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Abstract This paper presents a new boundary shape

representation for 3D boundary value problems based on

parametric triangular Bézier surface patches. Formed by

the surface patches, the graphical representation of the

boundary is directly incorporated into the formula of

parametric integral equation system (PIES). This allows us

to eliminate the need for both boundary and domain dis-

cretizations. The possibility of eliminating the discretiza-

tion of the boundary and the domain in PIES significantly

reduces the number of input data necessary to define the

boundary. In this case, the boundary is described by a small

set of control points of surface patches. Three numerical

examples were used to validate the solutions of PIES with

analytical and numerical results available in the literature.

Keywords Boundary integral equations (BIE) �
Parametric integral equation system (PIES) � Laplace’s

equation � Potential problems � Triangular Bézier surface

patches

1 Introduction

Computer methods have proved to be a versatile and

effective approach for solving boundary value problems.

With the development of such methods, it has become

possible to create automated techniques to solve various

boundary problems. The most popular and widely used

methods for solving these problems are undoubtedly finite

difference method [1, 2], finite element method [3, 4] and

boundary element method [5–9]. A characteristic feature of

all these methods is the need for the discretization of the

domain or the boundary into elements. Despite their pop-

ularity, these methods have some limitations, which can be

identified as:

• the need to divide the continuous physical domain or

the boundary,

• the necessity to process large amounts of input data

(nodes and elements) and solve large system of

algebraic equations,

• the discrete form of the obtained solutions,

• the stability of the method depending strongly on

discretization schemes of input geometries,

• the modification of the shape of the boundary or the

domain (e.g., the problems of shape identification or

optimization) requiring a change in the position of a

large number of nodes or re-generating element mesh.

For many years, the authors of this paper have been

using parametric integral equation system (PIES) to solve

boundary value problems. So far, however, PIES has been

mainly used to solve 2D potential boundary value problems

modeled by partial differential equations such as: Laplace

[10, 11], Poisson [12], Helmholtz [13] and Navier–Lame

[14]. These equations have been written in the alternative

form, with the help of PIES, which takes into account in its

mathematical formalism the shape of the boundary mod-

eled by curves known from computer graphics. The shape

of the boundary could be defined by such curves as Bézier

[15], Hermite [16] and B-spline [17], and its definition is

practically reduced to giving a small set of control points.

The complexity of modeling the shape of the boundary in
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PIES depends on the complexity of the shape of the con-

cerned boundary problem. However, this eliminates the

need for definition of traditional boundary or finite ele-

ments. The results obtained in PIES for problems modeled

by these equations were compared with the results obtained

by FEM and BEM. High accuracy and effectiveness of

PIES for those 2D problems have been encouraging its

generalization to the 3D boundary problems.

The purpose of this paper is to propose an alternative

approach to boundary shape representation for 3D bound-

ary value problems based on parametric surface patches.

Surface patches allow describing a shape of 3D objects

using a given set of control points and associated basis

functions [18, 19]. Over the years, parametric surfaces as

well as curves have become one of the most important

modeling tools in computer graphics and the subject of

intensive scientific studies and practical development. This

development applies to both new ways of defining para-

metric curves and surfaces [20, 21], as well as practical

applications, especially in the case of widespread CAD

systems [22, 23]. Recently, there have been several

attempts to use the domain or boundary decryptions by

parametric patches directly in solving boundary value

problems. This trend is seen especially in the context of

isogeometric analysis, where functions that are used to

describe geometry in CAD software are also used to

approximate the unknown fields. Initially, isogeometric

analysis had been developed to improve finite element

analysis [24, 25], but recently there have been publications

with implementation of this idea to BEM [26]. However,

we want to emphasize that the concept used in PIES is

different from that of isogeometric analysis. In PIES, we

want to separate the necessity of performing simultaneous

approximation of both boundary shape and boundary

functions with the possibility of analytical description

of the boundary directly in the mathematical formula of

PIES.

In this paper, the boundary representation for 3D

boundary problems is created by triangular Bézier surface

patches. In this case, the shape of the boundary could be

described with a relatively small number of control points

of constituent triangular Bézier surface patches. It should

be pointed out that the proposed boundary shape repre-

sentation by triangular Bézier surface patches does not

need to be divided into any elements, but directly used in

the process of solving boundary value problems. The

approach based on PIES is so general and flexible that it is

possible to use another type of surface for boundary rep-

resentation instead of triangular patches.

Analogical to that in 2D problems, the proposed non-

element shape representation scheme has been directly

integrated in mathematical formalism of PIES, which has

been used in this paper to solve boundary value problems

in 3D. We focus on the solving of 3D boundary problem

modeled by Laplace’s partial differential equation. This

equation has been written in the alternative form, with the

help of PIES, which takes into account in its mathematical

formalism the shape of the boundary modeled by para-

metric patches. In the introduced PIES, the boundary

geometry is directly considered in its mathematical for-

malism and can be directly defined with the help of para-

metric patches. The proposed boundary shape

representation would lead to a considerable simplification

of the modeling process as well as to a reduction of the

necessary amount of input data that defines its shape when

compared with traditional element methods.

