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Abstract
A new model-based procedure is developed for sparse clustering of functional data
that aims to classify a sample of curves into homogeneous groups while jointly detect-
ing the most informative portions of the domain. The proposed method is referred
to as sparse and smooth functional clustering (SaS-Funclust) and relies on a general
functional Gaussian mixture model whose parameters are estimated by maximizing a
log-likelihood function penalized with a functional adaptive pairwise fusion penalty
and a roughness penalty. The former allows identifying the noninformative portion
of the domain by shrinking the means of separated clusters to some common values,
whereas the latter improves the interpretability by imposing some degree of smoothing
to the estimated cluster means. The model is estimated via an expectation-conditional
maximization algorithm paired with a cross-validation procedure. Through a Monte
Carlo simulation study, the SaS-Funclust method is shown to outperform other meth-
ods that already appeared in the literature, both in terms of clustering performance
and interpretability. Finally, three real-data examples are presented to demonstrate
the favourable performance of the proposed method. The SaS-Funclust method is
implemented in the R package sasfunclust, available on CRAN.
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1 Introduction

In the last years, due to advances in technology and computational power, most of
the data collected by practitioners and scientists in many fields bring information
about curves or surfaces that are apt to be modelled as functional data, i.e., continuous
random functions defined on a compact domain. A thorough overview of functional
data analysis (FDA) techniques canbe found inRamsay andSilverman (2005),Ramsay
et al. (2009), Horv’ath and Kokoszka (2012), Hsing and Eubank (2015) and Kokoszka
and Reimherr (2017). As in the classical (non-functional) statistical literature, cluster
analysis is an important topic in FDA, with many applications in various fields. The
primary concern of functional clustering techniques is to classify a sample of data
into homogeneous groups of curves, without having any prior knowledge about the
true underlying clustering structure. The clustering of functional data is generally a
difficult task because of the infinite dimensionality of the problem. For this reason,
methods for functional data clustering have received a lot of attention in recent years,
and different approaches have been proposed and discussed in the last decade. To
the best of the authors’ knowledge, the most used approach is the filtering approach
(Jacques and Preda 2014), which relies on the reduction of the infinite dimensional
problem by approximating functional data in a finite dimensional space and, then,
uses traditional clustering tools on the basis expansion coefficients. Along this line,
Abraham et al. (2003) propose an advanced version of the k-means algorithm to
the coefficients obtained by projecting the original profiles onto a lower-dimensional
subspace spanned by B-spline basis functions. A similar method is proposed by Rossi
et al. (2004) who apply a Self-Organizing Map (SOM) on the resulting coefficient
instead of the k-means algorithm. Elaborating on this path, Serban and Wasserman
(2005) present a technique for the nonparametric estimation and clustering of a large
number of functional data that is still based on the k-means algorithm applied to the
basis expansion coefficients obtained through smoothing techniques. A step forward
is moved by Chiou and Li (2007), who introduce the k-centers functional clustering
method to account, differently from the previous methods, for both the means and
the mode of variation differentials between clusters by predicting cluster membership
with a reclassification step.

Instead of considering the basis expansion coefficients as parameters, a different
idea is that of using a model-based approach where coefficients are treated as random
variables themselves with a cluster-specific probability distribution. The seminal work
of James and Sugar (2003) is the first one to develop a flexible model-based procedure
to cluster functional data based on a random effects model for the coefficients. This
allows for borrowing strength across curves and, thus, for superior results when data
contain a large number of sparsely sampled curves. More recently, Bouveyron and
Jacques (2011) propose a new functional clustering method to fit the functional data
in group-specific functional subspaces, which is referred to as funHDDC and is based
on a functional latent Gaussian mixture model. By constraining model parameters
within and between groups, they obtain a family of parsimonious models that allow
for more flexibility. Analogously, Jacques and Preda (2013) assume cluster-specific
Gaussian distribution on the principal components resulting from the Karhunen-Loeve
expansion of the curves, and Giacofci et al. (2013) propose to use a Gaussian mixture
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Sparse and smooth functional data clustering 797

model on the wavelet decomposition of the curves, which turns out to be particularly
appropriate for peak-like data, as opposed to methods based on splines.

In the multivariate cluster analysis, some attributes could be, however, completely
noninformative for uncovering the clustering structure of interest. As an example, this
often happens in high-dimensional problems, i.e., where the number of variables is
larger than the number of observations. In this setting, the task of identifying the fea-
tures, inwhich respect true clusters differ themost, is of great interest to achieve amore
accurate identification of the groups, as noninformative featuresmay hide the true clus-
tering structure, and higher interpretability of the analysis, by imputing the presence
of the clustering structure to a small number of features. More in general, the meth-
ods capable of selecting informative features and eliminating noninformative ones are
referred to as sparse. Such a class of methods can be usually reconducted and regarded
as variable selection methods. Sparse clustering has received increasing attention in
the recent literature. Based on conventional heuristic clustering algorithms, Fried-
man andMeulman (2004) develop a new procedure to automatically detect subgroups
of objects, which preferentially cluster on subsets of features. Witten and Tibshirani
(2010) elaborate a novel clustering framework based on an adaptively chosen subset
of features that are selected by means of a lasso-type penalty. In terms of model-based
approaches, the method introduced by Raftery and Dean (2006) is able to sequen-
tially compare nested models through the approximate Bayes factor and to select the
informative features. Maugis et al. (2009) improve this method by considering the
noninformative features as independent from some informative ones.

It is moreover worth mentioning quite promising variable selection approaches
that make use of a regularization framework. The seminal work in this direction is
that of Pan and Shen (2007), who introduce a penalized likelihood approach with
an L1 penalty function, which is able to automatically achieve variable selection
via thresholding and delivering a sparse solution. Similarly, Wang and Zhu (2008)
suggest a solution by replacing the L1 penalty with either the L∞ penalty or the
hierarchical penalization function, which takes into account the fact that clustermeans,
corresponding to the same feature, can be treated as grouped. Xie et al. (2008) also
account for grouped parameters through the use of two planes of grouping, named
vertical and horizontal grouping. In all sparse clustering methods just mentioned, a
feature is selected if it is informative for at least one pair of clusters and eliminated
otherwise, i.e., if it is noninformative for all clusters. However, some variables could
be informative only for specific pairs of clusters. For this reason, Guo et al. (2010)
propose a pairwise fusion penalty that penalizes, for each feature, the differences
between all pairs of cluster means and fuses only the non-separated clusters.

Only recently, the notion of sparseness has been translated into a functional data
clustering framework. Specifically, sparse functional clusteringmethods aim to cluster
the curves while jointly detecting the most informative portion of the domain to the
clustering in order to improve both the accuracy and the interpretability of the analysis.
Based on the idea of Chen et al. (2014), Floriello and Vitelli (2017) propose a sparse
functional clustering method based on the estimation of a suitable weight function that
is capable of identifying the informative part of the domain. Vitelli (2019) proposes a
novel framework for sparse functional clustering that also embeds an alignment step.
Moreover, Cremona and Chiaromonte (2022) develop a new method to locally cluster
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curves and discover functional motifs, and Di Iorio and Vantini (2019) introduce
funBI, the first biclustering algorithm for functional data. To the best of the authors’
knowledge, these are the only works that propose sparse functional clusteringmethods
so far.

