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Abstract
Three approaches for construction of a surrogate model of a result field consisting of multiple physical quantities are pre-
sented. The first approach uses direct interpolation of the result space on the input space. In the second and third approaches 
a Singular Value Decomposition is used to reduce the model size. In the reduced order surrogate models, the amplitudes 
corresponding to the different basis vectors are interpolated. A quality measure that takes into account different physical 
parts of the result field is defined. As the quality measure is very cheap to evaluate, it can be used to efficiently optimize 
hyperparameters of all surrogate models. Based on the quality measure, a criterion is proposed to choose the number of basis 
vectors for the reduced order models. The performance of the surrogate models resulting from the three different approaches 
is compared using the quality measure based on a validation set. It is found that the novel criterion can effectively be used 
to select the number of basis vectors. The choice of construction method significantly influences the quality of the surrogate 
model.

Keywords Metamodel · Surrogate model · Multiphysical field · Proper orthogonal decomposition · Truncation criterion

1 Introduction

Computational fluid dynamics (CFD) and finite-element 
(FE) analyses are powerful tools to solve engineering prob-
lems for which no analytical solution can be found. However, 
for nonlinear problems with many degrees of freedom these 
methods can be computationally costly. Consequently the 
applicability of such models for direct use in inverse analy-
ses, (robust) optimization or control algorithms is limited. 

For these purposes a surrogate model can be constructed 
[16, 25]. Surrogate models are cheap to evaluate approxima-
tion models that mimic the output of expensive models. The 
CFD and FE models can be considered as a black box map-
ping from an input space to an output space. The relations 
between inputs and outputs can be approximated by fitting a 
function of input data to output data that are obtained from 
evaluations of the considered FE or CFD model [8].

In many cases, surrogate modelling (also referred to as 
metamodelling) is used to map a multidimensional input 
space to a scalar output space. To construct surrogate mod-
els, the expensive model is evaluated on predefined sample 
points in the input parameter space. The sample points and 
the results of the expensive model together are referred to 
as the training set.

Many different metamodelling techniques exist [16, 18, 
25, 38]. In our work, metamodels of metal forming pro-
cesses are studied. These processes are a suitable benchmark 
because they have strong nonlinearities involved. For exam-
ple in the work of Wei et al. [36] the wrinkling tendency in 
a forming process of a car sheet part is expressed as a scalar 
function of process parameters. In their work the response 
of an FE-model is replaced with a response surface model to 
optimize the process. In the work of Wiebenga et al. [37] an 
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industrial V-bending process is optimized. In the V-bending 
process the flange shape is defined by the main angle, a sca-
lar, which is modelled using a kriging metamodel. Other 
examples in which metamodels replace metal-forming pro-
cess simulations use polynomial regression or response sur-
face methodology (RSM) [4, 14, 15, 27, 30, 33, 36], support 
vector regression (SVR) [31, 34, 35], Multivariate Adaptive 
Regression Splines (MARS) [3, 21], kriging ([6, 32], radial 
basis functions (RBF) [29] and neural networks [20, 28]. 
Some of the aforementioned metamodelling techniques, 
such as kriging and RBF, interpolate the existing data. Other 
techniques, such as RSM and SVR, are regression methods. 
In this work we will focus on interpolating metamodelling 
techniques and we will refer to the output that is being inter-
polated as the interpolant.

In several applications, it is required to model a result 
array instead of a scalar. Then the interpolant consists of 
more than one variable and the output field may even con-
tain different physical quantities at the same time. When the 
training set for full field surrogate models is large, reduc-
tion techniques can be applied. A commonly used reduc-
tion technique is the Proper Orthogonal Decomposition. 
Proper Orthogonal Decomposition (POD) is an umbrella 
term that includes Principal Component Analysis (PCA), 
Karhunen–Loeve Expansion (KLE) and Singular Value 
Decomposition (SVD) [19]. The goal of the decomposition 
is to obtain a low-dimensional representation of the output 
field. This is done by seeking the predominant modes in the 
output data of the training set and use these as a new basis.

POD is usually combined with RBF interpolation. For 
example, in Hamdaoui et al. [11], a POD-based surrogate is 
used to describe the displacement field of the stamping of 
an axisymmetric cup to model the major and minor strain in 
a Forming Limit Diagram. In Dang et al. [6] the displace-
ment field is described by a POD-based surrogate model to 
optimize the shape of a metal product after springback.

Most metamodels have hyperparameters associated with 
them that influence the fitting quality of the metamodels in 
the output space. Different criteria can be used to choose 
these parameters in order to optimize the fitting quality of 
a metamodel. We will refer to the criterion that is used for 
optimizing the hyperparameters as the fitting criterion. In 
this work, we will focus on RBF as an interpolation method. 
To quantify the quality of the interpolation, different fitting 
criteria can be determined , such as the likelihood criterion 
for kriging interpolation [17], or based on the Leave-One-
Out (LOO) cross-validation values for RBF interpolation 
[24].

The key question in this work is how to efficiently cre-
ate an accurate reproduction of a result array consisting of 
multiple physical fields using RBF interpolation. Three dif-
ferent approaches for construction of such surrogate model 
are presented. The main difference between the approaches 

is the interpolant. The first approach is based on a direct 
interpolation of the result array on the input space. The 
second and third approach will involve model reduction. In 
these approaches a reduced basis is determined using sin-
gular value decomposition (SVD). The left singular vectors 
will be the basis vectors in the truncated basis. By project-
ing the result arrays onto the basis vectors, the amplitudes 
of the result arrays in the new basis can be found. These 
amplitudes corresponding to different basis vectors are 
interpolated in two different ways, by means of array and 
scalar interpolation. For array interpolation, the interpolant 
will be the array that collects the amplitudes correspond-
ing to all basis vectors in the basis. For scalar interpolation, 
the interpolant will be a scalar that describes the amplitude 
corresponding to a single basis vector. In the case of array 
interpolation all amplitudes are interpolated simultaneously, 
whereas in the case of scalar interpolation, the amplitudes 
of the separate basis vectors are interpolated independently. 
In this work, the hyperparameters corresponding to the dif-
ferent approaches for surrogate model construction will be 
optimized. To do so, a new quality measure that takes into 
account the physical parts is used as a fitting criterion.

When a reduced order model is constructed, the number 
of basis vectors to be retained in the truncated basis has to be 
determined. While inclusion of more basis vectors generally 
increases its accuracy, it can also add more noise, especially 
in the higher order basis vectors [26]. A new criterion for 
choosing the number of basis vectors to be included in the 
truncated basis of the reduced order models is proposed.