The numerical solution obtained by PIES comes down

only to the approximating of boundary functions. In this

paper, we extend a pseudo-spectral method [27] previously

used in the case of 2D problems to presented 3D problems.

Boundary functions are defined on the surface of individual

triangular Bézier patches that model the geometry of the

boundary directly in PIES and are approximated by the

Chebyshev series. Having calculated the coefficients of the

Chebyshev approximating series after solving PIES, we

can obtain solutions at any chosen point on the 3D

boundary. The proposed representation for the solutions on

the boundary is particularly effective from the point of

view of the possibility of improving the accuracy of the

obtained numerical results in PIES. The improvement of

solutions is investigated as a result of a change of the

number of input data in the program that is responsible for

the number of expressions in the Chebyshev approximating

series and does not require changing the original geometry

created by the Bézier patches. After solving PIES, we

obtain the solution of the boundary problem only on its

boundary, represented by the Chebyshev series. To find a

solution in the domain, we need to obtain an integral

identity known for BIE that makes use of the solution on

the boundary obtained by PIES.

Based on these considerations, computer software has

been developed and practically tested on the potential

problems modeled by Laplace’s equation. The analysis is

concerned with the compatibility of the obtained results

with known analytical and numerical solutions available in

the literature.

2 Triangular Bézier patches

A triangular Bézier patch is represented by a smooth para-

metric surface with a shape described by a set of control

points and basic functions. A Bézier surface of the order n

can be defined in terms of a set of 0.5(n ? 1)(n ? 2) control

points Pijk for indices, i� 0; j� 0; k� 0; and iþ jþ k ¼ n,

and presented as below [18]
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Pðv;w; uÞ ¼
X

i;j;k� 0
iþjþk¼n

PijkBn
ijkðv;w; uÞ;

for 0� vþ wþ u� 1; vþ wþ u� 1 ð1Þ

where Bn
ijkðv;w; uÞ are the basis functions described in the

following way

Bn
ijkðv;w; uÞ ¼

n!

i!j!k!
viw juk: ð2Þ

Figure 1 shows the graphical representation of the

surface patches of degrees 3 and 4 defined by 10 and 15

control points, respectively.

Formula (1) for the patches of degrees 3 and 4 is written

in the form

Pðu; v;wÞ ¼ w3P003 þ 3vw2P012 þ 3v2wP021 þ v3P030

þ 3uw2P102 þ 6uvwP111 þ 3uv2P120

þ 3u2wP201 þ 3u2vP210 þ u3P300 ð3Þ

Pðu; v;wÞ ¼ w4P004 þ 4vw3P013 þ 6v2w2P022 þ 4v3wP031

þ v4P040 þ 4uw3P103 þ 12uvw2P112

þ 12uv2wP121 þ 4uv3P130 þ 6u2w2P202

þ 12u2vwP211 þ 6u2v2P220 þ 4u3wP301

þ 4u3vP310 þ u4P400 ð4Þ

After substituting u = 1 – v - w in (1) and with

additional restrictions imposed on 0� v;w� 1 and

vþ w� 1, the surface of the Bézier patch can be mapped

by only two parameters: v, w. In this case, the expressions

(1, 2) may be reduced to

Pðv;wÞ ¼
X

i;j;k� 0
iþjþk¼n

PijkBn
ijkðv;w; 1� v� wÞ ð5Þ

and

Bn
ijkðv;w; 1� v� wÞ ¼ n!

i!j!k!
viw jð1� v� wÞk: ð6Þ

The above formulas for Bézier patches will be used in

the rest of the paper.

Triangular Bézier patches are characterized by the

simplicity of their creation and modification with the help

of a small number of control points. Figure 2 shows the

visualization of the patch defined by 15 control points.

In this way, it is possible to declare both flat triangular

surfaces (Fig. 2a), as well as curvilinear surfaces. Fig-

ures 2b, c shows sample modifications of the initial shape

of the surface after moving the selected control points.

3 Modification of the traditional boundary integral

equation (BIE) for Laplace’s equation in 3D

We consider a 3D boundary value problem modeled by

Laplace’s equation defined on domain X bounded by

boundary C as presented in Fig. 3.