In this article, we present amodel-based procedure for the sparse clustering of func-
tional data, named sparse and smooth functional clustering (SaS-Funclust), where the
basic idea is to provide accurate and interpretable cluster analysis. Specifically, the
parameters of a general functional Gaussian mixture model are estimated by maxi-
mizing a penalized version of the log-likelihood function, where a functional adaptive
pairwise fusion penalty, the functional extension of the penalty proposed by Guo et al.
(2010), is introduced. The latter penalizes the pointwise differences between all pairs
of cluster functional means and locally shrinks the means of cluster pairs to some
common values. Then, a roughness penalty on cluster functional means is considered
to further improve the interpretability of the cluster analysis. By this, the SaS-Funclust
method gains the ability to detect, for each cluster pair, the informative portion of the
domain to the clustering, hereinafter always intended in terms of mean differences. If a
specificmean pair is fused over a portion of the domain, it is labelled as noninformative
to the clustering of that pair. Otherwise, it is labelled as informative. In other words,
the proposed method is able to detect portions of the domain that are noninformative
pairwise, i.e., at least for a specific cluster pair, differently from the method proposed
by Floriello and Vitelli (2017) that is only able to detect portions of the domain that
are noninformative overall, i.e., for all the cluster pairs simultaneously. Moreover, the
model-based fashion of the proposedmethod provides greater flexibility than the latter,
which basically relies on k-means clustering. A specific expectation-conditional max-
imization (ECM) algorithm is designed to perform the maximization of the penalized
log-likelihood function, which is a non-trivial problem, and a cross-validation based
procedure is proposed to select the appropriate model.

To give a general idea of the pairwise sparseness property of the proposed method,
Fig. 1shows the cluster means estimated by the latter for three different simulated data
sets with (a) two, (b) three, and (c) four clusters. Data are generated as described in
Sect. 3 and supplementary information S2.

In Fig. 1a, the estimated means are correctly fused over t ∈ (0.2, 1.0]. Hence, the
proposed method is shown to be able to identify the informative portion of domain
[0.0, 0.2], for the unique pair of clusters and not for all. In Fig. 1b and c, several
cluster pairs are available, because the number of clusters is larger than 2, and, thus,
a given portion of the domain could be informative for a specific pair of clusters. In
Fig. 1b, the informative portion of the domain for each pair of clusters is correctly
recovered. The estimated cluster means are indeed pairwise fused over approximately
the same portion of the domain as the true cluster means pairs. Note that, for the
clusters whose true means are equal over t ∈ (0.2, 1.0], the SaS-Funclust method
identifies the informative portion of the domain roughly in [0.0, 0.2]. In Fig. 1c, the
sparseness property of the SaS-Funclust method is even more striking. In this case, in
the face of many cluster pairs, the proposed method is still able to successfully detect
the informative portion of the domain.

The innovation and advantage of SaS-Funclust over already existing methods can
be synopsized as follows. With respect to the multivariate literature, the SaS-Funclust
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Fig. 1 True and estimated cluster means obtained through the SaS-Funclust method for three different
simulated data sets with a two, b three and c four clusters generated as described in Sect. 3

method is able to extend the advantages of sparsity, i.e., the capability of selecting
informative features and eliminating noninformative ones, to the functional data setting
and achieving larger accuracy in the identification of the groups, as noninformative
features may hide the true clustering structure, and interpretability of the results,
which has the potential of improving the degree of understanding of the process under
study. With respect to the sparse and functional clustering methods already presented
in the literature before, SaS-Funclust is the first model-based approach and is thus
expected to attain superior flexibility in modelling different cluster shapes. Moreover,
these competing methods are only able to detect portions of the domain that are
noninformative overall, whereas, to the best of the authors’ knowledge, SaS-Funclust
is able to more efficiently detect informative portions of the domain in a pairwise
fashion, as depicted in Fig. 1.

The remainder of this article is organized as follows. After the presentation of the
proposed method in Sect. 2, its finite-sample properties will be addressed in Sect. 3
through a wide Monte Carlo simulation where we further demonstrate its favourable
performance, both in terms of clustering accuracy and interoperability, over several
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competing methods. In Sect. 4, the application of the proposed method to three real-
data examples, i.e., theBerkeleyGrowthStudy, theCanadianweather, and the ICOSAF
project data, remark the practical advantages and potentiality of the proposed method
that proves to attain, thanks to its sparseness property, new insightful and interpretable
solutions to cluster analysis. Section5 concludes the paper. The method presented in
this article is implemented in the R package sasfunclust, openly available on CRAN.

2 The SaS-Funclust method for functional clustering

In this section, we present the key elements of the proposed method. Specifically,
Sects. 2.1 and 2.2 introduce the general functional Gaussian mixture model and the
penalized maximum likelihood estimator, respectively. Whereas, the optimization
algorithm and parameter selection considerations are discussed in Sects. 2.3 and 2.4,
respectively.

2.1 A general functional clusteringmodel

The SaS-Funclust method is based on the general functional clustering model intro-
duced by James and Sugar (2003). Suppose that N observations are spread among G
unknown clusters and that the probability of each observation belonging to the gth
cluster is πg ,

∑G
g=1 πg = 1. Moreover, let us denote with Zi = (Z1i , . . . , ZGi )

T

the unknown component-label vector corresponding to the i th observation, where Zgi

equals 1 if the i th observation is in the gth cluster and 0 otherwise. Then, let us assume
that for each i observation, i = 1, . . . , N in the cluster g = 1, . . . ,G, it is available
a vector Y i = (

yi1, . . . , yini
)T of size ni , which can differ across observations, of

observed values of a function gi over the time points ti1, . . . , tini . The function gi
is assumed a Gaussian random process with mean μg , covariance ωg , and values
in L2 (T ), the separable Hilbert space of square integrable functions defined on the
compact domain T . We assume that, conditionally on Zgi = 1, Y i is modelled as

Y i = gi + εi , i = 1, . . . , N , (1)

where gi = (
gi (ti1) , . . . , gi

(
tini

))T contains the values of the function gi at
ti1, . . . , tini and εi is a vector of measurement errors that are mutually independent
and normally distributed with zeromean and constant variance σ 2

e . Let us suppose also
that the unknown component-label vector Zi has a multinomial distribution, which
consists of one draw on g categories with probabilities π1, . . . , πG . Then, for every i ,
the unconditional density function f (·) of Y i is

f (Y i ) =
G∑

g=1

πgψ
(
Y i ;μgi ,�gi + Iσ 2

e

)
, (2)
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where μgi = (
μg (ti1) , . . . , μg

(
tini

))T , �gi = {ωg (tki , tli )}k,l=1...,ni , I is the iden-
tity matrix, andψ (·;μ,�) is themultivariate Gaussian density distribution withmean
μ and covariance �. The model in Eq. (2) is the classical G-component Gaussian
mixture model (McLachlan and Peel 2004).

