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Abstract
The continuous cone penetration test (CPT) measurements provide an advantageous liable rapid tool for stratification and soil 
behavior classification that can be employed in the sustainable design of the infrastructures. However, the CPT measurements 
are often interpreted by geotechnical experts because of the involved complexities and uncertainties. In this study, a novel 
stratification and soil type behavior (SBT) classification model is developed to identify the transition and thicker layers by 
integrating the geotechnical knowledge with the three submodels of (a) locally estimated scatterplot smoothing (LOESS), 
(b) a game theory model known as Nash–Harsanyi (N–H) bargaining, and (c) grey wolf optimizer (GWO). The LOESS 
and integrated N–H bargaining-GWO models are, respectively, used to approximate the outliers in CPT measurements and 
identify the SBT and layer changes. Attractively, in the proposed model, the engineer has the opportunity to judge on the 
precision of the stratification profile regarding their own preferences in a project. Solving simple algebraic equations, high 
speed, identifying thick and the interlayer transition layers, and small required training data are the other advantages of the 
developed model. Finally, the applicability of the proposed model has been assessed in an example. The compared estimated 
and two other models’ stratification profiles highlighted the potential of the proposed model to identify thin transition layers.

Keywords  Subground stratification · Cone penetration test (CPT) · Game theory · Nash–Harsanyi bargaining model · Grey 
wolf optimizer (GWO)

List of symbols

Cone penetration test (CPT)
Fr	� Normalized friction ratio
fs	� Sleeve friction
Ic	� SBT index
qt	� Cone tip resistance
Qtn	� Normalized cone resistance
SBT	� Soil behavior type

Grey wolf optimizer (GWO)
�⃗A and ��⃗C	� Coefficient vectors
�⃗a	� Vector of numbers decreasing linearly from 2 

to 0
��⃗D	� Distance criterion between wolves and prey
r⃗1 and r⃗2	� Random vectors in [0, 1]

�⃗Xp	� Position vector of prey
�⃗X	� Position vector of a grey wolf
Xi	� A grey wolf considered in computations
� , � and �	� Three best wolves approaching a prey, 

respectively
�	� Representing a wolf

Locally estimated scatterplot smoothing (LOESS) model 
parameters
a0 , a1 , a2	� Variables in linear and quadratic 

approximations
h	� Neighborhood bandwidth for each data point
(xi, yi)	� Coordinate of any data point
�(xi)	� Local regression estimate
w(xi)	� Smoothing weight of data point i in the neigh-

borhood range of h
w	� Weight function

Nash–Harsanyi bargaining model parameters
DN − H	� Nash–Harsanyi distance criterion
D�−cut	� Layer change distance limit/precision regulat-

ing parameter
di	� Disagreement point for player i
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dN−H(i,i−k)	� Nash–Harsanyi distance between data points i 
and i − k

N–H	� Nash–Harsanyi
n	� Number of players
pi	� proportion of cooperation of each player
ui	� Objective function of player i
�	� Overall profit

Others
CPD	� Change point detection
�	� Coefficient of regulating parameter

1  Introduction

A better knowledge of the subground state is beneficial in 
the sustainable design and development of the infrastruc-
tures’ foundations. Cone penetration test (CPT) is a fast, 
repeatable, economical site investigation test in geotechni-
cal engineering that provides almost continuous measure-
ments in depth [37, 46]. Hence, its popularity is still growing 
among engineers. The continuous measurements of cone tip 
and sleeve frictional resistances in depth make it a promising 
method for subground stratification and soil behavior type 
(SBT) classification [8], although an appropriate interpreta-
tion may provide further engineering information [20, 37, 
44, 48, 54, 64]. Meanwhile, the ranges of CPT measurements 
and the involved fluctuations for different SBTs are always 
influenced by several factors, such as the spatial variability 
of soils, cone size, and sensors’ precision of measurements 
[2, 5, 28, 35, 37, 43]. They bring about both complexity and 
uncertainty in CPT-based soil stratification. Therefore, sub-
ground stratification has often been performed by the CPT 
experts. However, in the past 2 decades, numerous studies 
have tried to bridge the gap between mathematical and geo-
technical knowledge for stratifying subsurface soils using 
CPT measurements.

To overcome the complexities and uncertainties of the 
measurements in stratification, vast research is performed 
on the determination of the CPT measurements ranges for 
different soils and SBT classes, as well as the development 
of the computational processing models to recognize the soil 
layers from measurements. Since the invention of CPT, SBT 
classification based on the measurements has been inves-
tigated numerously and some charts are proposed for this 
purpose [4, 6, 7, 19, 21, 22, 29, 43, 45, 47, 49, 51, 53, 58]. 
However, as a problem, the existence of uncertainties and 
probably outliers in CPT measurements is almost inevitable. 
The outlier identification in time series and the procedures 
to approximate them mathematically have been targeted 
in numerous studies since many years [1, 9, 10, 36, 57]. 
Some studies used the geotechnical principles and statistical 
methods simultaneously to detect and remove the outliers 