The solution of such a problem consists in the deter-

mination of field function denoted as u, satisfying the given

differential equation (Laplace’s), as well as established

boundary conditions (Dirichlet, Neumann, or mixed), and

may be solved using the traditional integral identity

(Green’s formula). A generalized form of the integral

identity for 3D problems can be presented by the formula

[6]

�uðxÞ ¼
Z

C

U�ðx; yÞpðyÞ dCðyÞ �
Z

C

P�ðx; yÞuðyÞ dCðyÞ:

ð7Þ

Fig. 1 Triangular Bézier

patches of degrees 3 (a) and 4

(b) with control points
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In identity (7), integrand U�ðx; yÞ is the classical

fundamental solution, whereas P�ðx; yÞ is the classical

singular solution and uðyÞ and pðyÞ are boundary function

and its partial derivative, respectively. Additionally, x �
x1; x2; x3f g; y � y1; y2; y3f g indicate the source and the

field points, respectively. The value of �uðxÞ depends on the

location of x hence �uðxÞ ¼ uðxÞ for x 2 X; �uðxÞ ¼ 0:5uðxÞ,
x 2 C; �uðxÞ ¼ 0 and x 62 �X. If x 2 C, then formula (7) is

the classical boundary integral equation (BIE).

Presented briefly, the modification of traditional BIE is

considered as a generalization of the modification applied

to 2D problems as in [10–17]. In general, it consists in

analytically defining curvilinear boundary geometry in

traditional BIE with the help of triangular Bézier surface

patches.

The modification of generalized integral identity (7)

for 3D problems was performed in an analogical way to

that for 2D problems. Applying the Fourier transform to

Eq. (7), we obtain the following transform:

�̂uðnÞ ¼ D�1ðnÞ ~pðnÞ þ i½n1~u~n1ðnÞ þ n2~u~n2ðnÞ þ n3~u~n3ðnÞ�f g;
ð8Þ

where n1; n2; n3 are variables in the domain of Fourier

transform and D�1ðnÞ ¼ ½n2
1 þ n2

2 þ n2
3�
�1

.

The expression D�1ðnÞ in Eq. (8) is obtained by the use

of the Fourier transformation for the boundary fundamental

solution (for Laplace’s equation) DðxÞU�ðx; yÞ ¼ �dðx; yÞ
and by calculating the transform ~U�ðn; yÞ that is then

substituted into the transform obtained from Green’s for-

mula (7). The boundary in Eq. (8) is defined by means of

the following boundary integrals

~pðnÞ ¼
Z

C

e�iðn1y1þn2y2þn3y3ÞpðyÞ dCðyÞ; ð9Þ

~u~nmðnÞ ¼
Z

C

e�iðn1y1þn2y2þn3y3ÞnmðyÞuðyÞ dCðyÞ;

m ¼ 1; 2; 3; y 2 C; ð10Þ

where nm (m ¼ 1; 2; 3) is a normal vector to the boundary C.

In our further considerations, integral (10) is used to

describe transform ~u~nmðnÞ on the boundary. The unknown

identity function uðyÞ in (10) can be presented by

uðyÞ ¼ 1

4p3

Z

R3

eiðx1y1þx2y2þx3y3ÞûðxÞ dx;

x � fx1;x2;x3g; ð11Þ

where function buðxÞ is presented by the following formula

ûðxÞ ¼ 2D�1ðxÞ epðxÞ þ i½x1euen1ðxÞf
þ x2euen2ðxÞ þ x3euen3ðxÞ�g: ð12Þ

Equation (12) is a particular case of formula (8); after

inserting (12) and (11) into (10) we get the convolution

integral equation in the domain of Fourier transforms. The

final form of the equation is presented below as

eulenðlÞm ðnÞ¼
Z

R3

eK mðc1;c2;c3Þ
Xn

j¼1

D�1ðxÞ epjðxÞ
�

þ i½x1eujen1ðxÞþx2eujen2ðxÞþx3eujen3ðxÞ�
�

dx;

ð13Þ

Fig. 3 Definition of boundary value problem in domain X with

boundary C

Fig. 2 Triangular Bézier patch of degree 4: a defined by 15 control points, b and c the updated surfaces after moving the selected control points

520 Engineering with Computers (2013) 29:517–527

123



where

eK mðc1; c2; c3Þ ¼
1

4p3

Z

Cl

eiðc1y1þc2y2þc3y3ÞnðlÞm ðyÞ dCðyÞ;

l ¼ 1; 2; . . .; n; ci ¼ xi � ni; ð14Þ

~pjðxÞ ¼
Z

Cj

e�iðx1y1þx2y2þx3y3ÞpjðyÞ dCðyÞ; ð15Þ

~up~nðpÞm ðxÞ ¼
Z

Cp

e�iðx1y1þx2y2þx3y3ÞnðpÞm ðyÞupðyÞ dCðyÞ;

x ¼ n; p ¼ l; j: ð16Þ

3.1 Triangular Bézier patches in the mathematical

definition of boundary surface in BIE

Smooth surfaces of the boundary geometry in both kernel

(14) and boundary integrals (15, 16) can be defined by

curvilinear triangular Bézier patches of any degree

described by formula (5). Having considered the boundary

geometry defined by Bézier surface patches in kernel (14),

we obtain

�~Kmðc1; c2; c3Þ ¼
1

4p3

Zmj

mj�1

Zwj

wj�1

ei½c1P
ð1Þ
j
ðv;wÞþc2P

ð2Þ
j
ðv;wÞþc3P

ð3Þ
j
ðv;wÞ�

	 Jlðv;wÞnmðv;wÞ dm dw; ð17Þ

where

Jlðv;wÞ ¼
X3

i¼1

A2
i ðv;wÞ

" #0:5

; nmðv;wÞ ¼
Amðv;wÞ
Jlðv;wÞ

;

m ¼ 1; 2; 3; ml�1� m� ml; wl�1�w�wl

and

A1ðv;wÞ ¼
oP
ð2Þ
l ðv;wÞ
ow

oP
ð3Þ
l ðv;wÞ
ov

� oP
ð2Þ
l ðv;wÞ
ov

oP
ð3Þ
l ðv;wÞ
ow

;

