflow of 1 m/s. The airfoil plunges 
at a frequency of 10 rad/s while its amplitude var-
ies. The plunging amplitude changes in ten variations, 
h = [0.05, 0.06,⋯ , 0.13, 0.14] m, as illustrated in Fig. 5. The 
flow field was discretized using 28,315 three-node triangular 
elements with 14,300 nodes. An open-source Navier–Stokes 
CFD solver, OpenFOAM v1912, was used to construct the 
snapshot.

The snapshot matrix for various plunging amplitudes 
was obtained using the fully converged CFD results. 5s of 
FOM results with an interval of 0.01s were collected for the 
snapshot matrix. The total snapshot matrix Wtotal was then 
constructed by appending the snapshot matrices for each 
parameter in the row direction. After POD on Wtotal was 
completed, 100 POD modes were collected for the velocity, 
and one mode was collected for the grid deformation. The 
accumulated energy ratios of the POD modes are 99.9% and 
99.9%, respectively. The first two POD mode shapes for the 
x-direction velocity u are shown in Fig. 6.

The current mNVAE for the plunging airfoil comprises 
six blocks in the encoder and decoder. The encoder com-
prises Conv1D blocks with [800, 400, 200, 100, 50] filters in 
a bottom-up network. The decoder comprises TransConv1D 
blocks with the same filters as in a top-down network. The 
latent dimensions for interpolation were set as 64. Detailed 
hyperparameters used for the present mNVAE training are 
summarized in Table 1.

After the training of mNVAE is completed, an ade-
quate latent code for each parameter is sought. Then, 
slerp is performed, and the latent code for the target 
value, h = 0.095 m, is acquired. The interpolated POD 

coefficients were generated by the decoder, as shown in 
Fig. 7. Using Eq. (15), an interpolated flow field is cre-
ated for the target parameter. The resultant interpolated 
and FOM flow fields are shown in Fig. 8.

5.1.2  Accuracy and efficiency of POD‑mNVAE

The accuracy of POD-mNAVE was evaluated with respect 
to the following seven categories:

Fig. 5  Schematic of the plunging airfoil

Fig. 6  POD modes for the plunging airfoil, velocity component, u 

Table 1  Hyperparameters for the present mNVAE training for the 
plunging airfoil

aNumber of POD coefficients interpolated by a single mNVAE net-
work

Criterion Value Criterion Value

Epochs 20,000 Latent dim. 64
� 1,000 Batch size 1
�target 5 Latent epochs 50
Learning rate 5 × 10

−5 Coeff. per networka 20

Fig. 7  Interpolated POD coefficient #1, velocity for the plunging air-
foil
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• ΔVavg : Average velocity discrepancy.
• ΔfV ,avg : Oscillation frequency discrepancy of the velocity 

component.
• ΔVpp : Peak-to-peak (oscillation amplitude) discrepancy 

of the velocity component.
• ΔVpoint : Velocity discrepancy at the 15 points of interest.
• Δfx,avg : Oscillation frequency discrepancy of the grid 

deformation.
• Δxpp : Peak-to-peak (oscillation amplitude) discrepancy 

of the grid deformation.
• Δxpoint : Grid deformation discrepancy in the 15 points of 

interest.

Among the seven categories, the preceding four are dis-
crepancies in the velocity components. The latter three are 
discrepancies in grid deformation. The 15 points of inter-
est described in ΔVpoint and Δxpoint were placed in the wake 
region. These points were placed where the changes in the 

physical variables were expected to be the largest. The loca-
tions of the 15 points are shown in the Appendix A, Fig. 16. 
The formulations for these seven categories are included in 
Appendix A. Table 2 summarizes the discrepancies in the 
plunging airfoil.