[12, 20]. In the meantime, especially in the past 2 decades, 
engineers have sought computational methods to facilitate 
identifying subground layers and to substitute the required 
experts’ knowledge. Zhang and Tumay [66] suggested the 
statistical and fuzzy sublayer identification approaches using 
the soil types almost similar to the ones in the unified soil 
classification system (USCS). The CPT tests conducted at 
the National Geotechnical Experimentation site (NGES) 
at Texas A&M University [56] were used to show their 
method’s applicability. Hegazy and Mayne [25] presented 
the improvement of clustering methods over the previous 
statistical ones for the CPT-based soil classification. They 
showed that clustering could detect major changes within 
the stratigraphy, which might not be apparently visible. A 
probabilistic approach was developed by Jung et al. [30] to 
modify the soil identification charts based on the CPT data. 
Das and Basudhar [17] proposed self-organizing maps and 
fuzzy clustering techniques for identification of different lay-
ers. The estimated results were comparable with those of 
obtained from the cone classification chart, hierarchical and 
K-mean clustering techniques. Wang et al. [63] modelled 
the uncertainty in the CPT-based soil stratification and clas-
sification by means of the Bayesian approach and using the 
Robertson chart proposed in 1990 [45]. The proposed model 
was evaluated based on some real CPT data. Ching et al. [13] 
used the SBT index, Ic , in their proposed stratigraphic profil-
ing approach. The layer boundaries were recognized at the 
relatively large change points in the Ic profile. They utilized 
the wavelet transform modulus maxima (WTMM) method, 
and 50 real CPT-based stratification profiles provided by 
experts to determine the layer change point criterion. Cao 
et al. [8] developed a Bayesian framework based on the SBT 
index, Ic , for the probabilistic soil stratification. The number 
and thickness of layers, and also their associated identifica-
tion uncertainty were estimated. Wang et al. [62] proposed a 
semi-supervised clustering method built on a hidden Markov 
random field framework using boreholes and CPT sounding 
logs. Wang et al. [59] suggested an unsupervised Bayesian 
inferential framework integrated with the Robertson chart 
[45] to determine the strata and the corresponding SBTs. In 
brief, the literature indicates that the computational CPT-
based subground stratification models were built on two gen-
eral approaches. In the first approach, the consistency among 
the sequential CPT data points has been employed to find 
the thick layers, such as in the Bayesian theory and cluster-
ing models. On the other hand, in the second approach, the 
boundaries between the soil layers are determined based on 
the change points and especially sudden fluctuations detec-
tions in CPT results, such as in the wavelet model proposed 
by Ching et al. [13]. There are still some deficiencies with 
the existing methods, although great progress has been made 
so far in stratification models. Some proposed methods are 
time-consuming, and investigation is still being performed to 
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reduce their computation time. Almost all proposed models 
concentrated on seeking the strata featuring the high consist-
ency of the corresponding measurements. But the transi-
tion layers between them are neglected or finding them may 
require longer computation time. In almost all methods, it 
has been tried to find the layer boundaries deterministically 
even though probabilistic methods were employed. However, 
due to some intrinsic uncertainties in CPT soundings which 
were not targeted focally in the proposed models, reporting 
the layers change boundaries and SBTs deterministically 
may be still a bit risky.

Hence, in this paper, integrating geotechnical knowledge 
with time series/signal smoothing, game theory, and opti-
mization models, a totally different and novel model is pro-
posed for identifying the strata depths and their SBTs. As 
the advantages of the proposed model, it runs rapidly, finds 
both the thick layers and the transition layers in between, 
and provides the possibility to tune the precision of stratifi-
cation-SBT classification profile. The precision regulating 
parameter is implemented in the model to avoid determinis-
tic presentation of the subground stratification and to provide 
the engineer the possibility to make their own judgement 
if required. In the proposed model, first, a local regression 
smoothing method is utilized to reduce the outliers’ and 
uncertainties’ impact within the CPT measurements. Then 
integrating the Nash–Harsanyi (N–H) model, as a game 
theory model, grey wolf optimizer (GWO), as an optimiza-
tion model, and Robertson soil classification chart (1990), 
a model is proposed to identify the transition and then the 
thick layers in between, as well as their corresponding SBTs. 
Although the focus and novelty of the present study has been 
the developed model itself, after describing the model, the 
practicality of the model is verified based on training the 
model using only one CPT-based stratification profile pro-
vided by experts and comparing the results with two other 
published stratification models for other three testing CPT 
soundings.

2 � The proposed model

The proposed model is encapsulated in Fig. 1. It is com-
prised of two modules. In the first module, the raw sleeve 
friction, fs , and cone tip resistance, qc , measurements are 
loaded, corrected by the penetrometer manufacturer’s rec-
ommendations, modified into normalized friction ratio, Fr , 
and normalized cone tip resistance, Qtn , using the equa-
tions proposed by Robertson [46], and smoothed by a local 
regression method named as locally estimated scatterplot 
smoothing, LOESS. The smoothing is proposed as a denois-
ing method to reduce the sudden illogical fluctuations in 
measurement signals in depth. In the second module named 
as soil stratification module, soil layers are determined by 

integrating the N–H bargaining and GWO models with the 
Robertson SBT classification chart [45] as the geotechnical 
experience-based judgement.