A2ðv;wÞ ¼
oP
ð3Þ
l ðv;wÞ
ow

oP
ð1Þ
l ðv;wÞ
ov

� oP
ð3Þ
l ðv;wÞ
ov

oP
ð1Þ
l ðv;wÞ
ow

;

A3ðv;wÞ ¼
oP
ð1Þ
l ðv;wÞ
ow

oP
ð2Þ
l ðv;wÞ
ov

� oP
ð1Þ
l ðv;wÞ
ov

oP
ð2Þ
l ðv;wÞ
ow

:

Boundary transforms epjðxÞ; eupenðpÞm ðxÞ represented by

formulas (15, 16) after considering Bézier patches in them

take the following form

epjðxÞ ¼
Zmj

mj�1

Zwj

wj�1

e�i½x1P
ð1Þ
j
ðv;wÞþx2P

ð2Þ
j
ðv;wÞþx3P

ð3Þ
j
ðv;wÞ�

	 pjðm;wÞJjðv;wÞ dm dw; x ¼ n; p ¼ l; j;

eupenðpÞm ðxÞ ¼
Zmp

mp�1

Zwp

wp�1

e�i½x1P
ð1Þ
j
ðv;wÞþx2P

ð2Þ
j
ðv;wÞþx3P

ð3Þ
j
ðv;wÞ�

upðm;wÞnðpÞm Jpðv;wÞ dm dw: ð18Þ

Bézier surface patches Pjðv;wÞ ¼ ½Pð1Þj ðv;wÞ;P
ð2Þ
j ðv;wÞ;

P
ð3Þ
j ðv;wÞ�

T
are defined by formula (5).

4 PIES for Laplace’s equation

The PIES for 3D problems is obtained after inversing the

Fourier transform from the expression obtained after

substituting (17) and (16) into (12). Having calculated

some relatively complex integrals resulting from the

transform inversion, we obtain an expression that can be

written explicitly as

0:5ulðv1w1Þ ¼
Xn

j¼1

Zvj

vj�1

Zwj

wj�1

f�U�ljðv1;w1; v;wÞpjðv;wÞ

� P
�
ljðv1;w1; v;wÞujðv;wÞgJjðv;wÞ dv dw

ð19Þ

where ml�1\m1\ml;wl�1\w1\wl; mj�1\m\mj;wj�1\w\wj;

l ¼ 1; 2; 3; . . .; n; and n is the number of parametric patches that

create the domain boundary in 3D.

The integrands �U�ljðv1;w1; v;wÞ; �P�ljðv1;w1; v;wÞ in Eq.

(19) are represented in the following form:

�U�ljðm1;w1; m;wÞ ¼
1

4p
1

½g2
1 þ g2

2 þ g2
3�

0:5
; ð20Þ

�P�ljðv1;w1; v;wÞ ¼
1

4p
g1n

ðjÞ
1 þ g2n

ðjÞ
2 þ g3n

ðjÞ
3

½g2
1 þ g2

2 þ g2
3�

1:5
: ð21Þ

Function Jj v;wð Þ is the Jacobian, while n
ðjÞ
1 ; n

ðjÞ
2 ; n

ðjÞ
3 ; are

the components of the normal vector nj to the surface

Bézier patch designated by index j. Kernels (20) and (21)

include in their mathematical formalism the shape of a

closed boundary, created by means of appropriate

relationships between surfaces ðl; j ¼ 1; 2; 3; . . .; nÞ; which

are defined in Cartesian coordinates using the following

relations

g1 ¼ P
ð1Þ
l ðv1;w1Þ � P

ð1Þ
j ðv;wÞ;

g2 ¼ P
ð2Þ
l ðv1;w1Þ � P

ð2Þ
j ðv;wÞ;

g3 ¼ P
ð3Þ
l ðv1;w1Þ � P

ð3Þ
j ðv;wÞ;

ð22Þ

where P
ð1Þ
j ðv;wÞ; P

ð2Þ
j ðv;wÞ; P

ð3Þ
j ðv;wÞ are the scalar

components of the surface patch Pjðv;wÞ ¼ ½Pð1Þj ðv;wÞ;
P
ð2Þ
j ðv;wÞ;P

ð3Þ
j ðv;wÞ�

T
, which depend on the parameters
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v;w. This notation is also valid for the patch labeled by

index l with parameters v1 w1, i.e., for j ¼ l and for

parameters v ¼ v1 and w ¼ w1.