In Table 2, the accuracy of the POD-mNVAE is deter-
mined to be significantly small, as most of them are less 
than 1 % . The largest discrepancy was determined as 6.40% , 

Fig. 8  Original and interpolated 
flow field around the plung-
ing airfoil for h = 0.095 m at 
t = 4.5 s

Table 2  Discrepancies between POD-mNVAE and FOM for the 
plunging airfoil

Category ΔVavg ΔfV ,avg ΔVpp ΔVpoint

Discrepancy 0.11% < 0.01% 6.40% 0.03%
Category – Δfx,avg Δxpp Δxpoint

Discrepancy – 0% 0.90% 0.10%

Table 3  Computational time result for the plunging airfoil

Procedure Computa-
tional time 
[h]

Offline FOM 75.6
POD velocity 0.22

Mesh 0.21
Algorithm 1 Velocity 3.98

Mesh 2.38
Algorithm 2 Velocity 0.01

Mesh 0.01
Total online stage 82.4

Online Algorithm 3 <0.01
Flow field construction/write 0.29
Total offline stage 0.29

Total sum 82.7
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which was ΔVpp . A large discrepancy in ΔVpp was caused 
by the tendency to underestimate the oscillation amplitude. 
However, for the other categories, the discrepancies were 
smaller. In particular, for Δfx,avg , the discrepancy was deter-
mined as zero.

The computational procedure for POD-mNVAE com-
prises six steps. The time required for each computational 
step is summarized in Table 3. The entire interpolation pro-
cess for POD-mNVAE consumes 82.7 h regarding the ten 
parameters. It can be divided into two components, 82.4 h 
for the offline stage and 0.29 h for the online stage. With the 
appropriate execution of the offline stage, the interpolation 
process is predicted to consume only 0.29 h. In conclusion, 
POD-mNVAE is capable of reducing 96.2% of the compu-
tational time for each novel parametric estimation. POD-
mNVAE will be efficient if repeated computations exceeding 
12 times are required. The expected computational time in 
terms of the number of computations is as shown in Fig. 9.

5.1.3  Comparison against the other ANN methods

The proposed POD-mNVAE was then compared with other 
POD-based ANN methods. A comparison was performed 
between WGAN-GP [21], the previous version of mNVAE 
[51], and Gaussian process regression (GPR). The accuracy 
of various interpolation methods are summarized in Table 4. 
In this study, POD-mNVAE was found to be superior. The 
discrepancy in the current POD-mNVAE is the smallest, 
except for ΔVavg , ΔVPP , and ΔxPP . For these categories, the 
WGAN-GP [21] and GPR performed better. However, the cur-
rent POD-mNVAE was the most accurate overall. Improved 
accuracy for the current mNVAE was observed because of the 
hybrid weighted mean squared error-Kullback–Leibler diver-
gence (MSE-KLD) loss function. The current loss function 
was empirically determined to significantly enhance accuracy 

when used for a continuous dataset. The computational time 
required was obtained as the sum of the times required for 
Algorithms 1, 2, and 3. Notably, the proposed method was 
significantly efficient compared to other ANN methods. The 
current mNVAE required 6.37 h whereas the previous ver-
sion of mNVAE needed 17.82 h, and WGAN-GP used 77.33 
h for training. However, it is noteworthy that GPR was the 
most efficient as it took less than 0.1 h. The current mNVAE 
reduced the training time by more than 74 % compared with 
the previous version of the mNVAE [51]. It is also capable of 
reducing the training time by more than 91 % compared with 
WGAN-GP [21]. The current mNVAE was the most efficient, 
as it trains 20 POD coefficients per network. In contrast, the 
previous version of mNVAE trained a single POD coefficient 
per network, and WGAN-GP trained 10 POD coefficients per 
network. Training more POD coefficients per network leads to 
a smaller number of networks required for interpolation. The 
current mNVAE trains more POD coefficients per network 
with accuracy because the modified loss function enables a 
further compactly constructed latent space. However, the train-
ing speed of the WGAN-GP was slow owing to the inherent 
instability. To ensure stable training, a gradient penalty was 
adopted for the generator (similar to the decoder for the GAN). 
For the same reason, the critic network (similar to the encoder) 
was trained for five iterations per epoch [21]. In general, the 
current mNVAE is the most efficient yet accurate among the 
previously introduced unsupervised learning methods.