The algorithm of the proposed model is explained 
in detail in Sect. 2.2; after the employed submodels are 
described mathematically in Sect. 2.1.

The proposed model was developed in MATLAB, 2019a 
(The Mathworks, Inc. MATLAB, Version 9.6 2019).

2.1 � The utilized submodels

The four computational and geotechnical models or 
approaches used in the proposed model are described below:

2.1.1 � LOESS smoothing method

Local regression estimation was independently introduced in 
several fields in the nineteenth and twentieth centuries [26, 
52]. In 1979, Cleveland applied the robust locally weighted 
regression to smoothing scatterplots, and Cleveland and 
Devlin [14] extended the model to the multivariate case [34].

LOESS is a weighted regression method for smoothing a 
scatterplot, ( xi , yi ) i = 1, 2,… , n, in which the fitted value at 
xk is the value of a polynomial fit to the data using weighted 
least squares. The underlying principle is that a smooth func-
tion can be well approximated by a low-degree polynomial 
in the neighborhood, ( −h , h), of any point x. For example, a 
local linear approximation is [14]:

for xi − h < xi < xi + h . A local quadratic approximation, 
which was used in this study, is

The local approximation can be fitted by locally weighted 
least squares. The coefficient estimates a0 , a1 and a2 were 
chosen to minimize:

(1)�(xi) ≈ a0 + a1(xi − x)

(2)�(xi) ≈ a0 + a1(xi − x) +
a2

2
(xi − x)2.

Fig. 1   Concise schematic illustration of the proposed model
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Each local least squares problem defined 𝜇̂(xi) at one point x; 
if x was changed, the smoothing weights w(xi) would change, 
and so the estimates a0 and a1.

A smooth weight function results in a smoother estimate 
[38]. The tricube weight function was used in the LOESS 
fitting procedure in this study [14–16]:

w is a weight function with the following properties: [14]: 

1.	 w(x) > 0 for |x| < 1;
2.	 w(−x) = w(x);
3.	 w(x) is a nonincreasing function for x ≥ 0;
4.	 w(x) = 0 for |x| ≥ 1.

2.1.2 � Robertson chart

Robertson [45] categorized soils, with respect to worldwide 
CPT results, based on their particles size and their behav-
iour. The outcome of their study has been the chart shown in 
Fig. 2. As can be seen, nine SBTs are defined in the chart. In 
addition, the data points labelled with numbers 1–26 show 
the distribution of a sequence of CPT measurements in a 
range of 50 cm in depth. The points 1–7 (excluding point 
6 which has been an outlier located out of the chart range) 
and 20–26 are located in zones 5 and 6, respectively; and the 
points 8–19 are spread in zones 1–5.

The SBT boundaries proposed in the Robertson chart 
were identified based on the experiments, but not the ana-
lytical methods. Therefore, to use the chart in calculations, 
eight curves were fit to them. Jung et al. [30] assessed the 
exponential equations in a semi-logarithmic scale. In this 
study, fitting both polynomial and exponential equations to 
the boundary lines in both linear and log–log space were 
verified. Sum squared error (SSE), coefficient of determina-
tion ( R2 ), and root mean square error (RMSE) were used as 
the error criteria to select the best fitted curves. The best-
fitted equations for each line (numbered on the Robertson 
chart in Fig. 2) and the corresponding error criteria are pre-
sented in Table 1. The small quantities of error indicate the 
well-fitted curves.

2.1.3 � Nash–Harsanyi bargaining method

As a Game Theory model, the Nash–Harsanyi (N–H) 
bargaining model has been employed in different fields, 

(3)
n∑

i=1

w(xi)[Yi − �(xi)]
2.

(4)w(xi) =

{
(1 − |xi − x

h
|3)3 |u| < 1

0 |u| > 1.

especially in the environmental and water management 
studies as a conflict-resolution model [18, 23, 24, 39]. 
Nash [42] proposed a bargaining model considering the 
cooperation among the players. This method maximizes 
the total profit of players through coalition and coop-
eration, considering each player an equal proportion of 
cooperation. In spite, in the asymmetric N–H model, the 
players share their different proportions of cooperation 
to obtain an agreement for the maximum overall profit. 
Indeed, both the individual and also the collective ration-
alities are considered in this method [24].

In the N–H model, n players with ui objective functions, 
where i represents each player, and di is the disagreement 
points of players in the game. The overall profit, � , in the 
model can be written as

Fig. 2   Soil behavior type (SBT) chart based on CPT data, proposed 
by Robertson [45]. The SBT boundary lines are numbered on the 
chart, and the SBT classification is stated underneath, in the table. 
The data points numbered as 1–26 have been measured at the Lukang 
test site, Taiwan, at the depth range of 3.65–4.9 m. The whole Fr and 
Qtn measurements of the site are presented in Fig. 4
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subject to
ui ≥ di , where i = 1, 2,… , n.