This paper is organized as follows: in Sect.  2, three 
approaches for surrogate model construction are described. 
Thereafter, Sect. 3 describes the quality measure and the 
different sources of error that can be distinguished. Further-
more, it is described how the quality measure and sources 
of error can be used in a fitting criterion, as well as in a cri-
terion to choose the number of basis vectors in the truncated 
basis. A demonstrator process is introduced in Sect. 4. In 
Sect. 5, the performance of the three approaches is com-
pared .

2  Constructing different surrogate models

Three surrogate models of a result field consisting of differ-
ent physical parts are constructed. The described approaches 
are generic and can be applied to any result field. As an 
example the output of a single FE simulation consisting of 
M variables is considered. The variables can be stored in 
an M × 1 result vector y . In this case, it is assumed that the 
output is fully described using three physical fields, being 
displacement u , equivalent plastic strain ε and stress σ . The 
different physical parts are partitioned as subarrays in the 
result array:
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in which yu contains Mu displacements , yε contains Mε 
equivalent plastic strains and yσ contains Mσ stress com-
ponents .

To construct the different surrogate models, a training set 
needs to be obtained. The training set is obtained by sam-
pling the input space and evaluating the black-box model, 
e.g. a FE simulation, on the sample points xi.

The training set consists of the set of inputs X and the cor-
responding result arrays that are collected in the matrix Y:

in which Ndim is the dimensionality of the input space and 
Nexp is the number of sample points or experiments in the 
training set . We will refer to the matrix Y , in which the 
result arrays are collected, as the snapshot matrix.

Three different surrogate models will be constructed. An 
overview of the construction procedures for the different 
surrogate models is presented in Fig. 1. The first surrogate 
model is obtained by directly interpolating the result array 
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on the input space, as will be described in Sect. 2.2. This 
method is referred to as ‘Direct interpolation’. In this method 
the interpolant will be directly related to the result array. The 
full result space that is available based on the training set 
will be used for interpolation.

The second and third surrogate models are reduced order 
models, in which singular value decomposition (SVD) is 
used to reduce the output space. In an SVD the predomi-
nant modes in the output data are sought to form a new 
orthogonal basis. As the first vectors in this basis describe 
the most variation, the basis can be truncated to K basis 
vectors. The output fields are projected onto this truncated 
basis to find the amplitudes. These amplitudes will be inter-
polated to find a continuous surrogate model. To construct 
the second surrogate model, the amplitudes corresponding 
to all basis vectors are interpolated on the input space as one 
array as described in Sect. 2.4.1. Hence, the interpolant is a 
K-dimensional array and there will be only one set of opti-
mized hyperparameters for all the amplitudes correspond-
ing to different basis vectors. This method is referred to as 
‘SVD, array interpolation’.

For the construction of the third surrogate model, the 
amplitude function is interpolated for each basis vector sepa-
rately as will be described in Sect. 2.4.2. Hence, the interpo-
lants are K scalars. The hyperparameters are optimized for 
the amplitude function for each basis direction . This method 
is referred to as ‘SVD, scalar interpolation’ and is depicted 
with the rightmost path in Fig. 1.

Fig. 1  Flowchart of the 
construction of three different 
surrogate models
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2.1 Preprocessing the snapshot matrix
Y∗ = f∗(Y)

2.3 Reduction of the snapshot matrix
Y∗ = ΦDVT

Φ[K] =



 . . .
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and D[K] = S[K]V[K]T =
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2.4.1 Array interpolation

α̂(x) =
Nexp∑

i=1

wigi(x)

with: W = AG−1(= K × Nexp)

ŷ∗(x) = Φ[K]α̂(x)

2.4.2 Scalar interpolation

α̂n(x) =
Nexp∑

i=1

wigi(x)

with: w = αnG−1(= 1 × Nexp)

ŷ∗(x) =
K∑

n=1

ϕnα̂n(x)

2.2 Direct interpolation

ŷ∗(x) =
Nexp∑

i=1

wigi(x)

with: W = Y∗G−1
n (= M × Nexp)

Post-process approximation
ŷ(x) = f−1

∗ (ŷ∗(x))
equation (14), (25) and (28)



132 Engineering with Computers (2024) 40:129–145

1 3

The reduced order models are cheaper to evaluate com-
pared to the surrogate model that is based on ‘Direct inter-
polation’. However, as no reduction is applied, it is expected 
that the ‘Direct interpolation’ model will be most accurate. 
The reduced order model that is based on scalar interpola-
tion of the amplitudes has more freedom to optimize the 
model parameters. Although the flexibility in the fitting 
procedure increases the risk of overfitting [23], SVD com-
bined with scalar interpolation is expected to result in a more 
accurate surrogate model than SVD combined with array 
interpolation.

2.1  Preprocessing the snapshot matrix

To obtain more accurate surrogate models, the output data 
in the training set will be preprocessed. The function f∗(⋅) 
transforms the snapshot matrix into the preprocessed snap-
shot matrix Y∗ , where the sub- and superscript respectively 
denote the applied preprocessing. The function that reverses 
the applied preprocessing is called the post-processing func-
tion and is denoted with f −1

∗
(⋅).

In all three approaches the mean is subtracted from the 
snapshot matrix. The mean of each row in the snapshot 
matrix is calculated using

in which 1Nexp
 is an Nexp × 1 vector of ones, following the 

notation as used by Pronzato [22]. The zero centered snap-
shot matrix will be

When the output data consist of different physical parts, 
e.g., the displacement, strain and stress as shown in Eq. (1), 
the data of the physical parts can be stored in one snapshot 
matrix or in separate snapshot matrices. These snapshot 
matrices can be reduced by means of a Proper Orthogo-
nal Decomposition. It has been shown in earlier work that 
decomposing the different physical parts in one matrix 
improves the overall accuracy of the surrogate model [7].

Typically, the strain components are in the order of 10−1 , 
while the stress components are in the order of 101–102 MPa 
(or 107–108 Pa). When the different physical quantities are 
of different order, scaling must be applied to improve the 
decomposition. Without scaling, the decomposition will be 
dominated by the component with the highest numerical val-
ues [7]. Guéntot [10] proposed to scale the snapshot matrix 
with the range, mean or standard deviation. In this work it is 
chosen to scale each physical part by its range of observed 
values in the data set.

(3)y =
1

Nexp

Y1Nexp
,

(4)Y0 = f0(Y) = Y − y1T
Nexp

.