As discussed in James and Sugar (2003), it is necessary to impose some structure
curves gi , because both curves could be observed at different time domain points
and the dimensionality of the model in Eq. (2) could be too high in comparison to
the sample size. Therefore, similarly to the filtering approach for clustering (Capezza
et al. 2021), we assume that each function gi , for i = 1, . . . , N , may be represented
in terms of a q-dimensional set of basis functions � = (

φ1, . . . , φq
)T , that is

gi (t) = ηT
i � (t) , t ∈ T , (3)

where ηi = (
ηi1, . . . , ηiq

)T are vectors of basis coefficients. Then, ηi are modelled
as Gaussian random vectors, that is, given that Zgi = 1,

ηi = μg + γ ig, (4)

whereμg = (
μg1, . . . , μgq

)T areq-dimensional vectors and γ ig areGaussian random
vectors with zero mean and covariance �g . With these assumption, the unconditional
density function f (·) of Y i in Eq. (2) becomes

f (Y i ) =
G∑

g=1

πgψ
(
Y i ; Siμg,�ig

)
, (5)

where Si = (
� (ti1) , . . . ,�

(
tini

))T is the basis matrix for the i th curve and �ig =
Si�gSTi + Iσ 2

e . Therefore, the log-likelihood function corresponding to Y1, . . . ,Y N

is given by

L (	|Y1, . . . ,Y N ) =
N∑

i=1

log
G∑

g=1

πgψ
(
Y i ; Siμg,�ig

)
, (6)

where 	 = {πg,μg,�g, σ
2
e }g=1,...,G is the parameter set of interest. Based on an

estimate 	̂ = {π̂g, μ̂g, �̂g, σ̂
2
e }g=1,...,G , an observation Y∗ is assigned to the cluster

g that achieves the largest posterior probability estimate π̂gψ
(
Y∗; Si μ̂g, �̂ig

)
, with

�̂ig = Si �̂gSTi + I σ̂ 2
e .

2.2 The penalizedmaximum likelihood estimator

James and Sugar (2003) propose to estimate 	 through the maximum likelihood
estimator (MLE), which is the maximizer of the log-likelihood function in Eq. (6). In
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this work, we propose a different estimator of	 that is the maximizer of the following
penalized log-likelihood

L p (	|Y1, . . . ,Y N ) =
N∑

i=1

log
G∑

g=1

πgψ
(
Y i ; Siμg,�ig

) − P
(
μg

)
, (7)

where P (·) is a penalty function defined as

P
(
μg

) = λL

∑

1≤g≤g′≤G

∫

T
τg,g′ (t) |μg (t) − μg′ (t) |dt

+λs

G∑

g=1

∫

T

(
μ(s)
g (t)

)2
dt, (8)

where λL , λs ≥ 0 are tuning parameters, and τg,g′ are prespecified weight functions.
The symbol f (s) (·) denotes the sth-order derivative of f if it is a function or the entries
of f if it is a vector. Note that in Eq. (8) each function gi may be represented as in Eq.
(3), then it follows that

P
(
μg

) = λL

∑

1≤g≤g′≤G

∫

T
τg,g′ (t) |μT

g � (t) − μT
g′� (t) |dt

+λs

G∑

g=1

∫

T

(
μT
g �(s) (t)

)2
dt, (9)

The first element of the right-hand side of Eq. (8) is the functional extension of the
penalty introduced by Guo et al. (2010) and is referred to as functional adaptive
pairwise fusion penalty (FAPFP). The aim of the FAPFP is to shrink the differences
between every pair of cluster means for each value of t ∈ T . Due to the property of
the absolute value function of being singular at zero, some of these differences are
shrunken exactly to zero. In particular, the FAPFP allows pair of cluster means to be
equal over a specific portion of the domain that is, thus, considered noninformative
for separating the means of that pair of clusters.

The choice of the weight function τg,g′ in Eqs. (8) and (9) should be based on the
idea that if a given portion of the domain is informative for separating the means of
the corresponding pair of clusters, then, the values of τg,g′ over that portion should
be small. In this way, the absolute difference |μg (·) − μg′ (·) | is penalized more
over noninformative portions of the domain than over informative ones. Following the
standard practice for the adaptive penalties (Zou 2006), we propose to use

τg,g′ (t) = |μ̃g (t) − μ̃g′ (t) |−1 t ∈ T , (10)

where μ̃g are initial estimates of the cluster means.
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Finally, the term λs
∑G

g=1

∫
T

(
μ

(s)
g (t)

)2
dt is a smoothness penalty that penalizes

the sth derivative of the cluster means. This term aims to further improve the inter-
pretability of the results by constraining, with a magnitude quantified by λs , the cluster
means to own a certain degree of smoothness, measured by the derivative order s. Fol-
lowing the common practice in FDA (Ramsay and Silverman 2005), the natural choice
to penalize the cluster mean curvature is to set s = 2, which implies that the chosen
basis functions are differentiable at least s times. As a remark, the penalization in Eq.
(7) is applied only to the cluster mean coefficients μ1, . . . ,μG . The reason is that, as
previously stated in the introduction a portion of the domain is defined as informative
only in terms of cluster mean differences. However, portions of the domain could be
informative also in terms of differences in cluster covariances, which together with
the means uniquely identify each cluster.

2.3 The penalty approximation and the optimization algorithm

To perform the maximization of the penalized log-likelihood in Eq. (7), the penalty
P (·), defined as in Eq. (8), can be written as

P
(
μg

) = λL

∑

1≤g≤g′≤G

∫

T
|
(
μ̃T
g − μ̃g′

)T
� (t) |−1|

(
μT
g − μg′

)T
� (t) |dt

+λs

G∑

g=1

μT
g Wμg, (11)

where the weight functions τg,g′ (t) are expressed as in Eq. (10), and the initial esti-
mates of the cluster means are represented through the set of basis functions � as
μ̃g (t) = μ̃T

g′� (t), t ∈ T , with μ̃g = (
μ̃g1, . . . , μ̃gq

)T . The matrix W is equal to
∫
T �(s) (t)

(
�(s) (t)

)T
dt . A great simplification of the optimization problem can be

achieved if the first element on the right-hand side of Eq. (11) can be expressed as
a linear function of |μT

g − μg′ |. The following theorem provides a practical way to
rewrite the first term of the right-hand side of Eq. (11) as linear function of |μT

g −μg′ |,
when � is a set of B-splines (De Boor et al. 1978; Schumaker 2007).

Theorem 1 Let � = (
φ1, . . . , φq

)T
be the set of B-splines of order k and non-

decreasing knots sequences {x0, x1, . . . , xMj , xM+1} defined on the compact set

T = [
x0, xM+1

]
, with q = M + k, and {τ j }q+1

j=1 being a sequence with τ1 = x0, τ j =
τ j−1 + (

xmin(M+1, j) − xmax(0, j−1−k)
)
/k, τq+1 = xM+1. Then, for each function

f (t) = ∑q
i=1 ciφi (t), t ∈ T , where ci ∈ R, the function f̃ (t) = ∑q

i=1 ci I[τi ,τi+1] (t),

t ∈ T , where I[τi ,τi+1] (t) = 1 for t ∈ [
τi , τi+1

]
and zero elsewhere, is such that

sup
t∈T

| f (t) − f̃ (t) | = O(δ), (12)
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where δ = maxi |xi+1 − xi |, that is f (t) − f̃ (t) converges uniformly to the zero
function.