We have considered functions Pjðv;wÞ in the form

presented in Sect. 2 parametric surface patches. The pos-

sibility of analytical description of the boundary directly in

the formula of PIES is the main advantage of the presented

approach in comparison with traditional BIE. In classical

BIE, a description of the boundary is not included in the

mathematical formalism of the equation, but very generally

defined by the integral boundary. This necessitates the

discretization of the domain boundary into elements, as is

the case in classical BEM.

4.1 Approximation of the boundary functions

over the surface patches

The use of PIES for solving 2D and 3D boundary problems

made it possible to eliminate the need for discretization of

both the above-mentioned boundary geometry and the

boundary functions. The boundary functions defined as the

boundary conditions as well as obtained after solving PIES

are approximated on each triangular Bézier patch j by

means of the following Chebyshev series:

pjðv;wÞ ¼
XN

p¼0

XM

r¼0

p
ðprÞ
j T

ðpÞ
j ðvÞT

ðrÞ
j ðwÞ; ð23Þ

ujðv;wÞ ¼
XN

p¼0

XM

r¼0

u
ðprÞ
j T

ðpÞ
j ðvÞT

ðrÞ
j ðwÞ; ð24Þ

where u
ðprÞ
j , p

ðprÞ
j are requested coefficients, T

ðpÞ
j ðvÞ,

T
ðrÞ
j ðwÞ are Chebyshev polynomials, and �n ¼ N �M is

the number of coefficients in the approximating series.

After substituting (23) and (24) in PIES (19), we obtain an

algebraic equation system with respect to the unknown

coefficients u
ðprÞ
j or p

ðprÞ
j

0:5ulðm1;w1Þ

¼
Xn

j¼1

XN

p¼0

XM

r¼0

p
ðprÞ
j

Zvj

vj�1

Zwj

wj�1

U
�
ljðm1;w1; m;wÞ

8
><

>:

�u
ðprÞ
j

Zvj

vj�1

Zwj

wj�1

P
�
ljðm1;w1; m;wÞ

9
>=

>;

	 T
ðpÞ
j ðvÞT

ðrÞ
j ðwÞJjðv;wÞ dv dw: ð25Þ

One of these functions, either u
ðprÞ
j or p

ðprÞ
j , depending

on the type of the resolved boundary problem, is posed in

the form of boundary conditions, whereas the other is the

searched function resulting from the solution of PIES.

Next, writing down expression (25) at the collocation

points on individual Bézier patches, we obtain an algebraic

equation system with respect to the unknown coefficients

u
ðprÞ
j or p

ðprÞ
j . After its resolution, we obtain the values of

the unknown coefficients in one of the approximating

series (23) or (24), approximating the unknown function on

the boundary.

4.2 Solutions in the domain

After solving PIES, we obtain the solution of the boundary

problem only on its boundary, represented by series (23) or

(24). To find a solution in the domain, we need to obtain an

integral identity known for BIE that makes use of the

solution on the boundary obtained by PIES. After using

similar modifications as in the case of 2D problems [10,

11], we have had an integral identity which used solutions

(23) and (24) at the boundary, previously obtained by the

PIES solution. The modified identity takes the following

form:

uðxÞ ¼
Xn

j¼1

Zmj

mj�1

Zwj

wj�1

Û
�
j ðx; m;wÞpjðm;wÞ

n

�P̂
�
j ðx; m;wÞujðm;wÞ

o
Jjðv;wÞ dm dw: ð26Þ

The integrands appearing in the identity (26) are

expressed in the following form:

Û
�
j ðx; v;wÞ ¼

1

4p
1

½r$2

1 þ r
$2

2 þ r
$2

3�
0:5
; ð27Þ

P̂
�
j ðx; m;wÞ ¼

1

4p
r
$

1n1 þ r
$

2n2 þ r
$

3n3

½r$2

1 þ r
$2

2 þ r
$2

3�
1:5

; ð28Þ

where

r
$

1 ¼ x1 � P
ð1Þ
j ðv;wÞ; r

$
2 ¼ x2 � P

ð2Þ
j ðv;wÞ;

r
$

3 ¼ x3 � P
ð3Þ
j ðv;wÞ: ð29Þ

Both integrands in the identity (26) are visually very

similar to kernels (20) and (21). The main difference,

however, lies in the fact that in kernels (27) and (28), apart

from Bézier patches defining boundary geometry, we have

the coordinates of the point in domain x � x1; x2; x3f g.
Using coordinates, we can pose any point in the domain in

which we look for the solutions.

5 Numerical examples

The discussed algorithm has been successfully applied to

solve boundary problems described by Laplace’s equation.
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Numerical examples are given to compare the results

obtained by the proposed PIES method with analytical ones

and those obtained by BEM. There are several geometries

with smooth boundaries available in the literature for 3D

potential problems. In most cases, however, these objects

are shaped as spheres, and the sphere models are used in

the examples presented below. This does not limit the

shapes available.