For example a scaling constant su of the displacement 
field is calculated as

Now we can define a scaling array s = {sm} as

The preprocessed snapshot matrix takes the following form:

2.2  Direct interpolation

The first method to construct a surrogate model directly 
interpolates the result array on the input parameter space. To 
construct a continuous surrogate model of the result array, 
the data in the zero centered snapshot matrix from Eq. (4) 
are interpolated. The corresponding interpolant is an array.

To perform the interpolation, radial basis functions (RBF) 
will be used. In RBF interpolation, a basis function is placed 
at the location of each data point in the input parameter 
space. We will derive the radial basis interpolation of arbi-
trary interpolant f̂(x) which can be described with the output 
array M × 1.

The RBF interpolation of interpolant f̂(x) will be the sum 
of the weighted radial basis functions of each sample point:

in which gi(x) is a radial basis function that depends on the 
Euclidean distance ‖ ⋅ ‖ between an arbitrary point x and 
sample point xi in the training set, wi is the array that collects 
the M weights for the radial basis function gi(x) and W is 
the weight matrix that collects all M weights corresponding 
to the Nexp radial basis functions. The weights for all basis 
functions can be solved using the interpolation requirement:

Leading to the following linear system of equations:

in which Gij = gi(xj) and F is the matrix with output training 
data of the interpolant.

(5)su =
(
max

(
Yu − yu1

T
Nexp

)
−min

(
Yu − yu1

T
Nexp

))−1

.

(6)sm =

⎧
⎪⎨⎪⎩

su m = 1...Mu

sε m = Mu + (1...Mε)

sσ m = Mu +Mε + (1...Mσ)

.

(7)Yscaled = fscaled(Y) = diag(s)
[
Y − y1T

Nexp

]
,

(8)
f̂(x) =

Nexp∑
i=1

wi gi(x) = W g(x)

M × 1 M × 1 1 × 1 M × Nexp Nexp × 1

,

(9)f̂(xj) = fj.

(10)
W G = F

M × Nexp Nexp × Nexp M × Nexp

,
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Different choices can be made for the basis function 
gi(x) . In many studies it has been shown that the perfor-
mance of the multiquadric RBF for scalar interpolation is 
generally good [9, 16]. In a comparative study performed 
by Hamim [12] on the application of RBF in POD-based 
surrogate models, it was shown that multiquadric RBFs per-
form best. The predictive accuracy of the interpolation is 
improved by application of global scaling parameters � [13]. 
The global scaling parameters scale the parameter space in 
each dimension.

The multiquadric RBF with global scaling has the fol-
lowing form:

The global scaling parameters � are the hyperparameters, 
that will be optimized based on a scalar error measure as 
will be described in Sect. 3.

To construct the surrogate model based on direct inter-
polation, the zero centered snapshot matrix is used as the 
matrix with output training data of the interpolant F = Y0 . 
The approximated result array using direct interpolation will 
be:

 Scaling of the snapshot matrix has no influence on the 
approximation of the result vector when direct interpola-
tion is used to construct the surrogate model.

2.3  Reduction of the snapshot matrix

When the number of variables M in the result array of which 
a surrogate model will be constructed is large, storage issues 
may arise. In that case reduction techniques can be applied 
to construct the surrogate model. Another benefit of using 
reduction methods in the construction of surrogate models 
is that noise in the output field is reduced [26].

In this work, singular value decomposition (SVD) is used 
to find the proper orthogonal basis vectors [1]. The SVD of 
the preprocessed snapshot matrix takes the following form:

The preprocessed snapshot matrix is decomposed into three 
matrices: � that contains the left singular vectors �n as its 
columns, D that contains the singular values dn on its diago-
nal and V that contains the right singular vectors vn . The 
subscript n denotes the n-th direction in the basis. The left 

(11)gi(x;�) =

�
1 +

�‖diag(�)(x − xi)‖
�2
.

(12)
ŷ(x) = ȳ +Wg(x;�) in which: W =

(
Y − ȳ1T

Nexp

)
G−1.

(13)
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M × Nexp Nexp × Nexp Nexp × Nexp.

singular vector matrix spans an orthogonal coordinate sys-
tem in the result space and will be used as a basis for the 
data.

As the singular values are sorted by size from largest 
to smallest, the most information will be captured by the 
first singular vectors. The basis can therefore be trun-
cated, such that it contains only the first K basis vectors 
. The truncated basis with K basis vectors is defined as

Because the mean has been subtracted from the snapshot 
matrix, the maximum number of available basis vectors 
will be Nexp − 1 . The projections of the result vector on the 
basis vectors are referred to as amplitudes. The amplitudes 
are found by multiplying the singular values with the right 
singular vectors:

The vector �n collects the amplitudes of the Nexp result vec-
tors corresponding to basis vector �n . The K-rank approxi-
mation of the preprocessed snapshot matrix Y[K] can now 
be written as

By rewriting Eq. (7) and substituting Eq. (16) the K-rank 
approximation Y[K] of the snapshot matrix can be found:

 The ith column in this matrix is the K-rank approximation 
y
[K]

i
 of the result vector of experiment i :

Similarly, the result vector of experiment i that is solely 
approximated with basis vector �n , is defined as

 this approximation will be used to optimize the hyperparam-
eters of the surrogate model constructed using ‘SVD, scalar 
interpolation’ in Sect. 3.4.3.
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Nexp

+ diag(s)−1
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= y + diag(s)−1

(
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�n�in
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(
�n�in
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2.4  Amplitude interpolation

When SVD is applied to construct the surrogate models, the 
amplitudes A corresponding to the different basis vectors 
will be interpolated to form a continuous surrogate model 
on the input space. This can be done using the same method 
as described in Sect. 2.2. The amplitudes can be interpo-
lated using two different approaches, array interpolation or 
scalar interpolation. When array interpolation is used, the 
interpolant describes multiple amplitudes collected in an 
array. When scalar interpolation is used, the interpolant is 
the amplitude corresponding to one basis vector. For each 
basis vector to be included in the prediction, a separate sca-
lar amplitude interpolation is fitted.