2.1.4 � Grey wolf optimizer (GWO)

Among the numerous applied meta-heuristic optimization 
models [11, 55, 60, 61, 65], Mirjalili et al. [40] proposed 
a meta-heuristic search algorithm inspired by grey wolves 
(Canis lupus) attacking a prey. This optimization algorithm 
has been employed in different fields like soil mechanics, 
electric power system, image processing, and medicine [27, 
31–33, 41, 67].

The social hierarchy of wolves is modelled mathemati-
cally considering alpha, � , beta, � , delta, � , and omega, � , 
wolves. The three best solutions are considered as � , � and 
� wolves, respectively, and the other possible solutions are 
considered as � wolves. In a hunting (optimization) process, 
� wolves follow the three best wolves.

In brief, different steps of hunting are encoded mathemat-
ically as below [40]:

–	 Encircling prey: 

 where �⃗A and ��⃗C are coefficient vectors, �⃗Xp is the position 
vector of the prey, �⃗X indicates the position vector of a 
grey wolf, r⃗1 and r⃗2 are random vectors in [0, 1], and �⃗a 

(5)� = max

n∏

i=1

(ui − di)
pi

(6)��⃗D = |��⃗C. �⃗Xp(t) −
�⃗X(t)|,

(7)�⃗X(t + 1) = �⃗Xp(t) −
�⃗A.��⃗D,

(8)�⃗A = 2 �⃗a.r⃗1 − �⃗a,

(9)��⃗C = 2r⃗2,

vectors’ components are linearly decreased from 2 to 0 
over the course of iterations.

–	 Hunting:
	   The � , � , and � wolves have better estimation of the 

potential solution and the � wolves follow them. This is 
mathematically implemented as 

–	 Attacking prey:
	   Approaching a prey is modelled by decreasing the 

value of �⃗a over the course of iterations.
–	 Search for prey (exploration):
	   To avoid the local optimum finding, �⃗A with random 

values greater than 1 and smaller than -1 oblige the 
search agent to diverge from the prey and search for the 
solution globally. To find an applicable knowledge of the 
whole process of GWO, the reader may refer to a pseudo-
code presented in [40].

2.2 � The algorithm of the proposed model

The stepwise procedure of the proposed model is presented 
in Fig. 3. As can be observed, CPT acquisition process, the 
derived CPT data denoising, and stratification identification 
modules are illustrated step-by-step schematically and the 
details are presented below.

Observing the sequence of Fr and Qtn series on the Rob-
ertson chart (like the points shown in Fig. 2) revealed that 

(10)
��⃗D𝛼 = |��⃗C1.

�⃗X𝛼 −
�⃗X|

��⃗D𝛽 = |��⃗C2.
�⃗X𝛽 −

�⃗X|
��⃗D𝛿 = |��⃗C3.

�⃗X𝛿 −
�⃗X|

(11)
�⃗X1 =

�⃗X𝛼 −
�⃗A1.(

��⃗D𝛼)

�⃗X2 =
�⃗X𝛽 −

�⃗A2.(
��⃗D𝛽)

�⃗X3 =
�⃗X𝛿 −

�⃗A3.(
��⃗D𝛿)

(12)�⃗X(t + 1) =
�⃗X1 +

�⃗X2 +
�⃗X3

3
.

Table 1   The best-fitted curves 
to the Robertson chart [45] 
boundaries

x and y stand for log10Fr and log10Qtn , respectively

Line no. Equation SSE R2 RMSE

1 y = −2.474x5 − 7.17x4 − 7.066x3 − 3.836x2 − 1.721x + 0.4744 0.0012 0.9995 0.00646
2 y = 1.086x4 − 0.8107x3 − 0.0905x2 + 0.8637x − 0.1521 0.0004 0.9998 0.00352
3 y = 0.4864x3 + 0.2955x2 + 0.7638x + 0.7346 0.0023 0.9996 0.00768
4 y = 1.204 exp(0.5827x) + 0.0034 exp(8.784x) 0.0017 0.9997 0.00650
5 y = 0.7409x4 + 1.503x3 + 1.286x2 + 0.8894x + 1.806 0.0022 0.9995 0.00655
6 y = 0.5231x3 + 1.518x2 + 1.743x + 2.924 0.0016 0.9995 0.00587
7 y = −0.429x4 − 1.195x3 + 5.555x2 − 6.068x + 3.917 0.0045 0.9995 0.00904
8 y = 258.4x3 − 453.1x2 + 268.6x − 51.57 0.0069 0.9978 0.01475
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the main problem with the stratification and determination 
of SBT directly form the Robertson chart was reading dif-
ferent SBTs for two adjacent measurements located close to 
each other on the chart but on different sides of a boundary 
line. For example, in Fig. 2, it can be observed for points 14 
and 16. But in a thick layer, the succeeding points on the 

Robertson chart locate close to each other as observed in 
Fig. 2 for points 20–26. That is why some previous studies 
used clustering methods for finding thick layers. However, 
if only the Robertson chart is used for stratification and SBT 
behavior determination, so many layers with different SBTs 
will be determined. To clarify, the data derived from Lukang 

Fig. 3   Schematic stepwise illustration (flowchart) of the developed model
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case, Taiwan, is presented as Fr and Qtn in Fig. 4a and b, and 
the corresponding stratification is presented in Fig. 4c. As 
can be observed, there are a lot of fluctuations in the SBT 
graph and too many layers with different SBTs have been 
identified. Such stratification causes problems in a geotech-
nical numerical analysis. Two main causes for these high 
fluctuations were identified as 

(a)	 there were a lot of fluctuations with different ranges in 
both Fr and Qtn , and

(b)	 two proximate points on Robertson chart may locate on 
different sides of a SBT boundary line.