Theorem 1, whose proof is deferred to the supplementary information S1, basi-
cally states that when δ is small, f is well approximated by f̃ . In other words, the
approximation error | f − f̃ | can be made arbitrarily small by increasing the number
of knots. If we further assume the knots sequence is evenly spaced, δ turns out to be

equal to 1/M . These considerations allow us to approximate |
(
μT
g − μg′

)T
� (t) |

and |
(
μ̃T
g − μ̃g′

)T
� (t) |, respectively, as follows

| (μg − μg′
)T

� (t) | ≈ |μg − μg′ |T I (t) , ∀t ∈ T

| (μ̃g − μ̃g′
)T

� (t) | ≈ |μ̃g − μ̃g′ |T I (t) , ∀t ∈ T (13)

where I =
(
I[τ1,τ2], . . . , I[τq ,τq+1]

)T
. Thus, Eq. (11) can be rewritten as

P
(
μg

) = λL

∑

1≤g≤g′≤G

m̃T |μg − μg′ | + λs

G∑

g=1

μT
g Wμg, (14)

where m̃ =
(

τ2−τ1|μ̃g1−μ̃g′1| , . . . ,
τq+1−τq

|μ̃gq−μ̃g′q |
)T

.

The goodness of the approximations in Eq. (13) depends on the cardinality q of
the set of B-splines �, which should be as large as possible. However, the number of
parameters in Eq. (2), which depends quadratically on q, becomes very large even for
moderate values of q. This issue can be mitigated if one may further assume equal and
diagonal coefficient covariance matrices across all clusters, that is �1 = · · · = �G =
� = diag

(
σ 2
1 , . . . , σ 2

q

)
. This assumption implies that clusters are separated only by

their mean values, which is coherent with the general premise that the informative
portion of the domain is identified only by cluster mean differences.

The penalized log-likelihood function in Eq. (7) then becomes

L p (	|Y1, . . . ,Y N ) =
N∑

i=1

log
G∑

g=1

πgψ
(
Y i ; Siμg,�i

)

−λL

∑

1≤g≤g′≤G

m̃T |μg − μg′ | − λs

G∑

g=1

μT
g Wμg, (15)

with �i = Si�STi + Iσ 2
e . Note that, in Eq. (15), the FAPFP is approximated through

the sum of weighted linear combinations of the absolute values of the coefficient
differences between every pair of cluster means, which strictly resembles the multi-
variate LASSO penalty applied to the differences of the basis expansion coefficients,
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i.e. λL
∑

1≤g≤g′≤G |μg −μg′ |. However, the presence of m̃ in the FAPFP approxima-
tion is crucial because it allows the penalty to differently shrink coefficient differences
corresponding to B-splines with different support. That is, it avoids coefficient dif-
ferences, which correspond to B-splines strictly localized, are weighted as coefficient
differences of spreader basis in the computation of the approximated penalty. This
also means that the presence of m̃ allows the proposed approximation of the FAPFP to
achieve a lower error than the multivariate LASSO penalty applied to the coefficient
differences.

The maximization of this objective function is a nontrivial problem. A specif-
ically designed algorithm is proposed, which is a modification of the expectation
maximization (EM) algorithm proposed by James and Sugar (2003). By treating the
component-label vectors Zi (defined at the beginning of Sect. 2.1) and γ ig (see Eq.
(4)) as missing data, the complete penalized log-likelihood is given by

Lcp (	|Y1, . . . ,YN ) =
N∑

i=1

G∑

g=1

Zgi
[
logπg + logψ

(
γ ig, 0,�

)

+ logψ
(
Y i ; Si

(
μg + γ ig

)
, σ 2

e I
)]

−λL
∑

1≤g≤g′≤G

m̃T |μg − μg′ | + λs

G∑

g=1

μT
g Wμg .

(16)

At each iteration t = 0, 1, 2, . . . , the EMalgorithm consists of themaximization of the
expected value of Lcp, calculated with respect to the joint distribution of Zi and γ ig ,

given Y1, . . . ,Y N and the current parameter estimates 	̂
(t) = {π̂ (t)

g , μ̂(t)
g , �̂

(t) =
diag

(
σ̂
2(t)
1 , . . . , σ̂

2(t)
q

)
, σ̂

2(t)
e }g=1,...,G . The algorithm stops when a pre-specified

stopping condition is met. At each t , the expected value of Lcp, as a function of
the probability of membership π1, . . . , πG , is then maximized by setting

π̂ (t+1)
g = 1

N

N∑

i=1

π̂
(t+1)
g|i ,

with π̂
(t+1)
g|i = E

(
Zig = 1|Y i , 	̂

(t)
)

= π̂ (t)ψ
(
Y i ;Si μ̂(t)

g ,�̂
(t)
i

)

∑G
g′=1 π̂

(t)
g′ ψ

(
Y i ;Si μ̂(t)

g ,�̂
(t)
i

) . Then, Lcp is

maximized with respect to σ 2
1 , . . . , σ 2

q by

σ̂
2(t+1)
j = 1

N

N∑

i=1

G∑

g=1

π̂
(t+1)
g|i E

(
γ 2
ig( j)|Y i , Zgi = 1, 	̂

(t)
)

j = 1, . . . , q,

where γ 2
ig( j) indicates the j th entry of γ 2

ig . The value of E
(
γ 2
ig( j)|Y i , Zgi = 1, 	̂

(t)
)

can be calculated by using the property that the (conditional) distribution of γ ig ,
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given Y i , Zgi = 1, 	̂
(t)
, is Gaussian with mean �̂

(t)
STi

(
Si �̂

(t)
STi + I σ̂ 2(t)

)−1

(
Y i − Si μ̂

(t)
g

)
and covariance �̂

(t) − �̂
(t)
STi

(
Si �̂

(t)
STi + I σ̂ 2(t)

)−1
Si �̂

(t)
. Then,

σ 2
e is updated as

σ̂ 2(t+1)
e = 1

∑N
i=1 ni

N∑

i=1

G∑

g=1

[

π̂
(t+1)
g|i

(
Y i − Si μ̂

(t)
g − Si γ̂

(t)
ig

)T

(
Y i − Si μ̂

(t) − Si γ̂
(t)
ig

)
− Si Cov

(
γ ig|Y i , Zgi = 1, 	̂

(t)
)
STi ] ,

where γ̂
(t)
ig = E

(
γ ig|Y i , Zgi = 1, 	̂

(t)
)
.

Finally, the mean vectors μ1, . . . ,μG that maximize the conditional expectation of
Lcp are the solution of the following optimization problem

μ̂
(t+1)
1 , . . . , μ̂

(t+1)
G = argminμ1,...,μG

1

2

N∑

i=1

G∑

g=1

π̂
(t+1)
g|i

1

σ̂
(t)
e

(
Y i − Si

(
μg + γ̂

(t)
ig

))T

×
(
Y i − Si

(
μg + γ̂

(t)
ig

))

+λL

∑

1≤g≤g′≤G

m̃T |μg − μg′ | + λs

G∑

g=1

μTWμg. (17)

This optimization problem is, unfortunately, a difficult task because of the non dif-
ferentiability of the absolute value function in zero, and, it has not a closed form
solution. However, following the idea of Fan and Li (2001), it can be solved by means
of the standard local quadratic approximation method, i.e., by iteratively solving the
following quadratic optimization problem for s = 0, 1, 2, . . .