2.4.1  Array interpolation

If the amplitudes are interpolated using array interpola-
tion, all amplitudes corresponding to the K basis vectors 
will be interpolated at once. There will be only one vector 
with global scaling parameters � for all K basis vectors. The 
interpolant as described in Eq. (8) will be the array with K 
interpolated amplitudes, f̂(x) = �̂(x) . The expression for the 
interpolant will be

The matrix with output training data of the interpolant that 
is used to calculate the weights is the amplitude matrix A[K] 
as given in Eq. (15). Following Eq. (10) the matrix with 
weights is found using

The approximated result vector using SVD and array inter-
polation will be

2.4.2  Scalar interpolation

The other possibility is to interpolate each amplitude per 
basis direction separately. Then, the interpolant is a scalar 
function for each basis vector and there will be a vector 
with global scaling parameters � for each basis vector. The 
reasoning behind optimizing the RBF for each basis vector 
separately, is that it may be expected that different modes 
have different dependencies to the input parameters, which 
potentially enhances the model accuracy when optimizing 
all RBFs from different modes separately. The interpolant as 

(20)
�̂
[K]

(x) = W[K] g(x;�)

K × 1 K × Nexp Nexp × 1
.

(21)
W[K] = A[K] G−1

K × Nexp K × Nexp Nexp × Nexp

.

(22)ŷ(x) = ȳ + diag(s)−1
(
�[K]�̂

[K]
(x)

)
.

described in Eq. (8) will be a scalar with the amplitude cor-
responding to basis vector n, f̂ (x) = α̂n(x) . The expression 
for the interpolant will be

The matrix with output training data of the interpolant that 
is used to calculate the weights is the amplitude array �T

n
 , 

a row in the amplitude matrix given in Eq. (15). Following 
Eq. (10) the array with weights is found using

Hence, the approximated result vector using SVD and scalar 
interpolation is

3  Optimization of surrogate model 
parameters

This section describes how to find the optimal values of the 
global scaling parameters � and how to choose the number 
of basis vectors K for the reduced order models. To do so, 
first a scalar quality measure that takes into account the dif-
ferent physical parts is introduced in Sect. 3.1. This quality 
measure will be used as a fitting criterion to find the optimal 
values of the global scaling parameter and will also be used 
to define a criterion for the number of basis vectors to be 
included in the reduced basis. To optimize the global scal-
ing parameters and choose the number of basis vectors, it is 
important to understand the different sources of error in the 
surrogate models. The error between a reference solution yq 
and its approximated result is an M × 1 array, that is referred 
to as the error array �q = {�mq}.

In Sect. 5.2, the scalar quality measure that is defined 
in this section will also be used to assess the quality of the 
obtained surrogate models based on a validation set. There-
fore, the reference solution yq can either be a result array 
in the training set, or a result array in a validation set . The 
resulting error arrays are denoted with �̃q when based on the 
training set and �q when based on the validation set.

Different sources of error can be distinguished that are 
annotated with an upper prescript. For the model that is 
based on direct interpolation the total error denoted with 
� (Sect. 3.2) is mainly the interpolation error. In Sect. 5.2, 
it will be show that there is an additional small error due 
to inherent sparsity of data. For the reduced order models 
two sources of error are distinguished: the interpolation 

(23)
α̂n(x) = w g(x;�n)

1 × 1 1 × Nexp Nexp × 1
.

(24)
w = �T

n
G−1

1 × Nexp 1 × Nexp Nexp × Nexp

.

(25)ŷ(x) = ȳ + diag(s)−1

(
K∑
n=1

�nα̂n(x)

)
.
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error denoted with � (Sect. 3.4) and the truncation error 
denoted with � (Sect. 3.3). The total error is denoted with 
� (Sect. 3.2).

For all approaches, a quality measure based on the 
error due to interpolation will be used to optimize the 
global scaling parameters � . In Sect.  3.5 the relation 
between the interpolation error and the truncation error 
is used to choose the number K of basis vectors.

3.1  Quality measure considering physical parts

A quality measure is defined based on a reference solu-
tion yq such that it can be used to calculate the error with 
respect to the training set as well as with respect to a 
validation set.

The error array contains the differences between the 
reference solution and the approximated result in compo-
nents of different physical parts. Similar to the result vec-
tor itself, the error array can be partitioned in a part cor-
responding to the displacement field, �u,q , the equivalent 
plastic strain field, �ε,q , and the stress tensor field, �σ,q.

To obtain a scalar measure for the quality of the result 
field the Fraction of Variance Unexplained ( FVU ) is used. 
The fraction of variance unexplained is defined as the 
Sum of Squared Errors ( SSE ) divided by the Total Sum 
of Squares ( SST ) of the zero centered data. For example 
the FVU in the displacement field is

The FVU in the equivalent plastic strain and the stress are 
calculated equivalently. The total FVU can be defined as

Due to the normalization in Eq. (26) the three different parts 
are equally important in the error measure, independent of 
the dimension of each physical field and of the magnitudes 
of the values.

Again a distinction is made whether the FVU is based 
on the training set or the validation set. The FVU based 
on the training set is denoted with F̃VU .

(26)

FVUu =
SSEu

SSTu

=

Q∑
q=1

(‖�u,q‖2)2

Q∑
q=1

(‖yu,q − ȳu‖2)2

=

Q∑
q=1

Mu∑
m=1

(𝜖u,mq)
2

Q∑
q=1

Mu∑
m=1

(yu,mq − ȳu,m)
2.

(27)FVU =
1

3

(
FVUu + FVUε + FVUσ

)
,

3.2  Total reconstruction error

The total reconstruction error of the direct model �� and 
of the reduced order models �� are defined as the differ-
ence between a reference solution yp and its interpolated 
approximation ŷ(xp) . The total reconstruction error of a 
reference solution approximated using the direct interpo-
lation is

For the reduced order models, truncation of the result 
space will occur by removing the higher modes. The total 
reconstruction error of the reduced order models therefore 
depends on the number of basis vectors that are included in 
the truncated basis. The total reconstruction error of a refer-
ence solution in the validation set yp approximated using K 
basis vectors will be

Note that this error array describes the error fields in the dif-
ferent physical parts, and can be substituted into Eqs. (26) 
and (27) to calculate a scalar error measure that describes 
the quality of the model, which is denoted with �FVU . For 
the reduced order models the �FVU is a function of the num-
ber of basis vectors included in the basis, hence we write 
�FVU[K] to indicate the number of basis vectors included.

3.3  Truncation error

The truncation error of the training set is the difference 
between the result vector and its K-rank approximation as 
defined in Eq. (18). The two reduced order models (with 
array and scalar interpolation) use the same basis in con-
struction, only the interpolation of the amplitudes is differ-
ent. The truncation error in the training set for both reduced 
order models can be defined as

As proposed by [2] a result vector from the validation 
set (which they call a supplementary observation) can be 
mapped into the truncated basis using a least square projec-
tion. The amplitude corresponding to basis direction n for 
reference solution yp can be found using

The reference solution can be approximated in the truncated 
basis with K basis vectors as

(28)𝛿�p = yp − ŷ(xp).