5.2  Limit cycle oscillation (LCO)

5.2.1  Problem description

The LCO of an aircraft is a periodic, nondiverging oscil-
lation that may lead to structural fatigue and failure. It is 
an FSI phenomenon caused by either or both nonlineari-
ties in the fluid and structural dynamics. An accurate LCO 
analysis is typically performed using a high-fidelity nonlin-
ear FSI analysis. Generally, for fluid analysis, either Euler 
or Navier–Stokes CFD, is implemented owing to the high 

Fig. 9  Computational time in terms of the number of the computa-
tions for the plunging airfoil

Table 4  Accuracy of interpolation models for the plunging airfoil

Factors Current mNVAE [51] WGAN-GP [21] GPR

ΔVavg 0.11% 0.32% 0.09% 0.15%
ΔfV ,avg <0.01% 0.03% 0.26% <0.01%
ΔVPP 6.40% N/A 3.68% 12.08%
ΔVpoint 0.03% 3.83% 0.23% 0.07%
Δfx,avg 0% 0.27% 0.14% 0%
ΔxPP 0.90% N/A 1.37% 0.61%
Δxpoint 0.10% 1.72% 0.42% 0.13%
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Fig. 10  Schematic of the airfoil under LCO

nonlinearity. Consequently, LCO analysis is challenging and 
tedious. Because the LCO amplitude and frequency differ by 
flight speed, iterative computation is required to determine 
the safe flight speed limit of an aircraft. In this section, the 
POD-mNVAE is examined for a realistic engineering prob-
lem with nonlinearity.

The analysis used in this section was derived from O’Neil 
et al. [52]. An airfoil with a chord length of 0.2128 m was 
subjected to standard atmospheric conditions as in Fig. 10. 
The inflow speed ranged from 20 to 45 m/s at 5 m/s intervals. 
The airfoil had two DOFs: pitch and heave. Both the pitch 
and heave stiffnesses are nonlinear in their cubic terms. The 
equations for the pitch and heave stiffnesses are expressed 
in Eq. 16 as follows:

The parameter to be interpolated for the current analysis 
was flight speed. The flight speed of the airfoil will change 
in six variations, U = [20, 25, 30, 35, 40, 45]m/s, as shown in 
Fig. 14. The relevant flow field was discretized using 19,543 
quadrilateral elements comprising 19,381 nodes. For CFD, 
the Navier–Stokes solver ANSYS was employed. To model 
the structural nonlinearity, a user-defined function was used. 
The preliminary LCO analysis exhibited a good correla-
tion with the wind tunnel test [52]. The LCO onset speed 
was determined as 16 m/s for ANSYS FSI, whereas it was 
“slightly higher than 15 m/s” for the wind tunnel test [52].

The snapshot matrix for various flight speeds was 
obtained from the fully converged CFD result. 2s FOM 
results with an interval of 0.01s were collected for the 
snapshot matrix. The total snapshot matrix Wtotal was then 
constructed by appending the snapshot matrices for each 
parameter in the row direction. After POD on Wtotal was 
completed, 40 POD modes were collected for the veloc-
ity, and two modes were collected for the grid deformation. 
The first POD modes for velocity and grid deformation are 
shown in Fig. 11. The accumulated energy ratio for both 
POD modes was determined as 99.9

The current-interpolating mNVAE comprises eight blocks 
in the encoder and decoder. The encoder comprises Conv1D 

(16)
K� = 2.57(� + 500�3)