To solve the former problem, the LOESS method was 
applied, and the N–H model integrated with GWO was pro-
posed to solve the latter problem.

The LOESS method was used to reduce the impacts of 
outliers and uncertainties in the measurements—or in other 
words, to denoise the measurements signals. The local band-
width of local regression may depend on the uncertainties 
originating from the CPT equipment, soil type, operator’s 
experience, etc.—which has been out of the scope of the pre-
sent study and needs more detailed study. Therefore, as can 

be observed in Fig. 3, the bandwidth of the LOESS method 
is not proposed to be optimized with the GWO model. The 
LOESS method is applied to both Fr and Qtn , individually.

The proximity of the sequential data points on the Rob-
ertson chart has been considered as the basic for thick 
layer identification. In other words, the sequentially distant 
point(s) were considered as the transition layer(s) between 
the thick ones. To implement this concept computationally, 
a distance criterion between the sequential data points and 
also a distance limit (denoted hereafter as D�−cut ) ought to 
be determined for recognizing the layer change. Provided 
that only the distance between two adjoining measurements 
is considered, the outliers and some uncertain measurements 
may bring about problems with stratification. Hence, as an 
example, for points 1–26 shown in Fig. 2 (which were meas-
ured at 3.65–4.9 m depth in Lukang test site), the distances 
between each point, i, and the i − 1 , i − 2 , i − 4 and i − 10 
points are computed and shown in Fig. 5a–d as dN−H(i,i−1) , 
dN−H(i,i−2) , dN−H(i,i−4) and dN−H(i,i−10) . The distances between 
the points i and k are computed as

where Fr(i) , Fr(i−k) , Qtn(i) and Qtn(i−k) represent the normalized 
friction ratio of points i and i − k , respectively.

In Fig. 5a, if the layer change distance limit, D�−cut , is 
assumed equal to 0.6, two transition layers can be recog-
nized from the depth ranges 3.85–3.95 and also 4.50–4.55 
m, where dN−H(i,i−1) > D𝛼−cut . Figure 5c and d shows that the 
depth of these two transition layers changes a bit if dN−H(i,i−2) 
and dN−H(i,i−4) will be used. In addition, Fig. 5d shows that 
the transition layers have moved about 50 cm deeper and 
also shape of dN−H(i,i−10) is changed totally in contrast to 
Fig. 5a–c. Since there is a conflict among the four distance 
criteria to find the layer change depths, the N–H bargaining 
model is used as a conflict-resolution model to determine 
the proportion of cooperation ( pi in Eq. 5) of the four con-
sidered distances as game players. In an initial example, fol-
lowing Eq. (5), a parameter named as the N–H total distance, 
DN − H , can be computed as DN − H =

∏n

k=1
(dN−H(i,i−k))

pk , 
where, n is the number of distance criteria, or in other words, 
the players number in the N–H model.

Assuming the power quantities, i.e. proportions of coop-
eration of 0.8, 0.6, 0.4 and 0.2, for the distance criteria, 
[dN−H(i,i−1)]

0.8 × [dN−H(i,i−2)]
0.6 × [dN−H(i,i−4)]

0.4 × [dN−H(i,i−10)]
0.2 is 

computed for the measurement points 1–26 and illustrated in 
Fig. 5e. Changing the proportion of cooperation, i.e. power 
pi in Eq. (5), and D�−cut , different transition layers and the 
thick layers in between can be recognized.

The compromise among the players ( � in Eq. 5), i.e. 
the maximum total profit of the n players, which means the 
best stratification, can be reached if the n + 1 variables of 

(13)
dN−H(i,i−k) = ((log10Fr(i) − (log10Fr(i−k))

2

+ ((log10Qtn(i) − (log10Qtn(i−k))
2)0.5,

Fig. 4   Fr and Qtn data sets of Lukang case, Taiwan, and the SBT 
determined for each recorded point in depth based on the Robertson 
chart [45]
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the model ( p1 , p2 , p3 , p4 in Eq. 5, and also D�−cut ) can be 
computed based on some observed reliable stratification 
results approved by experts/soil sampling. In other words, 
the N–H model should be trained using some optimization 
model. Due to its high potential for solving various optimi-
zation problems, GWO is used as the optimization model. 
Indeed, the bargaining process in the N–H bargaining model 
is executed through the GWO model. For finding the opti-
mum quantities of the five variables, random quantities are 
considered as the initial population of wolves and in differ-
ent iterations, as explained in the previous section. Then 
they are modified to find the optimum quantities of variables 
by minimizing the mean square error (MSE) calculated by 
comparing the model SBT estimations and observed reliable 
stratification SBTs. In computations, SBTs are used as the 
numbers proposed by Robertson [45].

