Erratum to: The Hardy-Rellich Inequality and Uncertainty Principle on the Sphere

Feng Dai • Yuan Xu

Published online: 12 March 2015
© Springer Science+Business Media New York 2015

Erratum to: Constr Approx (2014) 40:141-171

DOI 10.1007/s00365-014-9235-5

Several forms of uncertainty principles on the unit sphere are established in [1]. When stated in term of the vector

$$
\tau(f):=\frac{1}{\omega_{d}} \int_{\mathbb{S}^{d-1}} x|f(x)|^{2} d \sigma(x)
$$

of \mathbb{R}^{d} (normalization constant $1 / \omega_{d}$ was missing in [1]), our main result is in:
Corollary 4.4 Let $f \in W_{2}^{1}\left(\mathbb{S}^{d-1}\right)$ be such that $\int_{\mathbb{S}^{d-1}} f(y) d \sigma(y)=0$ and $\|f\|_{2}=1$. If $d \geq 2$, then

$$
\begin{equation*}
(1-\|\tau(f)\|)\left\|\nabla_{0} f\right\|_{2}^{2} \geq C_{d}^{-1} \tag{4.11}
\end{equation*}
$$

Here C_{d} is a constant given in Theorem 4.1. We next attempted to remove the condition that $\int_{\mathbb{S}^{d-1}} f(y) d \sigma(y)=0$ and stated:

[^0][^1]Theorem 4.5 Assume that $d \geq 2$, and let $f \in W_{2}^{1}\left(\mathbb{S}^{d-1}\right)$ be such that $\|f\|_{2}=1$. Then

$$
\begin{equation*}
(1-\|\tau(f)\|)\left\|\nabla_{0} f\right\|_{2}^{2} \geq c_{d}\|\tau(f)\| . \tag{4.14}
\end{equation*}
$$

This theorem, however, is incorrect. This was pointed out to us by Stefan Steinerberger, who showed that the inequality (4.14) does not hold for the function $f(\cos \theta, \sin \theta)=1+\varepsilon \sin \theta$ for small enough ε when $d=2$. The mistake in the proof appeared on the line 6 of page 166 , which states that $\|\tau(f)\| \leq\left(2\left|m_{f}\right|+1\right)\|g\|_{2}^{2}$, but it should have been $\|\tau(f)\| \leq\|g\|_{2}^{2}+2\left|m_{f}\right|\|g\|_{2}$. As a consequence, the right-hand side of (4.14) has to be replaced by $c_{d}\|\tau(f)\|^{2}$. Since $\|\tau(f)\| \leq\|f\|_{2}^{2}$, the resulted inequality is then equivalent to

$$
\begin{equation*}
\left(1-\|\tau(f)\|^{2}\right)\left\|\nabla_{0} f\right\|_{2}^{2} \geq c_{d}\|\tau(f)\|^{2} \tag{1}
\end{equation*}
$$

which was already known in the literature; see the discussion in [1] and references therein.

Since (4.14) no longer holds, an immediate question is whether the uncertainty principle in (4.11) and that in (1) are equivalent, assuming $\int_{\mathbb{S}^{d-1}} f(y) d \sigma(y)=0$. That they are not equivalent is shown in the following proposition.
Proposition 1 For $n \geq 3$, let $Y \in \mathcal{H}_{n}^{d}$, a spherical harmonic of degree n on \mathbb{S}^{d-1}, and let Q be a polynomial of degree at most $n-2$ such that $\int_{\mathbb{S}^{d-1}} Q(x) d \sigma=0$. Assume that both $[Y(x)]^{2}$ and $[Q(x)]^{2}$ are even in every coordinate. Let

$$
f=b(Y+Q), \quad \text { where } b^{-1}:=\|Y+Q\|_{2}>0
$$

Then $\tau(f)=0$. In particular, (1) becomes the trivial inequality $\left\|\nabla_{0} f\right\|_{2}^{2} \geq 0$, whereas (4.11) shows that $\left\|\nabla_{0} f\right\|_{2}^{2} \geq c>0$.

Proof Since the degree of Q is at most $n-2$, it follows from the orthogonality of Y and the even parity of Y^{2} and Q^{2} that

$$
\int_{\mathbb{S}^{d}-1} x_{i}|f(x)|^{2} d \sigma=\int_{\mathbb{S}^{d}-1} x_{i}\left(Y(x)^{2}+2 Y(x) Q(x)+Q(x)^{2}\right) d \sigma(x)=0
$$

for $1 \leq k \leq d$.Hence, $\tau(f)=0$. By its definition, $\|f\|_{2}=1$, and, by the orthogonality of Y and the zero mean of Q, we see that $\int_{\mathbb{S}^{d-1}} f(x) d \sigma=0$ so that (4.11) is applicable on f.

As a simple example of the function f, we can choose $Q(x)=x_{1}^{k}$ and $Y(x)=$ $C_{n}^{\lambda}\left(x_{1}\right)$ for $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{S}^{d-1}$, where $\lambda=(d-2) / 2$ and $1 \leq k \leq n-2$.

Acknowledgments The authors thank Stefan Steinerberger for pointing out the mistake in Theorem 4.5. of [1].

Reference

1. Dai, F., Xu, Y.: The Hardy-Rellich inequality and uncertainty principle on the sphere. Constr. Approx. 40, 141-171 (2014)

[^0]: The online version of the original article can be found under doi:10.1007/s00365-014-9235-5.

[^1]: F. Dai

 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada
 e-mail: dfeng@math.ualberta.ca
 Y. Xu (\boxtimes)

 Department of Mathematics, University of Oregon, Eugene, OR 97403-1222, USA
 e-mail: yuan@uoregon.edu