μ̂
(t+1,s+1)
1 , . . . , μ̂

(t+1,s+1)
G

= argminμ1,...,μG

1

2

N∑

i=1

G∑

g=1

π̂
(t+1)
g|i

1

σ̂
(t)
e

(
Y i − Si

(
μg + γ̂

(t)
ig

))T

×
(
Y i − Si

(
μg + γ̂

(t)
ig

))

+λL

∑

1≤g≤g′≤G

|μg − μg′ |T D(s)|μg − μg′ | + λs

G∑

g=1

μT
g Wμg, (18)

where D(s) is a diagonal matrix with diagonal entries τ2−τ1

2|μ̂(t+1,s)
g1 −μ̂

(t+1,s)
g′1 ||μ̃g1−μ̃g′1|

, . . . ,

τq+1−τq

2|μ̂(t+1,s)
gq −μ̂

(t+1,s)
g′q ||μ̃gq−μ̃g′q | , and μ̂

(t+1,0)
1 = μ̂

(t)
1 , . . . , μ̂

(t+1,0)
G = μ̂

(t)
G . Note that, Eq.
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(18) is based on the following approximation (Fan and Li 2001)

|μgi − μg′i | ≈ |μgi − μg′i |2
2|μ̂(t+1,s)

gq − μ̂
(t+1,s)
g′q |

+ 1

2
|μ̂(t+1,s)

gq − μ̂
(t+1,s)
g′q |. (19)

The solution to the original problem in Eq. (17) can be satisfactorily approximated
by the solution at iteration s∗ of the optimization problem in Eq. (18) when a pre-

specified stopping condition is met, i.e., μ̂(t+1)
1 = μ̂

(t+1,s∗)
1 , . . . , μ̂

(t+1)
G = μ̂

(t+1,s∗)
G .

For numerical stability, a reasonable suggestion is to set a lower bound on |μ̂(t+1,s)
gi −

μ̂
(t+1,s)
g′i |, and then to shrink to zero all the estimates below the lower bound. It is

worth noting that the proposed modification to the algorithm of James and Sugar
(2003) falls within the class of the ECM algorithms (Meng and Rubin 1993). Based
on the convergence property of the ECM algorithms, which also holds for the local
quadratic approximation in variable selection problems (Fan and Li 2001; Hunter and
Li 2005), the proposed algorithm can be proved to converge to a stationary point of
the penalized log-likelihood in Eq. (15).

2.4 Data driven parameter selection

The proposed SaS-Funclust method requires the choice of several hyper-parameters
viz., the number of clusters G, tuning parameters λs, λL , dimension q and order k
of the set of B-spline functions � as well as knot locations. A standard choice for �

is the cubic B-splines (i.e., k = 4) with equally spaced knot sequence, which enjoys
the optimal property of interpolation (De Boor et al. 1978). As stated in Sect. 2.3,
the dimension q should be set as large as possible to reduce, to the greatest possible
extent, the approximation error in Eq. (13). This facilitates the estimated cluster means
to successfully capture the local feature of the true cluster means. Unfortunately, the
larger the value of q, the higher the complexity of the model in Eq. (2), i.e., the number
of parameters to estimate. The presence of the smoothness penalty on μg , as well as
the constraint imposed on �g , allows one to control the complexity of the model and,
thus, to prevent over-fitting issues. The choice of G, λs , and λL may be based on a
K -fold cross-validation procedure. Based on observations divided into K equal-sized
disjoint subsets f1, . . . , fk, . . . , fK , hyper-parameters G, λs , and λL are chosen as
the maximizers of the following function

CV (G, λs, λL) = 1

K

K∑

k=1

∑

i∈ fk

log
G∑

g=1

π̂
− fk
g ψ

(
Y i ; Si μ̂− fk

g , �̂
− fk
i

)
, (20)

where π̂
− fk
g , μ̂

− fk
g and �̂

− fk
i denote, respectively, the SaS-Funclust estimates of

πg,μg and �i obtained by leaving out the observations of the k-th subset fk . Usu-
ally, the CV function is numerically maximized by means of the classic grid search
method (Hastie et al. 2009), that is, an exhaustive searching over a specified grid of
hyper-parameter values (Bergstra and Bengio 2012). As in the multivariate regression
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setting, the uncertainty of the CV function in estimating the log-likelihood observed
for an out-of-sample observation is taken into account by means of the so-called m-
standard deviation rule (Hastie et al. 2009). This heuristic rule suggests picking up
the most parsimonious model among those achieving values of the CV function that
are no more than m standard errors below the maximum of Eq. (20). Note that, in
this problem, parsimony is reflected in large λs, λL and small G. By elaborating on
the m-standard deviation rule, we propose to choose G for each value of λs, λL , with
m = m1; secondly, at fixed G, to choose λs for each λL , with m = m2; thirdly, to
choose λL at fixed λs and G, by using m = m3. In this way, the estimated model is
not unnecessarily complex and achieves predictive performance that is comparable to
that of the best model (i.e., the one that maximizes theCV function in Eq. (20)). In the
Monte Carlo simulation of Sect. 3 and the real-data examples of Sect. 4, the proposed
method is implemented with q = 30, K = 5, m1 = m3 = 0.5, and m2 = 0. The
values of m1 and m3 ensure parsimony in the choice of λL and G, even though the
m-standard deviation is not applied for picking λs . In the supplementary information
S3, the sensitivity of the SaS-Funclust performance to the choice of q,m1,m2, andm3
has been included. Results show that them-standard deviation rule is needed to obtain
interpretable clustering results and the dimension q may influence the clustering per-
formance as well as the SaS-Funclust ability to detect the informative portions of the
domain. As a remark, although the component-wise procedure proposed to choose
λs, λL and G proves itself to be very effective, we recommend whenever possible to
directly plot and inspect the CV curve as a function of G, λs , and λL and to use any
information available from the specific application.

The K -fold cross-validation procedure, althoughmay be regarded as a bottleneck of
the SaS-Funclust method, is an embarrassingly parallel procedure (Herlihy and Shavit
2011) as the hyper-parameter search can be easily separated into tasks that can be
executed concurrently. Embarrassingly parallel procedures are ideals to be performed
on a collection of computer servers (Mitrani 2013). Thus, the computational time
of the proposed method refers to the time to obtain the clustering results at fixed
hyper-parameter values, because the hyper-parameter search can be easily executed
in parallel. At the end of Sect. 3 the computational time of the SaS-Funclust method
is studied.