(29)𝜏�[K]
p

= yp − ŷ
[K]

(xp).

(30)

𝜅 �̃
[K]

i
= yi − y

[K]

i

= yi −

[
ȳ + diag(s)−1

(
K∑
n=1

�n𝛼ni

)]
.

(31)αnp = �T
n

[
diag(s)(yp − ȳ)

]
.
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We define the truncation error as the difference between the 
reference solution and its approximation using K basis vec-
tors. The truncation error for reference solution yp of the 
validation set will be

where y[K]
p

 is the projection of the reference solution onto 
the truncated basis.

3.4  Interpolation error

The interpolation error �� is a measure for the error inside the 
result space spanned by the basis vectors that are included 
in the model. For a reference solution in the validation set, 
the interpolation error is defined as the difference between 
the reference solution approximated using K basis vectors as 
defined in Eq. (32), and the approximated result vector. The 
interpolation error of validation sample y(xp) reconstructed 
using K basis vectors will be

To assess the interpolation error in the training set, Leave-
One-Out cross validation data will be used. In Leave-One-
Out (LOO) cross validation one sample point and the cor-
responding result are removed from the training set and 
the surrogate model is reconstructed based on the retained 
Nexp − 1 training points. The surrogate model constructed 
without training point i is designated as f̂

−i
(x) . By evaluating 

the obtained surrogate model at the point xi and comparing 
it with the corresponding result field fi , the LOO-error is 
calculated. This procedure is repeated for all Nexp training 
points to perform a cross-validation. The calculation of the 
LOO-error proposed in [24] can be extended to calculate the 
LOO-error of a result array. For an arbitrary interpolant f(x) 
the error of leaving out training point i is

in which ẽi is the array with errors, which has the same size 
as the interpolant.

The interpolation error based on leaving out point xi in 
one of the surrogate models is defined as

In the following sections, the interpolation errors in the 
different surrogate models are derived by factoring out the 
interpolant so that Eq. (35) can be substituted. To calcu-
late the interpolation error in the different surrogate models 

(32)y[K]
p

= ȳ + diag(s)−1
(
�[K]�[K]T

[
diag(s)(yp − ȳ)

])
.

(33)��[K]
p

= yp − y[K]
p

,

(34)𝜄�[K]
p

= y[K]
p

− ŷ
[K]

(xp).

(35)ẽi = fi − f̂
−i
(xi) =

wi(
G−1

)
ii

,

(36)𝜄�̃i = yi − ŷ
−i
(xi).

based on this LOO-error three assumptions are made. First 
it is assumed that the mean ȳ does not change when sample i 
is left out of the training set. Secondly, for the reduced order 
models, it is assumed that the obtained basis vectors do not 
change when sample i is left out of the training set. Lastly, 
it is assumed that the global scaling parameters � stay the 
same during the LOO cross validation.

The FVU and FVU[K] of the interpolation errors presented 
in the next sections are used as the scalar measure that will 
be minimized to determine the global scaling parameters �.

3.4.1  Model 1: direct interpolation

Using direct interpolation, the interpolation error based on 
the training set is the total error. The error of leaving out 
point xi in the training set can be found by substituting Eq. 
(12) into the definition of the interpolation error in Eq. (36) 
and factoring out the interpolant to be able to substitute Eq. 
(35). The error of leaving out point xi in the surrogate model 
with direct interpolation gives the following error:

in which wi is the M × 1 column of the matrix with weights 
corresponding to experiment i. This error array for the dif-
ferent physical parts is substituted into Eqs. (26) and (27) to 
calculate the total FVU , which is a scalar error measure that 
describes the quality of the model. The FVU due to interpo-
lation in the training set will be minimized to find the best 
fitting metamodel parameters. Hence, the Ndim components 
of the global scaling parameter vector � are found using

3.4.2  Model 2: SVD and array interpolation

The error of leaving out point xi in the training set can again 
be derived by substituting the obtained approximation into 
Eq. (36) and factoring out the interpolant. The interpolation 
error depends on the number of basis vectors K included 
in the surrogate model. The error is therefore calculated 
between the K-rank approximation of yi as defined in Eq. 
(18) and the approximation from the surrogate model fitted 
without sample point i evaluated at sample point i, that we 
call ŷ−i,[K](xi) . By substituting Eqs. (18) and (22) into Eq. 
(36) the interpolation error of the model based on SVD and 
array interpolation is found:

(37)

𝛿 �̃i = yi − ŷ
−i
(xi)

=
[
ȳ + y0,i

]
−
[
ȳ +

(
ŷ
−i

0
(xi)

)]

=
[
y0,i − ŷ

−i

0
(xi)

]

=

[
wi(

G−1
)
ii

] ,

(38)argmin �
�F̃VU.
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 in which �[K]

i
 is the column in the amplitude matrix (Eq. 

(15)) with K amplitudes corresponding to experiment i. 
Again, the errors in the different physical parts are substi-
tuted into Eqs. (26) and (27) to calculate a scalar error meas-
ure that describes the quality of the model.

For the surrogate model based on array interpolation a 
global scaling parameter vector � is sought for each trunca-
tion of the basis:

3.4.3  Model 3: SVD and scalar interpolation

The interpolation error for the model based on SVD and 
scalar interpolation is found by substituting Eq. (19) and 
(25) into Eq. (36) and factoring out the interpolant. The 
interpolation error of the surrogate model with SVD and 
scalar interpolation is

Again this error array can be used to calculate a scalar error 
measure in the physical domain (Eq. (27)) in order to find the 
global scaling parameter vector �n for each basis direction:

Note that for K = 1 in Eq. (40) and n = 1 in Eq. (42) the 
amplitude array interpolation and scalar interpolation result 
in the same global scaling parameters.

3.5  Choosing the number of basis vectors

The number of basis vectors in the truncated basis K can 
be freely chosen. With smaller K the model is cheaper to 
evaluate, but less accurate. With larger K the model will 

(39)

𝜄�̃
[K]

i
= y

[K]

i
− ŷ

−i,[K]
(xi)

=

[
ȳ + diag(s)−1

(
�[K]�

[K]

i

)]

−
[
ȳ + diag(s)−1

(
�[K]�̂

−i,[K]
(xi)

)]

= diag(s)−1
(
�[K]

[
�
[K]

i
− �̂

−i,[K]
(xi)

])

= diag(s)−1

(
�[K]

[
wi(

G−1
)
ii

])
,

(40)�[K] = argmin �
�F̃VU

[K]
with: K ∈ {1,… ,Nexp − 1}.