There are some notes worth mentioning: 

	 (i)	 After finding the transition and thick layers, the SBT 
of the layers are considered as the average of the 
SBTs of points of each layer on the Robertson chart.

	 (ii)	 The averaging bandwidth and weight function of the 
LOESS method can be also considered as variables 
in the optimization process.

	 (iii)	 Although only four distance criteria are considered in 
this study, a sensitivity analysis through optimization 
can be performed to find the best distance criteria.

	 (iv)	 The focus and also the innovation of the present study 
is the proposed model itself as a basic tool for strati-

fication. It can be modified to include the impacts 
of more geotechnical uncertainty origins, such as 
the impact of the interlayer weak/stiff soils on CPT 
measurements.

3 � Applying the developed model to case 
studies

As an example to show the applicability of the developed 
model, only the CPT data from Lukang case study was 
utilized for training the model. Then the trained model was 
applied to three other test data from NGES, Yuanlin, and 
WuFeng case studies. For the Lukang test site, the stratifi-
cation profile approved by the CPT experts was available. 
The profile was in accordance with the WTMM stratifi-
cation approach proposed by Ching et al. [13]. Another 
benefit of using the Lukang CPT stratification for training 
the model was that it contained both thick and thin layers 
and also low and highly fluctuated Fr and Qtn data sections.

It should be mentioned that the problem and data pro-
vided in this paper were the question of International 
Society for Soil Mechanics and Geotechnical Engineer-
ing (ISSMGE), TC304, student contest held in conjunction 
with the annual European Safety and Reliability confer-
ence (ESREL), Hannover, Germany, in 2019.

The role of the submodels and modules in the devel-
oped model are explained in the following sections.

Fig. 5   The four players considered for the initial clarification exam-
ple in the N–H bargaining model as four distance criteria (a–d, rep-
resented by dN−H(i,i−1) , dN−H(i,i−2) , dN−H(i,i−4) and dN−H(i,i−10) , respec-

tively), and their total profit in the N–H bargaining, represented by 
DN − H in e. A section of measurements from the depth range 3.6–
5.3 m from Lukang site, Taiwan, is presented here
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3.1 � Data denoising module

The smoothing LOESS method with the local regression 
bandwidth of 1% of the whole measured signal was applied 
to both Fr and Qtn data. This bandwidth was selected visually 
in this example such that the measured signals of Fr and Qtn 
would not change a lot but just some noises were decreased. 
Albeit, a preliminary sensitivity analysis on the impact of the 
bandwidth on the stratification results was performed also. 
For clarification, a section of the smoothed Fr and Qtn in the 
depth range of 20–25 m is illustrated in Fig. 6. As can be 
seen, the whole data and the trends have not been changed 
considerably after smoothing. But the outliers considered as 
the sudden sharp flocculating points have been approximated 
closer to the neighbouring points. It can be seen specifically 
in Fig. 6a at the depth range of approximately 21.5–22 m. 
An example of removing sudden sharp fluctuations can be 
observed in Fig. 6b at the depth of 20.9 m approximately. In 
conclusion, the denoising module has smoothed the input 
signals and removed the probable outliers, but the measure-
ment signals are not changed drastically.

3.2 � Soil stratification module

Similar to the initial example in Sect. 2, the same four 
distance criteria were considered as the N–H players. Bar-
gaining among them was modeled with the GWO based 

on the training data from Lukang site and a compromise 
was reached. The optimum cooperation proportion of 
each player, pi , and D�−cut were 0.7865, 0.5046, 0.3255, 
0.1691 and 0.0875, respectively. The lowest mean square 
error (MSE) and highest correlation coefficient ( R2 ) for 
the optimum results were 0.3403 and 0.9149, respectively. 
Figure 7 compares the optimum estimated stratification 
with the training stratification. Interestingly, the devel-
oped model has identified more (thin) layers based on the 
implemented distance criteria, although it was trained 
based on the compared stratification profile. However, the 
model’s sensitivity regarding the global optimum propor-
tion of cooperation of players, i.e. globally optimized pi 
in Eq. (5), in the N–H submodel has not been in the scope 
of this study and may be investigated in future.

3.3 � LOESS regression bandwidth’s impact

The impact of either applying or not applying the LOESS 
method with the spatial regression bandwidth of 1% on 
the optimum stratification profile is compared in Fig. 8. 
As can be observed, without applying the LOESS method, 
more thin layers were identified in the stratification pro-
file, especially where more fluctuations exist in the input 
data (shown in Fig. 2) and the SBT data points on the 
Robertson chart are located close to the boundary lines. 
Hence, application of the LOESS submodel affects the 
final stratification results.