3 Simulation study

In this section, the performance of the SaS-Funclust method is compared with com-
peting methods that have already appeared in the literature before, by means of an
extensiveMonte Carlo simulation study. In particular, we refer to themethod proposed
by Giacofci et al. (2013) as curvclust, and to that proposed by Bouveyron and Jacques
(2011) as funHDDC. These methods are implemented through the homonymous R
packages curvclust (Giacofci et al. 2012) and funHDDC (Schmutz and Bouveyron
2019), whereas the SaS-Funclust method is implemented through the R package sas-
funclust. In addition, we consider competing methods also the so-called filtering
approaches, which are based on twomain steps. The first step consists of the estimation
of the functions gi , introduced also in Eq. (1), by means of either smoothing B-splines

123



Sparse and smooth functional data clustering 809

or functional principal component analysis (Ramsay and Silverman 2005). The second
step aims to apply standard clustering algorithms, viz. hierarchical, k-means and finite
mixture model clustering methods (Everitt et al. 2011) to either the resulting B-spline
coefficients or the functional principal components scores. Filtering approaches based
on the hierarchical, k-means and finite mixture model clustering methods applied
to smoothing B-splines coefficients will be hereinafter referred to as B-HC, B-KM
and B-FMM, respectively. Whereas, methods based on the hierarchical, k-means and
finite mixture model clustering methods applied to the functional principal component
decomposition are referred to as FPCA-HC, FPCA-KM and FPCA-FMM, respec-
tively. Finally, we evaluate also the method presented by Ieva et al. (2013), which
is referred to as DIS-KM and it basically consists of the application of the k-means
clustering to the L2 distances among the observed curves. Unfortunately, the method
of James and Sugar (2003) could not be implemented through the original code (http://
faculty.marshall.usc.edu/gareth-james/Research/fclust.txt) due to the high dimension-
ality of the considered simulated datasets. However, note that the proposed method
coincides with the method of James and Sugar (2003) when λs = λL = 0, which
is, thus, implemented in the simulation through the sasfunclust package and referred
to as Funclust. Although the SaS-Funclust and Funclust methods are expected to
perform similarly, the former should be able to provide much more interpretable clus-
tering partitions. The number of clusters is selected through the Bayesian information
criterion (BIC) for the curvclust and funHDDC methods, as suggested by Giacofci
et al. (2013) and Bouveyron and Jacques (2011), respectively; whereas the silhouette
index (Rousseeuw 1987) is used for the DIS-KM method. The majority rule applied
to several validity indices (Charrad et al. 2014) is used to determine the number of
clusters for all the filtering approaches. The number of clusters for the Funclustmethod
is obtained through the cross-validation based procedure described in Sect. 2.4. The
SaS-Funclust method is implemented as described in Sect. 2 where the initial values of
the parameters for the ECM algorithm are chosen by applying the k-means algorithm
on the coefficients estimated through smoothing B-splines.

The performance of the clustering procedures in selecting the proper number of
clusters and identifying the clustering structure, when the true number of clusters is
known, is assessed separately. In particular, the former ismeasured through the number
of selected clusters, whereas the latter is compared through the adjusted Rand index
(Hubert and Arabie 1985) denoted by aRand. This index accounts for the agreement
between true data partitions and clustering results corrected by chance, based on the
number of paired objects that are either in the same group or in different groups
in both partitions. The aRand yields values between 0 and 1. The larger the value,
the higher the similarity between the two corresponding partitions. Moreover, the
performance in recovering the true cluster means is measured through the average root

mean squared error, calculated as RMSE =
[
1
G

∑G
g=1

∫
T

(
μg (t) − μ̂g (t)

)2
dt

]1/2
,

where μ̂g are the estimated clustermeans.Whereas, the ability to detect the informative
portions of the domain is quantified through the average fractions of correctly identified
noninformative portions of the domain.

Three different scenarios are analysed with data generated from Gt = 2, 3, 4 clus-
ters and referred to as Scenario I, II and III, respectively. For each scenario, the
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Fig. 2 Average aRand index for a Scenario I, b Scenario II, and c Scenario III as a function of σe when
the true number of clusters is known

considered methods are evaluated by assessing the performance over 100 indepen-
dently simulated datasets where measurement errors are generated with five different
values of standard error σe = 1, 1.5, 2, 2.5, 3. In all scenarios, the portion of the
domain that is noninformative for all cluster pairs decreases, whereas the number of
portions of the domain that are informative for specific cluster pairs increases. Further
details about the data generation process and additional simulation results are provided
in the supplementary information S2 and S4.

Figure 2shows the average aRand index values for Scenario I, through III as a func-
tion of the standard error σe. In Scenario I, at small values of σe, all methods perform
comparably and provide clustering partitionswith aRand very close to 1, which corre-
sponds to the perfect cluster identification. As σe increases, the SaS-Funclust method
turns out to be the best method and is closely followed, as expected, by the Funclust
method, which, differently from the proposed method, does not penalize either the
smoothness or the pairwise differences between cluster means. The B-FMM performs
also very well, except for σe = 3.0. In Scenario II and III, the SaS-Funclust method
is still the best, followed by the Funclust, curvclust and B-FMM in Scenario II and
only by Funclust and curvclust methods in Scenario III. Note that in these scenarios,
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Fig. 3 Average number of selected clustersG for a Scenario I, b Scenario II, and c Scenario III as a function
of σe

the DIS-KM underperforms also in the most favourable cases as a consequence of the
lesser capacity of the L2 distance to recover the true clustering structure.

Figure 3shows the average number of selected clusters in all scenarios. It is clear
that the SaS-Funclust method is able to identify the true number of clustersmuch better
than the competitors in all considered scenarios. In particular, Scenario II highlights
that, especially for large measurement error σe, the competing methods reduce their
complexity and select, on average, a number of clusters smaller than the true number
of clusters Gt = 3. This is evident in Scenario III, where the competing methods
select, on average, a number of clusters G = 2 for σe = 2.5, 3.0, which is smaller
than Gt = 4.

Figure 4and Table 1highlight the ability of the SaS-Funclust method in recover-
ing the true cluster means and detecting the informative portions of the domain. The
RMSE is plotted in Fig. 4 for each method as a function of σe in all three scenarios.
By this figure, the SaS-Funclust method outperforms the competitors in each sce-
nario, especially for large measurement errors, even though the Funclust and curvclust
methods show comparable performance.
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Fig. 4 Average root mean squared error (RMSE) for a Scenario I, b Scenario II, and, c Scenario III as a
function of σe

Table 1 Average fractions of
correctly identified
noninformative portions of the
domain by the SaS-Funclust
method for each σe and scenario

Scenario I Scenario II Scenario III

σe 1.0 0.9956 0.9901 0.9782

1.5 0.9921 0.9844 0.9627

2.0 0.9846 0.9589 0.9389

2.5 0.9565 0.9373 0.8942

3.0 0.8821 0.8760 0.8024

Table 1 reports the average fractions of correctly identified noninformative portions
of the domain for the SaS-Funclust method. This feature is considered only for the pro-
posed method because all the competing non-sparse methods always achieve average
fractions of correctly identified noninformative portions of the domain that is equal
to zero. In more detail, each entry of the table is obtained as the mean of the average
fraction of correctly identified noninformative portions of the domain, over the 100
generated datasets, for each pair of clusters, weighted by the size of the corresponding
true noninformative portions of the domain. In Scenario I, it trivially coincides with
the average, because the true number of clusters is Gt = 2. The proposed method

123



Sparse and smooth functional data clustering 813

0
20

40
60

80
Ti

m
e 

[s
]

SaS−Funclust curvclust funHDDC B−KM FPCA−KM DIS−KM

Fig. 5 Computational times for 100 randomly generated datasets from Scenario I of the simulation study
with σe = 2.0 and 40 observations for each cluster

is clearly able to provide an interpretable clustering. The fraction of correctly identi-
fied noninformative portions of the domain is almost larger than or equal to 0.90 for
σe ≤ 2.5 and decreases to 0.80 for σe = 3.5. It is worth noting that when σe = 1.0, the
pairs of clusters in each scenario are correctly fused over almost all the noninformative
portion of the domain in terms of mean differences. This confirms what is shown in
Fig. 1 of Sect. 1.