(41)

𝜄�̃n
i
= yn

i
− ŷ

−i,n
(xi)

=
[
ȳ + diag(s)−1

(
�n𝛼ni

)]

−
[
ȳ + diag(s)−1

(
�nα̂

−i
n
(xi)

)]

= diag(s)−1
(
�n

[
𝛼ni − α̂−i

n
(xi)

])

= diag(s)−1

(
�n

[
wn,i(

G−1
)
n,ii

])
.

(42)�n = argmin �
�F̃VU

n
with: n ∈ {1,… ,Nexp − 1}.

be more accurate, but also more expensive to evaluate and 
it will require more storage space. The higher modes are 
dominated by noise and only contribute little to the accuracy 
of the surrogate model or may even deteriorate the accuracy.

To choose the number of basis vectors to be retained in 
the truncated basis, the ratio between the summation of K 
included singular values and the summation of all of them is 
often used [5, 12]. This ratio, referred to as the cumulative 
energy, is defined as:

The cumulative energy which is considered sufficient can be 
set and is called the cut-off ratio or threshold. For example, 
in the work of Hamim [12] the cut-off ratio is set to 99%, 
whereas in the work of Buljak [5] it is set to 99.999%. It has 
been shown in earlier work that the cumulative energy is not 
a proper indicator for the quality of the surrogate model [7].

The goal is to find the right balance between added accu-
racy and added error. It is therefore proposed to choose the 
number of basis vectors based on a ratio RK between the 
interpolation error �F̃VU

[K]
 and the truncation error � F̃VU

[K]
:

The interpolation error �F̃VU
[K]

 is the component of the 
error in the subspace that is spanned by the modes 1 to K. 
Additional basis vectors will not reduce the interpolation 
error. On the other hand, the truncation error � F̃VU

[K]
 is the 

component of the error that is spanned by the modes K + 1 
to Nexp − 1 , and that can therefore be potentially reduced 
by adding more basis vectors. By choosing a threshold on 
the ratio RK , no more basis vectors will be added when the 
potential improvement by enlarging the basis is less than RK 
times the error that is already present in the model.

4  Demonstrator process: bending

To compare the different methods a demonstrator process 
is introduced in this section. For demonstration purposes 
we will investigate the bending of a metal flap. A schematic 
representation of the process can be found in Fig. 2. In the 
process a sheet metal work piece with initial sheet thickness 
( x1 ) is bent downward to the final punch depth ( x2 ). Thereaf-
ter the punch is released and the workpiece will spring back.

The process is described by two input variables, the sheet 
thickness ( x1 ) and the final punch depth ( x2 ). A point in the 
design space can be denoted as: x = {x1, x2}

T.
The process is modelled with a 2D plane strain model 

using the FE analysis software MSC Marc/Mentat version 

(43)CK =

∑K

n=1
d2
n∑Nexp−1

n=1
d2
n

.

(44)RK =
� F̃VU

[K]

�F̃VU
[K]

.
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2016. The sheet metal is modelled with an elastic-plastic 
isotropic material model with Von Mises yield criterion and 
a tabular hardening relation between flow stress and equiva-
lent plastic strain. The work piece is meshed using 1200 
quadrilateral elements ( Nelem ) and 1296 nodes ( Nnod ). The 
elements are fully integrated using four integration points 
per element with constant dilatational strain. The solution of 
the FE simulation including importing data into MATLAB 
2019a takes approximately 45 s.

The output of the FE-model consists of the nodal dis-
placement field, the equivalent plastic strain field, and stress 
tensor field in the integration points. Hence a result of the FE 
simulation is collected in an M × 1 result vector:

Wi t h  t wo  d e g r e e s  o f  f r e e d o m  p e r  n o d e 
Mu = 2 ⋅ Nnod = 2592 . With four integration points per 
element Mε = 4 ⋅ Nelem = 4800 . With four integration 
points per element and because of the plane strain analy-
sis there are 4 independent components of the stress tensor, 
Mσ = 4 ⋅ 4 ⋅ Nelem = 19,200. The overall size of a result vec-
tor is M = Mu +Mε +Mσ = 26,592.

4.1  Dimensions and range of input and output

The input and output parameters of the model have differ-
ent ranges and dimensions. The nominal thickness x1 is 0.3 
mm, the thickness varies between 0.295 mm and 0.305 mm. 
The punch depth varies between between 1.5 mm and 1.6 
mm. These ranges in input result in a variation in output. The 
displacement field is given in millimeter and varies between 

(45)y =

⎧⎪⎨⎪⎩

�
yu
�

�
yε
�

�
yσ
�
⎫⎪⎬⎪⎭
,

− 1.69 mm and + 0.07 mm. The equivalent plastic strain field 
is dimensionless and varies between 0 and 0.48. Lastly, the 
stress tensor values are in MPa and vary between −661 MPa 
and +566 MPa.

4.2  Constructing surrogate models 
of the demonstrator

To obtain a training set a star point design is combined with a 
Latin Hypercube Sample (LHS).

To investigate the influence of the sample size on the sur-
rogate model accuracy, four different sample sizes are used. 
The number of sample points in the LHS designs are 15, 35, 
55 and 75 sample points. To rule out the dependency on the 
distribution of the sample points in the input space, five dif-
ferent LHS designs per sample size are used. For the demon-
strator process with Ndim = 2 , the starpoint design consists of 
Nstar = 2 ⋅ Ndim + 1 = 5 sample points. The total number of 
experiments in one training set will be

Consequently, the used sample sizes are 20, 40, 60 and 80. 
The designs of the different samplings are optimized by gen-
erating 250 different LHS designs and picking the 5 best 
based on the maximum minimum distance between sample 
points of the combined star-point and LHS design.

Because each sample size is replicated with five differ-
ent LHS designs, the total number of FE-simulations is 
5 + 5 ⋅ (15 + 35 + 55 + 75) = 905 . The results of the FE-
simulations will lead to a total of 20 training sets for which the 
global scaling parameters are optimized based on the interpo-
lation errors as presented in Eqs. (38), (40) and (42) for direct 
interpolation, SVD+array interpolation and SVD+scalar inter-
polation respectively.