It is believed that the LOESS spatial regression band-
width may depend on some factors like the precision of 
penetrometer, cone penetration rate, SBT of each soil 
layer, etc., which may be studied in future.

Fig. 6   Comparison of original and smoothed Fr and Qtn in depth 
(magnified view for the depth range between 20 and 25 m) for 
Lukang case, Taiwan

Fig. 7   Comparison of stratifica-
tion profiles by the proposed 
model and experts, i.e. WTMM 
method [13], for Lukang case, 
Taiwan
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3.4 � D
˛−cut as a regulating parameter

There are many parameters that may affect the required pre-
cision of subground stratification. Assume that a building is 
going to be constructed on soft soil layers and the geotechni-
cal designer needs to evaluate the settlement. The building 
may be either a private villa to be used only on weekends or 
the main hospital of a large city. The engineer might con-
sider the hospital with a higher importance factor in contrast 
to the private villa, because settlement may cause malfunc-
tioning of the hospital instruments and affect a considerably 
higher number of peoples’ lives. Therefore, it will be logical 
to have a more precise soil stratification profile for the hos-
pital to perform the geotechnical analysis. In addition, some 
other factors such as the background/credit of the consult-
ant or contractor company and nonhomogeneity of soil can 
influence the required precision of detected subground layers 
and their SBTs. In this regard, the developed model includes 
a precision regulating parameter, D�−cut , that can be used for 
altering the CPT-based subground stratification based on the 
geotechnical engineer designer’s mindset.

The normalized DN − H-depth graph for Lukang case 
study is presented in Fig. 9. The layer change N–H distance 
limit, D�−cut , line is also illustrated in the figure. Figure 9 
shows that lower D�−cut usually identifies more transition 
layers and consequently, more layers in the stratification pro-
file of a CPT log and vice versa.

To discuss about different quantities of D�−cut , a mul-
tiplier, � , of the optimum quantity of D�−cut is defined as 

� × D�−cut,opt . Figure 10a–c shows the identified stratification 
profile for Lukang case for the three quantities of � = 0.25, 
1.0 and 1.4. The SBT stratification contours are illustrated 
in these figures. Gaussian distribution was used to draw con-
tours for each SBT number. It can be observed that the SBT 
graph for � = 0.25 and 1.0 are almost similar. However, 
higher number of layers are identified for the depth range 
between 34 and 40 m for � = 0.25. Comparing � = 0.25 
and 1.4 graphs reveals that in addition to recognizing lower 
number of layers, the � = 1.4 graph shows some contrasts 
with the other two graphs in Fig. 10a and b: the SBT for the 
approximate depth range of 5–17 m has been 5 while it has 
been 6 for the same depth according to the two other graphs. 
To overcome this problem, the stratification results for dif-
ferent � quantities can be summed.

Simply, in this example, the five stratification profiles for 
� = 0.125, 0.25, 1.0, 1.2 and 1.4 were summed. Just to have 
a better view of the derived profiles, a Gaussian distribution 
was assumed for each SBT number at each profile. The SBT 
number at any depth was considered as the mean of the dis-
tribution function. The three-dimensional (3D) probability-
based colored presentations of stratification profiles can help 
the engineer to select the appropriate numbers and depths 
of layers and their corresponding SBTs as well. Figure 10d 
illustrates the 3D summation of the stratification profiles for 
the five quantities of � . A glance over this figure may induce 

Fig. 8   Comparison of stratification results for both cases of applying 
and not applying the LOESS smoothing method to the Lukang case 
CPT measurements

Fig. 9   Normalized DN − H as the total profit of players in Nash–Har-
sanyi bargaining model and the illustration of � − cut distance, D�−cut 
for Lukang case, Taiwan
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a general insight for an engineer that there are generally 
three layers of soil within the approximate depth ranges of 
0–16, 16–30.5 and 30.5–40 m with some transition layers/
lenses in between. However, if the graph is scanned more 
precisely, more layers may be considered in the subground 
numerical analyses.

3.5 � Comparing the proposed and other CPT‑based 
stratification models for different case studies

In this example, the developed model has been compared 
with two different approaches for determining subground 
stratigraphy based on CPT data. The first approach identifies 
layers with respect to the consistency among the data in each 
layer, for instance, the Bayesian model proposed by Wang 
et al. [63]. The second approach identifies layers searching 
for their boundaries. Such methods may be considered as 

change point detection (CPD) methods [3]. An example for 
this method can be the WTMM method proposed by Ching 
et al. [13].