Figure 5 shows computational times needed by a notebook equipped with an
Intel®Xenon®CPU E5-1650 v2 @3.50GHz to apply the proposed and competing
methods to 100 randomly generated datasets from Scenario I with σe = 2.0 and 40
observations for each cluster. For a fair comparison, computational time does not
include operations that can be easily computed in parallel. For instance, the SaS-
Funclust computational time is obtained by fixing hyperparameters λs and λt to their
optimal values. The Funclust method implemented as a special case of SaS-Funclust
is not reported as it roughly coincides with that of the SaS-Funclust method. The filter-
ing approaches B-HC, B-KM and B-FMM have comparable computational times as
well as FPCA-HC, FPCA-KM and FPCA-FMM. Therefore, we report in Fig. 5 results
achieved byB-KMand FPCA-KMalone as representative of the two respective groups
of filtering approaches, together with the DIS-KM approach.

The proposed method turns out to require larger computational time than the fil-
tering approaches, which are implemented through optimized R packages. However,
although the computational convenience, these underperform the proposed method
in terms of clustering results. Whereas, the SaS-Funclust algorithm is faster than the
curvclust, which already showed worse clustering performance. However, the present
implementation of the SaS-Funclust method, even showing adequate computational
performance in view of the nice properties imposed on the final solution, has not been
highly optimized and leaves room for computational improvement in future research.
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Fig. 6 a Growth velocities of 54 girls and 39 boys in the Berkeley growth study dataset; b estimated cluster
curve means and c curve clusters for the SaS-Funclust method in the Berkeley growth study dataset

4 Real-data examples

4.1 Berkeley growth study data

In this section, the SaS-Funclust method is applied to the growth dataset from the
Berkeley growth study (Tuddenham 1954), which is available in the R package fda
(Ramsay et al. 2020). In this study, the heights of 54 girls and 39 boys were measured
31 times at ages 1 through 18. The aimof the analysis is to cluster the growth curves and
compare the results with the partition based on gender differences. This problem has
been already addressed by Chiou and Li (2007), Jacques and Preda (2013), Floriello
and Vitelli (2017). In particular, we focus on the growth velocities from age 2 to 17,
whose discrete values are estimated through the central differences method applied
to the growth curves. Figure6 a shows the interpolating growth velocity curves for all
the individuals.

In view of the analysis objective, the clustering methods described in Sect. 3 are
applied by setting G = 2. As shown in the first row of Table 2, all clustering methods,
excluding the B-HC, perform similarly in terms of the aRand indexwith respect to the

123



Sparse and smooth functional data clustering 815

Ta
bl
e
2

T
he

va
lu
es

of
th
e
a
R
an

d
in
de
x
fo
r
al
l
th
e
cl
us
te
ri
ng

m
et
ho
ds

w
ith

re
sp
ec
t
to

ge
nd
er

di
ff
er
en
ce

gr
ou
pi
ng

an
d
th
e
Sa
S-
Fu

nc
lu
st
pa
rt
iti
on

fo
r
th
e
B
er
ke
le
y
gr
ow

th
st
ud
y
da
ta
se
t

Sa
S-
Fu

nc
lu
st

Fu
nc
lu
st

cu
rv
cl
us
t

fu
nH

D
D
C

B
-H

C
B
-K

M
B
-F
M
M

FP
C
A
-H

C
FP

C
A
-K

M
FP

C
A
-F
M
M

D
IS
-K

M

G
en
de
r
di
ff
er
en
ce

gr
ou

pi
ng

0.
58

0.
58

0.
51

0.
61

0.
20

0.
58

0.
58

0.
58

0.
58

0.
58

0.
58

Sa
S-
Fu

nc
lu
st

–
1.
00

0.
83

0.
96

0.
37

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

123



816 F. Centofanti et al.

gender difference partition. Moreover, by looking at the second row of Table 2, which
shows the aRand index with respect to the SaS-Funclust partition, the competing
methods provide partitions very similar to that provided by the SaS-Funclust method.

As expected, the SaS-Funclust method allows for a more interpretable analysis.
Figure6 shows (b) the estimated cluster means and (c) the clustered growth curves for
the SaS-Funclust method. The estimated cluster means are fused over the first portion
of the domain, whereas they are separated over the remaining portions. This implies
that the two identified clusters are not different on average over the first portion of
the domain which can be, thus, regarded as noninformative. The separation between
the two groups arises over the remaining informative portion of the domain, where
two sharp peaks of growth velocity arise, instead. The latter peaks are known in the
medical literature as pubertal spurts, in which respect the attained results indicate
two main timing/duration groups. In particular, the male pubertal spurt happens later
and lasts longer than the female one. Nevertheless, some individuals show unusual
growth patterns that are not captured by the cluster analysis.Additionally, the estimated
cluster means from the competing methods, not shown here, do not allow for a similar
straightforward interpretation.

4.2 Canadian weather data

TheCanadianweather dataset contains the dailymean temperature curves,measured in
Celsius degrees, recorded at 35 cities in Canada. The temperature profiles are obtained
by averaging over the years 1960 through 1994. This is a well-known benchmark
dataset available in theR package fda (Ramsay et al. 2020) that has been already studied
by Ramsay and Dalzell (1991), Ramsay and Silverman (2005), Sun et al. (2018),
Centofanti et al. (2022), Jadhav and Ma (2020). Figure7a displays the interpolating
profiles, where, for computational reasons, temperature curves are sampled every five
days.

The ultimate goal of the cluster analysis applied to these curves is the geographical
interpretation of the results. In particular, allmethods analysed in Sect. 3, are applied by
setting G = 4 in order to try to recover the grouping of 4 climate zones, viz., Atlantic,
Pacific, Continental, Arctic (Jacques and Preda 2013). The first row of Table 3shows
the aRand index of the resulting clusters calculated with respect to the 4-climate-zone
grouping.

Although the SaS-Funclust, Funclust and the B-HC methods achieve the largest
aRand in this case, note that aRand is inadequately low in all cases, which indicates
the clustering structure disagrees with such grouping. The second row of Table 3
reports the aRand index for all the competing methods calculated with respect to
the SaS-Funclust method. As expected, the proposed clustering agrees with filtering
methods based on B-splines and Funclust, while mostly disagreeing with the others.

In terms of interpretability, Fig. 7 shows (b) the estimated cluster means and (c) the
geographical distribution of the curves in the clusters obtained by the SaS-Funclust
method. From Fig. 7b, the estimated means for clusters 1, 2 and 4 are shown to fuse
approximately from day 100 through 250. This is strong evidence that the mean tem-
perature in this period of the year is not significantly different among zones in clusters
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Fig. 7 a Daily mean temperature profiles at 35 cities in Canada over the year in the Canadian weather
dataset; b estimated cluster curve mean and c geographical displacement of the curves pertaining to clusters
obtained through SaS-Funclust method

1, 2 and 4. Hence, this portion of the domain turns out to be noninformative for the
separation of these clusters, whereas the mean temperature is different for the rest of
the year. A different pattern is followed by the curves in cluster 3, which shows signif-
icantly smaller mean temperatures all over the year. The geographical displacement
of the temperature profiles, which are coloured by the clusters identified through the
SaS-Funclust method, is reported in Fig. 7c. Observations in clusters 1, 2 and 3 cor-
respond to Pacific, Atlantic and southern continental stations and show similar mean
temperature patterns only over the middle days of the year. Observations in cluster 3,
which correspond to northern stations, show lower mean temperatures. This nice and
plausible interpretation of this well-known real-data example is not possible by means
of any competing method.