5.1 Declaration of a sphere by triangular Bézier

patches

A single Bézier patch can only capture a small class of

shapes. To increase modeling possibilities, triangular pat-

ches of higher degree may be introduced. However, they

are harder to control and, in practice, the most common

solution is to join independent low-degree patches together

into a piecewise surface. The surface of the sphere may be

simultaneously approximated in PIES by eight symmetrical

triangular Bézier patches of degree 4, as shown in Fig. 4a.

A triangular patch approximating 1/8 of the sphere of

radius 1 with center at the origin is defined by 15 control

points with the following coordinates (placed in the first

quadrant of Cartesian coordinates x1; x2; x3) [28]

where

a ¼ ð
ffiffiffi
3
p
� 1Þ=

ffiffiffi
3
p

; b ¼ ð
ffiffiffi
3
p
þ 1Þ=2

ffiffiffi
3
p

;

c ¼ 1� ð5�
ffiffiffi
2
p
Þð7�

ffiffiffi
3
p
Þ=46:

The outer edges of formed patches are joined together to

form a closed sphere. As a result, the patches share the

same points along the common edges and the total number

of control points used to sphere approximation is reduced

to 66.

The created shape representation scheme of the sphere is

directly integrated in mathematical formalism of PIES.

Therefore, modeling the boundary is only limited to the

above-mentioned declaration of surface patches without

their further division, for example into boundary or finite

elements. This is a big advantage of PIES, which leads to a

radical simplification of both the boundary geometry

description and numerical calculations.

The accuracy of the fitting process, in terms of the error

of Bézier sphere-shaped surface in relation to the radius of

ideal sphere, is presented in Fig. 5. The error can be

computed as

Eðv;wÞ¼max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1Þðv;wÞ2þPð2Þðv;wÞ2þPð3Þðv;wÞ2

q
�1

����

����;

ð31Þ

where 0� v;w� 1, vþ w� 1 and Pðv;wÞ ¼ ½Pð1Þðv;wÞ;
Pð2Þðv;wÞ;Pð3Þðv;wÞ�T are the Cartesian components of

triangular Bézier patch Pðv;wÞ. The maximum of

E v;wð Þ for the presented model reaches the value of

0.027.

Fig. 4 A sphere approximated

with eight symmetrical

triangular Bézier patches of the

fourth degree (a); geometry

modification by moving control

points (b)

P004 0; 1; 0f g; P013 a; 1; 0f g; P022 b; b; 0f g; P031 1; a; 0f g; P040 1; 0; 0f g;
P103 0; 1; af g; P112 c; 1; cf g; P121 1; c; cf g; P130 1; 0; af g;
P202 0; b; bf g; P211 c; c; 1f g; P220 b; 0; bf g;
P301 0; a; 1f g; P310 a; 0; 1f g;
P400 0; 0; 1f g;

ð30Þ
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Additionally, we can perform easy shape modification by

moving individual or group of Bézier control points. The

model given in Fig. 4b can be seen as an effective modifi-

cation of the sphere from Fig. 4a. For this purpose, the sphere

model is transformed into an ellipsoidal form, shown in

Fig. 4b, after scalar multiplication of the x1-coordinates of

all Bézier control points by 2. This unified approach to

boundary shape modification offers two significant advan-

tages. Firstly, the operation is performed with the help of a

limited number of data, only control points of Bézier patches,

and secondly keeps a continuous smooth structure of modi-

fied boundary. The model of the boundary presented here is

used in numerical examples given in this section.

5.2 Example 1

In our first example, we consider the problem of a spherical

cavity outside a unit sphere. On the surface, a constant

radial influx equal to 10 J/m2s (the Neumann boundary

condition) is posed. The exact solution of the problem has

an asymptotic nature and is given by [7]

uðrÞ ¼ 10

r
; ð32Þ

and goes to zero when r !1.

The sphere is approximated by boundary model show in

Fig. 4a and directly used in PIES to solve this boundary

problem without performing any discretization. The solu-

tions of PIES obtained by integral identity (26) have been

compared in Table 1 with formula (32) and with available

literature BEM results with flat boundary elements [7].

The solutions of PIES in external points (column 5)

agree well with the analytical results (32) (column 2) and

with BEM solutions (columns 3, 4). To increase the

accuracy of solutions in the PIES, we only need to increase

the degree of the Chebyshev polynomial series (23, 24)

without any modification boundary geometry from Fig. 4a.

From the programming point of view, the operation simply

involves changing the number �n in the program, which

makes it possible to quickly verify the convergence. The

solutions on the boundary approximated by the polyno-

mials for �n ¼ 15 are presented in column 6.