Kh = 0.09(h + 2860h3))

blocks with [800, 400, 200, 100, 50, 20, 10] filters in a bottom-
up network. The decoder comprises TransConv1D blocks 
with the same filters as in a top-down network. The latent 
dimension for the interpolation was set as 256 to accom-
modate intricate pattern recognition. Detailed hyperparam-
eters used for mNVAE training are summarized in Table 5. 
After the training of mNVAE was completed, an adequate 
latent code for each parameter was sought. Then, slerp was 
performed, and the latent code for the target value, U = 32.5

m/s, was acquired. The interpolated POD coefficients were 

Fig. 11  POD modes for LCO analysis

Table 5  Hyperparameters for mNVAE training for LCO analysis

aNumber of POD coefficients interpolated by a single mNVAE net-
work

Criterion Value Criterion Value

Epochs 5,000 Latent dim. 256
� 1,000 Batch size 1
�target 1 Latent epochs 50
Learning rate 5 × 10

−5 Coeff. per networka 20

Fig. 12  Interpolated POD coefficient #1, dx, of LCO analysis
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generated by the decoder, as shown in Fig. 12. Using Eq. 
(15), the interpolated flow field was generated for U = 32.5

m/s. The resultant airfoil movement of the interpolated flow 
field and FOM is illustrated in Fig. 13. The fully interpolated 
flow field is illustrated in Fig. 14.

5.2.2  Accuracy and efficiency of POD‑mNVAE

The accuracy of the POD-mNVAE was evaluated using the 
seven categories mentioned in the plunging airfoil. Fifteen 
points of interest were placed behind the airfoil, where the 

Fig. 13  Original and interpo-
lated movement of the airfoil 
undergoing LCO

(a) (b)

Fig. 14  Original and inter-
polated flow field around the 
airfoil undergoing LCO
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Table 6  Discrepancies between POD-mNVAE and FOM for LCO 
analysis

Factors ΔVavg ΔfV ,avg ΔVpp ΔVpoint

Discrepancy 3.20% 0.73% 2.39% 3.21%
Factors – Δfx,avg Δxpp Δxpoint

Discrepancy – 0% 0.27% 0.32%

changes in the physical variables were expected to be the 
largest. The 15 locations are shown in Appendix A, Fig. 16. 
Table 6 summarizes the discrepancies in the POD-mNVAE 
for LCO analysis.

In Table 6, the accuracy of the POD-mNVAE was signifi-
cantly small. The discrepancy in the velocity component was 
3.21%. The other categories displayed similar discrepancies, 
except for frequency, which was as small as 0.73%. The dis-
crepancies in grid deformation were smaller, ranging from 
0% to 0.32%.

The computational procedure for POD-mNVAE com-
prises six steps. The time required for each computational 
step is summarized in Table 7. The entire interpolation 
process using POD-mNVAE consumes 284.4 h for the six 
parameters. It may be divided into two components, 283.8 h 
for the offline stage and 0.59 h for the online stage. With the 
appropriate execution of the offline stage, the interpolation 
process is predicted to consume only 0.59 h. In conclusion, 
the proposed POD-mNVAE is capable of reducing by 98.7% 
of the computational time for each novel parametric estima-
tion. The proposed POD-mNVAE is efficient if the number 
of repeated computations exceeds seven. The expected com-
putational time in terms of the number of computations is 
shown in Fig. 15.

6  Conclusions

In this study, an improved data-driven pMOR scheme was 
proposed to construct an accurate ROM. The present meth-
odology, referred to as POD-mNVAE, combines an inter-
polating neural network, mNVAE, and POD. POD is used 
to reduce the number of DOFs in the FOM result, whereas 
mNVAE is used to compress the temporal information inher-
ent in the POD output, that is, the POD coefficient. The 
POD-mNVAE was capable of accurately constructing the 
ROM while significantly improving the computational time.