Figure 11a–d shows the comparison of the developed 
model with the WTMM [13] and Bayesian [63] models 
for four data sets of Lukang, NGES, Yuanlin, and WuFeng 
cases. Generally, the identified layers boundaries and SBTs 
have been almost the same for the three models. However, 
the developed model identified more thin layers than the 
other methods. Aminikhanghahi and Cook [3] performed 
a survey on methods for time series change point detec-
tion and finally stated that “Evaluating the significance of 
the detected change point is an important open issue for 
unsupervised methods. Currently, most existing methods 
compare detecting changes scores with a threshold value 
to determine whether change occurs or not. Selecting the 
optimal threshold value is difficult. The values may be 

Fig. 10   Regulating parameter 
impact on the precision of sub-
ground stratification estimated 
for Lukang case, Taiwan
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application dependent and they may change over time. 
Developing statistical method to find significant change 
point based on previous values may offer greater autonomy 
and reliability”. This was the problem that Ching et al. [13] 
dealt with through a probabilistic study on 50 expert-based 
stratifications deciding on the threshold to introduce some 
data variations as subground layer changes. Therefore, in 
this study, the variable parameters, i.e. pi and D�−cut , were 
optimized based on their study results. At the meantime, the 
underlying N–H distance criteria in the developed model 
brought the capability to find the transition layers among 
the thick layers. This can be regarded as an advantage of the 
developed model compared to the two other models.

It is interesting that the trained model in this example, 
which was trained only based on one data set, estimated the 
stratification profiles generally similar to the Bayesian and 
WTMM methods for NGES, Yuanlin, and WuFeng sites, 
as the testing data sets. It shows that the developed model 
works as a semi-supervised model. Another advantage of 
the developed model was the very fast computation time, 
specially compared to the Bayesian method.

The three- and two-dimensional contour plots of the strat-
ification profiles for the three testing cases, are illustrated in 
Fig. 12a–c. For NGES case, Fig. 12b showed that WTMM 
and Bayesian models suggested 5 layers while the proposed 
model estimated 6 layers. However, a glance over Fig. 12b 

may inspire an engineer to define 4 or even 3 layers in 
numerical analysis for NGES site. On the other hand, look-
ing deeper into these figures, more layers can be identified.

Figure 12d shows a 3D presentation of the Yuanlin case 
stratification estimate. It is illustrated here as an example just 
to show how an engineer can observe the results. Rotating 
this figure and seeing different layers with different probabil-
ities of SBT helps the engineer to decide easier on the details 
of the identified layers and their corresponding SBTs. For 
future studies, the impact of variations of some parameter, 
like Ic , defined by Robertson and Wride [50], may provide 
the engineer a more precise probabilistic 3D view of SBTs.

As final words, it should be mentioned that the sensitivity 
analysis on some factors, like the local regression bandwidth 
of LOESS method, different combinations of dN − H in the 
N–H model, and the regulating parameter D�−cut requires 
further investigation.

4 � Conclusions

The present study has concentrated on the development 
of a model for subground stratification and soil behaviour 
type (SBT) classification based on the cone penetration 
test (CPT) measurements. The proposed model consists of 
two denoising and soil stratification modules. In the first 

Fig. 11   Comparison of the proposed model with two other CPT-based stratification models for different CPT results
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Fig. 12   Two- and three-dimensional plots of summed normally distributed SBTs for �  =  0.125, 0.25, 1.0, 1.2 and 1.4 (considering 
D�−cut = � × D�−cut,opt ) for NGES, Yuanlin, and WuFeng cases
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module, The CPT measurements are loaded and denoised 
by the locally estimated scatterplot smoothing (LOESS) 
method to approximate the probable outliers. As the main 
novelty of this study, in the second module, the SBT classi-
fication chart proposed by Robertson [45] is integrated with 
the Nash–Harsanyi (N–H) bargaining model to discover the 
subground stratification and the corresponding SBTs of the 
strata. The bargaining among the sequential distance criteria 
between the measured data points—considered as players in 
the N–H bargaining model—is simulated by the grey wolf 
optimizer (GWO) model to calculate the optimum propor-
tion of cooperation of the N–H players. Generally, the tran-
sition layers are identified through the large variations in 
normalized friction ratio, Fr , and normalized cone tip resist-
ance, Qtn , locations on the Robertson chart. Inversely, the 
thick layers are identified through small variations of Fr and 
Qtn on the chart. In an example, the practicality of the pro-
posed model was verified. Only one CPT expert-based train-
ing stratification profile was utilized and for other three CPT 
measurements, the stratification profiles were estimated. 
They compared well with two other previously published 
models’ estimations. The main advantages of the proposed 
model include the following: 

1.	 It is a rapid stratification model, especially compared to 
the probabilistic stratification methods like the Bayesian 
inference models. Using a normal laptop, the computa-
tion time may take less than a minute.

2.	 Simple algebraic equations are solved in the proposed 
model. Therefore, the mathematics behind the model is 
not sophisticated.

3.	 In addition to the thick soil layers, the transition layers 
can also be identified using the proposed model.

4.	 It is not required that the engineer prescribes the number 
of layers before running the model. However, by adjust-
ing the precision regulating parameter, D�−cut , they can 
control the number of strata and the corresponding SBTs 
regarding their own preferences.

5.	 Much data are not required for training the developed 
model.

6.	 Two- and three-dimensional presentations of subground 
stratification profiles provided from combining the strat-
ification profiles with different D�−cut support the engi-
neering judgement about the details of subground layers.

After all, it should be noted that the proposed model requires 
further development although its application provided 
comparable stratification profiles with the other published 
methods.
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