5.3 Example 2

The aim of our second example is to demonstrate the

efficiency of the proposed 3D boundary description in PIES

by Bézier patches in the case of its shape modification. To

validate the proposed approach, inside the boundaries

created by Bézier patches from Fig. 4a, b, the Laplace

equation with Dirichlet boundary conditions is solved. The

prescribed values of Dirichlet boundary conditions depend

on the Cartesian coordinates x � x1; x2; x3f g that are cal-

culated on the basis of the following four independent

functions [29, 30]

u1ðxÞ ¼ x1 þ x2 þ x3; ð33Þ
u2ðxÞ ¼ x1x2 þ x2x3 þ x3x1; ð34Þ

u3ðxÞ ¼ x3
1 þ x3

2 þ x3
3 � 3x2

1x2 � 3x2
2x3 � 3x2

3x1; ð35Þ

u4ðxÞ ¼ sinh
px1

2

� �
sin

px2

2
ffiffiffi
2
p

� 	
sin

px3

2
ffiffiffi
2
p

� 	
; ð36Þ

that satisfy Laplace’s equation.

The normal derivatives of functions (33–36) computed

on the surface of the Bézier patches can be identified with

exact analytical solutions of the problem on the boundary.

The derived normal derivatives for these functions are

presented below:

p1ðxÞ ¼
du1ðxÞ

dn
¼ n1ðxÞ þ n2ðxÞ þ n3ðxÞ; ð37Þ

Fig. 5 The error between

Bézier patch formed by formula

(31) and the radius of the 1/8

unit sphere (b) at four cross

sections through the patch

(a) for spherical polar

coordinates
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p2ðxÞ ¼
du2ðxÞ

dn
¼ ðx2 þ x3Þn1ðxÞ þ ðx1 þ x3Þn2ðxÞ þ ðx1 þ x2Þn3ðxÞ;

ð38Þ

p3ðxÞ ¼
du3ðxÞ

dn
¼ ð3x2

1 � 3x2
3 � 6x1x2Þn1ðxÞ

þ ð3x2
2 � 3x2

1 � 6x2x3Þn2ðxÞ
þ ð3x2

3 � 3x2
2 � 6x1x3Þn3ðxÞ; ð39Þ

p4ðxÞ ¼
du4ðxÞ

dn
¼ p

2
cosh

px1

2

� �
sin

px2

2
ffiffiffi
2
p

� 	
sin

px3

2
ffiffiffi
2
p

� 	
n1ðxÞ

þ p

2
ffiffiffi
2
p sinh

px1

2

� �
cos

px2

2
ffiffiffi
2
p

� 	
sin

px3

2
ffiffiffi
2
p

� 	
n2ðxÞ

þ p

2
ffiffiffi
2
p sinh

px1

2

� �
sin

px2

2
ffiffiffi
2
p

� 	
cos

px3

2
ffiffiffi
2
p

� 	
n3ðxÞ:

ð40Þ

Both boundary conditions and unknown boundary

functions in PIES, due to the lack of conventional

discretization, take the form of approximation series

ujðv;wÞ or pjðv;wÞ, spread over each declared Bézier

patch. To find a solution on the boundary in the PIES, we

need to find the coefficients u
ðprÞ
j , p

ðprÞ
j in the

approximation series only. After these coefficients u
ðprÞ
j

and p
ðprÞ
j have been calculated and multiplied by

Chebyshev polynomials T
pð Þ

j vð Þ and T
rð Þ

j wð Þ; the solution

at any point v;w on our Bézier patch is obtained.

The stability of solutions is investigated as a result of a

change in the number of input data in the program that are

responsible for the number �n of expressions in the approxi-

mating series (23, 24). In Tables 2 and 3, we summarize the

error norms in the domain for different values of parameter �n.

The L2 error norms for solutions on the boundary is derived

on the basis of the following formula [30]:

jjejj ¼ 1

�pðkÞj jmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK

k¼1

pðkÞ � �pðkÞð Þ2
vuut 	 100 %; ð41Þ

where pðkÞ represents a set of K = 1,568 solutions obtained

on the boundary on the basis of series (24), while �pðkÞ are

exact solutions given by (37–40).

Approximation of the boundary functions over the sur-

face patches by Chebyshev series (23, 24) introduces an

effective approach of the convergence analysis. It is real-

ized by the increase of used approximation forms of series

(23, 24). In practice, it is performed by change in values �n

in the program without any intervention in the previously

declared boundary geometry. This is a considerable

advantage over the element methods in which the increased

accuracy involves the increase in the number of elements.