5  Results using different surrogate models

The Fraction of Variance Unexplained ( FVU ) as described 
in Sect. 3.1 is used to compare the different surrogate mod-
els after the hyperparameters have been optimized. First the 
models are analyzed based on the training set using the Leave-
One-Out errors in Sect. 5.1. To obtain a validation set the input 
space is sampled with more sample points and the correspond-
ing simulations are performed . The results based on the vali-
dation set are presented in Sect. 5.2. In Sect. 5.3 the selection 
of the number of basis vectors, based on the criterion in Eq. 
(44) is reviewed.

5.1  Results based on the training set

Figure 3 shows the different errors based on the training data 
as derived in Sects. 3.3 and 3.4. By including more basis 

(46)Nexp = Nstar + Nlhs = 2 ⋅ Ndim + 1 + Nlhs.

x2

punch blankholder

die fixed die

workpiece

x1

Fig. 2  Schematic representation of the demonstrator process and 
Finite Element mesh [7]
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vectors in the reduced basis, the � F̃VU due to truncation 
becomes smaller. With a full basis the � F̃VU due to trunca-
tion will be 0, as the training data exist in the subspace that 
is spanned by the full basis.

As it should, the interpolation error with K = 1 is the 
same for the models using SVD with array and scalar inter-
polation. Including more basis vectors in the model increases 
the �F̃VU due to interpolation, as the part of the result space 
that is spanned by the interpolation model increases with 
each addition of a mode. With each added mode (i.e. direc-
tion in the result space), an interpolation error ( ≥ 0 ) is 
added, which leads to a gradual increase of the interpola-
tion error. The model with direct interpolation indicates the 
maximum �F̃VU in the training set. The �F̃VU of the model 
based on SVD with array interpolation increases towards the 
�F̃VU of the model with direct interpolation.

The �F̃VU due to interpolation converges to a constant 
value when more basis vectors are added. If this constant 
value is reached, including more basis vectors does not 
improve the model anymore. As expected, using more 
sample points in the training set decreases the �F̃VU due 
to interpolation and the �F̃VU of the model based on direct 

interpolation. In other words, larger training sets result in 
better models. Using more sample points also decreases the 
bandwidth of the results, hence the quality of the model 
becomes less dependent on the sampling of the training set.

5.2  Results with a validation set

A validation set is obtained on a 9 × 9 grid, on a range from 
10 to 90% in the normalized input parameter space of the 
model. To obtain the validation set an additional Nval = 81 
simulations were performed. Only the centre point of the 
grid was included in the initial training sets. Figure 4 shows 
the different types of FVU based on the validation set.

The trends in the FVU in Fig. 4 are similar to the trends 
in FVU based on the training set in Fig. 3. The following 
observations made based on the error in the training set, 
also hold for the FVU based on the validation set. First, by 
including more basis vectors in the reduced basis, the �FVU 
due to truncation becomes smaller. However, note that the 
�FVU due to truncation does not drop to 0 when all basis 
vectors are included in the basis.

Fig. 3  Mean FVU calculated 
using the training set of sur-
rogate models based on five dif-
ferent training sets constructed 
using a zero centered and scaled 
snapshot matrix. The shaded 
area represents the range over 
all training sets
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The truncation error calculated based on the training set 
gives a good approximation for the true �FVU for the first 
basis vectors. For higher number of basis vectors, the trunca-
tion error from the training set is an underestimation of the 
actual truncation error that is determined with the validation 
set.

Second, the interpolation error for the models using SVD 
with array and scalar interpolation are equal for a basis trun-
cated to K = 1 . Including more basis vectors in the model 
increases the �FVU due to interpolation. The �FVU due to 
interpolation and the total �FVU converge to a constant 
value when more basis vectors are added. Using more sam-
ple points in the training set decreases the FVU and also 
decreases the bandwidth of the results.

The total �FVU of the model based on SVD with array 
interpolation decreases towards the �FVU of the model with 
direct interpolation. Based on the estimated �F̃VU due to 
interpolation as determined with the training set, it would be 
expected that the SVD with scalar interpolation will perform 
best of all methods. However, the results from the validation 
data set indicate the contrary. The total �FVU based on the 
validation set is higher, meaning less variance is explained. 

This can be due to overfitting, especially in the higher 
modes. As found by Rao et al. [23] the increased number of 
hyperparameters can lead to overfitting and underestimation 
of the LOO error. For noisy data a general trend will perform 
better in predicting new data, than an overfitted metamodel. 
Generally the �F̃VU due to interpolation calculated based on 
the training set is higher than the �FVU calculated based on 
the validation set. Hence, the error based on the training set 
overestimates the error based on the validation set.

5.3  Selection of the number of basis vectors

The cumulative energy in (43) and the ratio in Eq. (44) are 
calculated based on the training set and will be used to deter-
mine when to truncate the reduced basis. In the top row 
of Fig. 5 the cumulative energy in Eq. (43) is plotted for 
both reduced order models. Thresholds on the cumulative 
energy CK of 99.9% and 99.99% are used to truncate the 
reduced bases. The middle row shows the ratio in Eq. (44) 
for the surrogate models based on SVD with scalar and array 
interpolation. A threshold on the ratio RK of 0.1 is chosen to 
truncate the reduced basis. With this threshold the error due 

Fig. 4  Mean FVU calculated 
using a validation set of sur-
rogate models based on five dif-
ferent training sets constructed 
using a zero centered and scaled 
snapshot matrix. The shaded 
area represents the range over 
all training sets
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to truncation over all K included basis vectors is 10 times 
smaller than the error due to interpolation. The potential 
benefit of adding more basis vectors will be at most a reduc-
tion of 10% of the error that is already in the model due to 
interpolation. The models based on SVD and array interpo-
lation reach this threshold faster than the models based on 
SVD and scalar interpolation

In the bottom row of Fig. 5 the ratio between the error in 
the direct model �FVU based on the validation set and the 
total error �FVU based on the validation set in the reduced 
order models is plotted. A ratio of one indicates that the 
direct model and the reduced order model have the same per-
formance, and a ratio > 1 indicates that the truncated model 
performs better than the direct model.

The number of basis vectors K at which the model will be 
truncated based on the criterion that RK < 0.1 is indicated 
with a black dot. These truncated models perform equally or 
slightly better than the direct interpolation models in case of 
array interpolation, except for the models based on the train-
ing sets with Nexp = 40 . With more samples in the training 

set, the difference in performance between the reduced order 
models with array and scalar interpolation becomes smaller.