The POD-mNVAE was applied to two FSI situations: 
the flow field surrounding a prescribed plunging airfoil and 
LCO. The evaluation was performed with regard to accu-
racy and computational time. The present POD-mNVAE 
produced accurate results. The plunging airfoil exhibited a 
discrepancy of less than 1 % and that of LCO was approxi-
mately 3 % . The proposed POD-mNVAE achieves a reduc-
tion in computational time of 96% for the plunging airfoil 

Fig. 15  Computational time in terms of the number of computations 
for LCO analysis

Table 7  Computational time 
result for LCO analysis

Procedure Computational time[hr]

Offline FOM (including the baseline parameter) 280.1
POD Velocity 0.04

Mesh 0.04
Algorithm 1 (mNVAE training) Velocity 1.79

Mesh 1.78
Algorithm 2 (latent code searching) Velocity 0.01

Mesh 0.01
Total online stage 283.8

Online Algorithm 3 (POD Coeff. interpolation) <0.01
Flow field construction/write on disk 0.59
Total offline stage 0.59

Total sum 284.4
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and 98% for LCO at the cost of the pre-executed offline 
stage. Furthermore, the current mNVAE was compared with 
the previous versions of mNVAE, WGAN-GP, and GPR to 
assess its superiority. The current mNVAE produced the 
most accurate results. The present methodology is applica-
ble to other fields, such as structural dynamics. In particular, 
the present approach was used to construct the ROM of a 
highly nonlinear FSI.

However, it has shortcomings. The present method may 
not be used for problems in which different parameters will 
exhibit different dynamics. Rapid change in physical dynam-
ics will lead to incapability of using POD modes universally 
across the parameters. To overcome such limitation, adopt-
ing the local or on-the-fly MOR methods may be consid-
ered as in [53, 54]. The present method generally cannot 
extrapolate beyond the prescribed parametric space. It is 
due to the universal use of POD modes that are constrained 
within the parametric space. Regarding the accuracy of the 
present method, sufficient number of sampling need to be 
conducted. Empirically, more than 5 sampling will be desir-
able. mNVAE requires more than 5 data points to recognize 
nonlinear pattern accurately. Also, those sampling should 
be conducted so that the change in physical dynamics may 
be captured in POD modes. Finally, the present method can-
not extrapolate beyond FOM computation duration. Simple 
modification such as inserting LSTM network will be con-
sidered to enable such temporal extrapolation.

In the future, the current POD-mNVAE will be evalu-
ated for an extremely large three-dimensional (3D) full 
FSI situation. It will be investigated for a full CFD–CSD 
combination for large structures, such as a full 3D pas-
senger jet aircraft analysis in maneuver. For large three-
dimensional FSI problems, the present framework will be 
used as it is. However, MOR stage is expected to be a 
challenge since POD will require extensive memory and 
computational time. To mitigate such limitation, other 

dimensionality reduction methods such as the local POD 
and autoencoder will be investigated.

Appendix A: Accuracy evaluation

The 15 points of interest used for the accuracy evaluation are 
located where the changes in the variables are expected to be 
the largest. Those points are shown in Fig. (16).

The seven categories used to evaluate the accuracy of the 
POD-mNVAE were formulated as follows: 

1. Average velocity discrepancy, ΔVavg : 

 where 

2. Oscillation frequency discrepancy of the velocity com-
ponent, ΔfV ,avg : 

 where ffom is obtained for the 15 locations of interest. 

3. Peak-to-peak (oscillation amplitude) velocity discrep-
ancy, ΔVpp : 

(A1)ΔVavg =
ūfom − ūrom

ūfom

(A2)ū =
1

N

N∑
i=1

ui

(A3)ΔfV ,avg =
f̄fom − f̄rom

f̄fom

(A4)f̄ =
1

np

np∑
i=1

fi

Fig. 16  Fifteen points of inter-
est for the accuracy evaluations
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 where upp,fom is obtained for the 15 locations of interest. 

4. Velocity discrepancy in the 15 points of interest, ΔVpoint : 

5. Oscillation frequency discrepancy of the grid deforma-
tion, Δfx,avg : 

 where 

6. Peak-to-peak (oscillation amplitude) discrepancy of the 
grid deformation, Δxpp : 

 where xpp,fom is obtained for the 15 locations of interest. 

7. Grid deformation discrepancy in the 15 points of inter-
est, Δxpoint : 
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(A5)ΔVpp =
upp,fom − upp,rom
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(A6)upp,fom =
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np�
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