4.3 ICOSAF project data

The ICOSAFproject dataset contains 538dynamic resistance curves (DRCs), collected
during resistance spot welding lab tests at Centro Ricerche Fiat in 2019. The DRCs
are collected over a regular grid of 238 points equally spaced by 1 ms. Further details
on this dataset can be found in Capezza et al. (2021) and the data are publicly available
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Fig. 8 a First derivatives of the 538 DRCs; b estimated cluster curve means and c curve clusters for the
SaS-Funclust method in the ICOSAF project dataset

online at https://github.com/unina-sfere/funclustRSW/. In this example, we focus on
the first derivative of the DRCs, estimated by means of the central differences method
applied to the DRC values sampled each 2 ms. Figure8 a shows the first derivative
of the DRCs defined, without loss of generality, on the domain [0, 1]. In this setting,
the aim of the analysis is to cluster DRCs and identify homogeneous groups of spot
welds that share common mechanical and metallurgical properties. Different from
the previous datasets, no information is available about a reasonable partition of the
DRCs. Therefore, based on the considerations provided by Capezza et al. (2021) as
well as on cluster number selection methods that are described for the SaS-Funclust
and competing methods in Sects. 2.4 and 3, respectively, we set G = 3. Table 4
shows the aRand index obtained for all method pairs with respect to the SaS-Funclust
partition.

In this case, the SaS-Funclust method provides partitions that are more similar
to those obtained through the FPCA-based methods than those obtained with the
B-splines filtering approaches. However, the clusters identified by the SaS-Funclust
method do not resemble those of the other methods, except for Funclust, as expected.
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For this dataset, even if results are not reported here, the partition obtained by curvclust
differs dramatically from the others and does not provide meaningful clusters.

In this case, also, the SaS-Funclust method allows for an insightful interpretation
of the results. The estimated cluster means and the corresponding clustered curves
obtained through the SaS-Funclust method, which are displayed in Fig. 8b and c,
confirm the ability of the proposed method to fuse cluster means, as it is very clear
over the second part of the domain.

In particular, themean of clusters 1 and 3 are fused from 0.5 to 1, which accounts for
the comparable decreasing rate of the DRCs over these clusters. Differently, the mean
of cluster 2 is fused with other cluster means between 0.8 and 1, only. This indicates
that, between 0.5 and 0.8, DRCs of cluster 3 decrease at a rate that is different from
that of DRCs of other clusters. Differences between cluster 2 and clusters 1 and 3 are
plainly visible also in the first part of the domain, where DRCs of cluster 2 show lower
average velocity. Note also that DRCs of cluster 2 reach their peaks (i.e., zeros of the
first derivative) earlier than those of clusters 3 and 1.

5 Conclusions and discussions

This article presented the SaS-Funclust method, a new approach to the sparse clus-
tering of functional data. Differently from methods that have already appeared in the
literature before, it was shown to be capable of successfully detecting where clus-
ter pairs are separated. In many applications, this involves limited portions of the
domain, which are referred to as informative, and thus, the proposed method allows
for more accurate and interpretable cluster analysis. The SaS-Funclust method can be
considered as belonging to the model-based clustering procedures with parameters of
a general functional Gaussian mixture model estimated by maximizing a penalized
version of the log-likelihood function. The key element is the functional adaptive pair-
wise fusion penalty that, by locally shrinking mean differences, allows pairs of cluster
means to be exactly equal over portions of the domain where cluster pairs are not well
separated, referred to as noninformative. In addition, a smoothness penalty is intro-
duced to further improve cluster interpretability. The penalized log-likelihood function
was maximized by means of a specifically designed expectation-conditional maxi-
mization algorithm, and parameter selection was addressed through a cross-validation
technique. An extensive Monte Carlo simulation study showed the favourable per-
formance of the proposed method over several competing methods both in terms of
clustering accuracy and interpretability. Lastly, the application to real-data examples
further demonstrated the practical advantages of the proposedmethod,which provided,
thanks to its sparseness property, new insightful and interpretable solutions to cluster
analysis. In the Berkeley growth study example, the SaS-Funclust method highlighted
that growth velocity curves of boys and girls show different pubertal spurt, which hap-
pens later and lasts longer for males than females. Whereas, in the Canadian weather
example, the mean temperatures over the Pacific, Atlantic and southern continental
regionswere found to be equal over themiddle days of the year and different otherwise.
Moreover, the proposed method was applied to the ICOSAF project dataset, where,
differently from the previous datasets, no information is available about a reasonable
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partition. In this case, the SaS-Funclust method identified homogeneous groups of
spot welds that showed differences in the rate of change of dynamic resistance curves
during the first part of the process only. Such differences are likely to be responsible
for distinct mechanical and metallurgical properties of the corresponding spot welds.

As closing remarks, we can envisage several important extensions to refine the
proposed method. Regarding the structure of the functional clustering model, the
assumption of a common diagonal coefficient covariance matrix across all clusters
may be too restrictive in some cases and result in a poor fit. However, more flexible
covariance structures dramatically increase the number of parameters to be estimated,
already enlarged to achieve sparseness in the SaS-Funclust method. For this reason,
the regularization framework shall necessarily be addressed to avoid overfitting, pos-
sibly either by constraining the covariance structure, as done in this article, or by
means of shrinkage estimators. Unfortunately, the choice of the best approach still
remains not straightforward. Furthermore, the covariance structure of the measure-
ment errors could be modified to include more complex relationships, and the model
can be extended also by including covariates (James and Sugar 2003).

When the assumption of equal covariance matrices across all clusters is too restric-
tive, portions of the domain could be informative also in terms of covariance functions,
and the SaS-Funclust method may be extended through the integration of proper pair-
wise penalties applied to the covariance functions. The proposed method is instead
based on the assumption that clusters are separated only by their mean values in accor-
dance with the multivariate clustering literature (Xie et al. 2008; Pan and Shen 2007;
Wang and Zhu 2008; Guo et al. 2010). Under this assumption, the SaS-Funclust is
specifically designed to detect the informative portion of the domain in terms of mean
differences. Indeed, the data are assumed to follow a Gaussian mixture distribution
(Eq. (5)) with equal and diagonal coefficient covariance matrices across all clusters.
However, to the best of the authors’ knowledge, the concept of an informative portion
of the domain in terms of covariance is completely new both in the functional and the
multivariate setting and thus deserves a separate and standalone investigation to over-
come methodological and computational difficulties. For instance, the assumption of
different coefficient covariance matrices across all clusters would unbearably increase
the number of parameters to be estimated as well as the number of hyper-parameters
to explore grows exponentially in the K -fold cross-validation procedure described in
Sect. 2.4.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-023-01408-1.
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