The �F̃VU due to interpolation based on the training 
set of the models with a truncated basis according to 
RK < 0.1 , CK > 99.9% and CK > 99.99% are presented in 
Fig. 6a. On average the modelling approach with SVD 
and scalar interpolation has the lowest interpolation error 
�F̃VU . This is a result of the larger number of hyperparam-
eters that increases the flexibility in the interpolation, as a 
separate set of global scaling parameters � is determined 
for each basis vector. In case of array interpolation, the 
average reduction of the data over all datasets using the 
criterion that RK < 0.1 is 56%, which is in between the 
reductions with CK > 99.9% (average reduction of 63%) 
and with CK > 99.99% (average reduction of 30%).

Figure 6b displays the total �FVU based on the vali-
dation set for the surrogate models truncated based on 
the criterion that RK < 0.1 , CK > 99.9% , CK > 99.99% 
and using a full basis (the complete results can be found 
in Appendix 1). For all data sets, the model based on 
SVD+scalar interpolation has a larger error than the model 
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based on direct interpolation and the models based on 
SVD+array interpolation, which indicates some amount 
of overfitting for the SVD+scalar interpolation models.

When comparing the different truncation criteria for the 
case of SVD+array interpolation using the validation data set, 
it is found that the FVU with the criterion that RK < 0.1 is on 
average 5.5% lower than with the criterion that CK > 99.9% . 
In comparison to the criterion that CK > 99.99% the FVU is 
on average 0.1% lower, which is no significant difference in 
accuracy. However, the number of used basis vectors is sig-
nificantly lower for the new criterion.

6  Conclusions

The LOO-error as proposed by Rippa [24] has been success-
fully extended for use in error estimation of array surrogate 
models and SVD-based surrogate models. When comparing 

the Fraction of Variance Unexplained ( FVU ) based on the 
training set (Fig. 3) and the FVU based on a validation set 
(Fig. 4) for a sheet bending demonstration problem that is 
modelled with FE, it is found that the errors based on the 
training set overestimate the interpolation error. The trunca-
tion error calculated based on the training set underestimates 
the truncation error in the validation set when many basis 
vectors are included, while it is a good estimate for the trun-
cation error when few basis vectors are used.

Based on the interpolation error in the training set, the 
surrogate model constructed using SVD with scalar inter-
polation was expected to have the best performance. How-
ever, based on the validation set, this method for surrogate 
model construction has the largest FVU and thus the low-
est performance. With larger training sets the performance 
of these surrogate models gets closer to the surrogate mod-
els constructed using direct interpolation and using SVD 
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with array interpolation. Nevertheless, it is recommended 
to use SVD with array interpolation.

If the amplitudes are interpolated using array inter-
polation, model reduction can be applied without loss of 
accuracy compared to using a model based on direct inter-
polation. The models based on SVD with array interpola-
tion perform similar to and sometimes even better than the 
models based on direct interpolation, depending on where 
the basis is truncated.

To determine where to truncate the model, a new cri-
terion is proposed in this work. It is shown that the ratio 
between the truncation error and the interpolation error 
in the training set (Eq. (44)) can be effectively used to 
balance between model reduction and accuracy. This is 
shown in a comparison with the commonly used cumu-
lative energy (Eq. (43)), which only accounts for the 
truncation error and does not consider the interpolation 

error. The FVU in the validation data set with the new 
criterion Rk < 0.1 is on average 5.5% lower than the FVU 
when using a contribution ratio threshold of CK > 99.9% , 
whereas it is comparable to the FVU when using a tighter 
threshold on the cumulative energy of CK > 99.99% . How-
ever, the reduction of the data set is significantly larger 
with the new criterion: on average 56% instead of 30% 
with the contribution ratio threshold of CK > 99.99% . 
Therefore, it is concluded that a threshold of Rk < 0.1 is 
appropriate for determining the number of basis vectors 
for the given problem.

Appendix 1

See Table 1.

Table 1  Different Fraction of 
Variance Unexplained based 
on the validation set using the 
model with direct interpolation 
versus the truncated models 
with K basis vectors

Nset = 1 2 3 4 5

Nexp = 20

 SVD+array Direct � 1.63×10−2 1.87×10−2 1.67×10−2 2.22×10−2 2.15×10−2

R
k

� 1.53×10−2 1.71×10−2 1.69×10−2 2.21×10−2 2.09×10−2

< 0.1 (K) (10) (11) (10) (10) (10)
C
k

� 1.55 10−2 1.84 10−2 1.70 10−2 2.31 10−2 2.16 10−2

> 99.9% (K) (11) (13) (11) (11) (11)
C
k

� 1.63 10−2 1.87 10−2 1.67 10−2 2.22 10−2 2.13 10−2

> 99.99% (K) (16) (17) (16) (17) (16)
 SVD+scalar R

k
� 2.30×10−2 2.31×10−2 1.84×10−2 3.10×10−2 2.39×10−2

< 0.1 (K) (12) (13) (11) (11) (11)
C
k

� 2.29 10−2 2.33 10−2 1.83 10−2 3.10 10−2 2.39 10−2

> 99.9% (K) (11) (13) (11) (11) (11)
C
k

� 2.32 10−2 2.44 10−2 1.85 10−2 3.15 10−2 2.45 10−2

> 99.99% (K) (16) (17) (16) (17) (16)
Nexp = 40

 SVD+array Direct � 7.49×10−3 9.15×10−3 8.17×10−3 8.31×10−3 8.69×10−3

R
k

� 7.57×10−3 9.18×10−3 8.52×10−3 8.43×10−3 9.37×10−3

< 0.1 (K) (16) (18) (16) (20) (18)
C
k

� 7.93 ×10−3 9.42 ×10−3 8.60 ×10−3 8.63 ×10−3 9.53 ×10−3

> 99.9% (K) (14) (16) (15) (15) (14)
C
k

� 7.44×10−3 9.13×10−3 8.18 ×10−3 8.26 ×10−3 8.75 ×10−3

> 99.99% (K) (28) (29) (28) (29) (29)
 SVD+scalar R

k
� 1.11×10−2 1.10×10−2 1.21×10−2 1.00×10−2 9.68×10−3

< 0.1 (K) (17) (19) (19) (21) (19)
C
k

� 1.11 ×10−2 1.11 ×10−2 1.23 ×10−2 9.88 ×10−3 9.61 ×10−3

> 99.9% (K) (14) (16) (15) (15) (14)
C
k

� 1.10 ×10−2 1.11 ×10−2 1.24 ×10−2 1.02 ×10−2 9.85 ×10−3

> 99.99% (K) (28) (29) (28) (29) (29)
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