Table 1 Solutions in the domain outside of the sphere

r Exact (32) BEM [7] PIES

7 elements 16 elements �n ¼ 9 �n ¼ 15

1 2 3 4 5 6

1.5 6.667 6.505 6.569 6.637 6.636

2.0 5.000 4.899 4.922 4.973 4.972

3.0 3.333 3.274 3.281 3.313 3.313

6.0 1.667 1.639 1.640 1.656 1.656

10.0 1.000 0.983 0.984 0.993 0.993

100.0 0.100 0.098 0.098 0.099 0.099

Table 2 The impact of change

in the number of terms �n in

series pjðv;wÞ on the accuracy

of solutions on the boundary

from Fig. 4a in PIES

Number of terms

�n in series (24)

Total number of

algebraic equations

Error norm L2 (41) of solutions in PIES [%]

jjejjp1
(37) jjejjp2

(38) jjejjp3
(39) jjejjp4

(40)

1 2 3 4 5 6

6 48 0.4997 2.1090 8.1555 30.3838

9 72 0.4840 2.6095 5.6547 15.2042

15 120 0.2559 0.3351 1.5574 9.8241

36 288 0.0096 0.0147 0.0592 0.8946

Table 3 The impact of change

in the number of terms �n in the

series pjðv;wÞ on the accuracy

of solutions on the boundary

from Fig. 4b in PIES

Number of terms

�n in series (24)

Total number of

algebraic equations

Error norm L2 (41) of solutions in PIES [%]

jjejjp1
(37) jjejjp2

(38) jjejjp3
(39) jjejjp4

(40)

1 2 3 4 5 6

6 48 1.7013 3.5815 5.3397 16.0461

9 72 1.3800 3.1491 4.6456 17.3053

15 120 0.6269 0.6257 1.3385 10.9333

36 288 0.0492 0.0802 0.0986 2.1690
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5.4 Example 3

The domain bounded by the hollow sphere with internal

radius R1 ¼ 1:0 and external radius R2 ¼ 2:0, respectively,

is considered (Fig. 6).

The inner and outer surfaces of the domain are posed

with temperature T1 ¼ 100 
C and T2 ¼ 200 
C; respec-

tively. The exact solution may be written in the following

way [31]:

TðrÞ ¼ 300� 200=r; ð42Þ

where r is the radius of the domain inside the hollow

sphere.

Despite significant differences in the surface areas of

both sphere areas, expressed by radiuses R1 and R2, each of

them is described by eight Bézier patches of degree 4

according to the later scheme discussed in Sect. 5.1. As a

result, a complete geometric description of the spherical

wall requires 16 patches with 112 control points.

The results obtained in the domain bounded between

two spherical boundaries are presented in Table 4 and

proved good agreements with analytical ones.

Table 4 shows a good agreement of the solutions

obtained in PIES with the analytical values. The solutions

were obtained after solving only system of 144 and 240

linear equations by a pseudospectral method.

6 Conclusions

Triangular Bézier patches seem to be efficient tools for 3D

boundary modeling and in connection with PIES provides

an easy way of solving 3D boundary value problems. The

patches are applied to analytic modification of traditional

BIE and to obtain the PIES formula for 3D Laplace’s

problems. This paper generalizes the existing and inten-

sively developed 2D PIES scheme to solve boundary value

problems in 3D. The explicit form of PIES for Laplace’s

equation has been presented. The PIES solution requires

neither the domain nor the boundary discretization and is

reduced to approximation of boundary functions. In addi-

tion, it has presented the identity for solutions in the

domain. The obtained PIES formula has been tested on

elementary examples, but with analytical and numerical

solutions. The analysis showed the previously existing

advantages of PIES for 2D problems also in relation to the

3D problems described by Laplace’s equation. These

advantages are related to the simplicity of defining the

shape of the boundary by control points. The discussed

numerical examples show the good accuracy of the

obtained solutions.

Acknowledgments The scientific work is founded by resources for

sciences in the years 2010–2013 as a research project.

Table 4 The PIES values

inside the domain bounded by

Bézier patches from Fig. 6

r Exact T rð Þ (42) Relative error (%)

PIES (No. of eq. 144) PIES (No. of eq. 240)

1 2 3 4

1.25 140.00 0.078523 0.149923

1.50 166.67 0.089339 0.132301

1.75 185.71 0.027482 0.092293

Fig. 6 The hollow sphere

(a) with cross section and

boundary conditions (b)
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version of Bézier surfaces in multivariate B-form. J Comput Appl

Math 1–2(195):206–211

22. Mortenson M (1985) Geometric modelling. Wiley, New York

23. Rockwood A, Chambers P (1996) Interactive curves and surfaces.

Morgan Kaufmann Publishers, San Francisco

24. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric anal-

ysis: CAD, finite elements, NURBS, exact geometry and mesh

refinement. Comput Methods Appl Mech Eng 194:4135–4195

25. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric anal-

ysis: toward integration of CAD and FEA. Wiley, New York

26. Simpson RN, Bordas SPA, Trevelyan J, Rabczuk T (2012) A

two-dimensional isogeometric boundary element method for

elastostatic analysis. Comput Methods Appl Mech Eng

209–212:87–100

27. Gottlieb D, Orszag SA (1977) Numerical analysis of spectral

methods: theory and applications. SIAM, Philadelphia

28. Yong-Qing L, Ying-Lin K, Wei-Shi L (2002) Termination cri-

terion for subdivision of triangular Bézier patch. Comput
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