
Statistical Papers (2022) 63:225–242
https://doi.org/10.1007/s00362-021-01239-y

REGULAR ART ICLE

Testing for equality of distributions using the concept
of (niche) overlap

Judith H. Parkinson-Schwarz1 · Arne C. Bathke1

Received: 27 January 2020 / Revised: 7 May 2021 / Accepted: 11 May 2021 / Published online: 26 May 2021
© The Author(s) 2021

Abstract
In this paper, we propose a new non-parametric test for equality of distributions.
The test is based on the recently introduced measure of (niche) overlap and its rank-
based estimator. As the estimator makes only one basic assumption on the underlying
distribution, namely continuity, the test is universal applicable in contrast tomany tests
that are restricted to only specific scenarios. By construction, the new test is capable
of detecting differences in location and scale. It thus complements the large class
of rank-based tests that are constructed based on the non-parametric relative effect.
In simulations this new test procedure obtained higher power and lower type I error
compared to two common tests in several settings. The new procedure shows overall
good performance. Together with its simplicity, this test can be used broadly.

Keywords Equality test · Non-parametric · Overlap · Rank statistic · Relative effect

Mathematics Subject Classification 62G10 · 62G05

1 Introduction

Analyzing data sets appropriately is of immense importance in any discipline. Not only
are the numerical characteristics of the individual data sets of interest, but often their
distribution in comparison to other data sets. In production one would like to know
which process is more efficient or which product has higher quality, or in ecology one
is interested in the overlap of the survival space of two species, just to name some
examples.
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226 J. H. Parkinson-Schwarz, A. C. Bathke

For univariate data many tests have been proposed for the comparison of distribu-
tions prominently including those by Kolmogorov (1933) and Smirnov (1939), and
the Cramér–von Mises test. The two-sample rank sum test due to Wilcoxon (1945)
and Mann and Whitney (1947) assesses whether observations of one distribution tend
to larger values than those from the other. The elementary concepts of these tests are
likely key to their success, as even without a strong mathematical background it is
possible to grasp the main concept behind the statistics. Of course, these classical
tests also have their shortcomings which has sparked plenty of adaptations in order
to enhance their performance. However, the adaptations have often complicated the
tests too much to get well established themselves, or they are only useful in rather
special situations. Consider, for example Khamis (1990), Drezner et al. (2010), or
Baringhaus and Kolbe (2015). Other tests only focus on location or scale differences,
see for example Marozzi (2012). More recent tests for equality of distributions like
for example Ping (2000), Bera et al. (2013), andWan et al. (2018) have been proposed
but haven’t been able to establish themselves.

In clinical studies resources of participants or patients are often limited, due to
ethical reasons, limited budget, or other reasons, leading to small sample sizes. With
only a small sample it regularly is difficult to assess whether all model assumptions
of a test are met and the results are reliable. It is thus of interest to have tests available
with as little requirements as possible and yet good performances, i.e. reliable results.
Likewise, plenty of literature show that non-parametric or quantile-based methods are
generally appealing for new test methods, compare for example Al-Mutairi and Stat
Papers (2017), Hassler (2018), Soni et al. (2019), Zamanzade (2019), or Jokiel-Rokita
and Topolnicki (2019).

In this paper, we propose a new and easily motivated non-parametric test with com-
petitive performance and straightforward interpretation. Based on the non-parametric
relative effect, a quantity that has received renewed attention lately, due to its favorable
properties, see Brunner et al. (2018) or Dastbaravarde and Zamanzade (2017), the test
concentrates on an easy interpretation. Using the approach of Parkinson et al. (2018),
we propose a fully non-parametric testing method that can easily be performed using
ranks. The original intent of the cited paper was tomeasure overlap of two distributions
representing ecological niches. The overlap can be considered a measure of similarity
between two species. As those results are not only applicable to the quantification of
niches but to any arbitrary data set, this measure of overlap is an adequate basis for a
test statistic for testing whether two data sets are drawn from the same distribution or
not. Instead of considering only a certain location parameter, such as mean or median,
the niche overlap measure takes the full distributions into consideration. This results
in a test for equality of distributions which is based on the full set of quantiles.

In Sect. 2we present the necessary results of Parkinson et al. (2018) and describe the
test procedure. Intensive simulations on the performance of the new testing method,
also in comparison to other tests, are presented in Sect. 3 followed by a short conclusion
and discussion in Sect. 4.
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Testing for equality of distributions 227

2 Mathematical background and theoretical results

In the following we propose a test for equality of distributions based on the niche
overlap value as defined and estimated by Parkinson et al. (2018). The notation in this
paper is identical to theirs. We will first state the relevant results of that paper before
introducing the new testing method.

Consider two groups of observations X1, . . . , Xn and Y1, . . . ,Ym . We will assume
that X1, . . . , Xn are independent, identically distributed samples drawn from a contin-
uous distribution function F , whileY1, . . . ,Ym are independent, identically distributed
samples drawn from a continuous distribution function G. The empirical estimators
of F and G are denoted by F̂n and Ĝm , respectively.

In order to quantify how F is “contained” within G the statistical functional

I2 = 2
[ ∫ ∞

F−1(1/2)
G(t)dF(t) −

∫ F−1(1/2)

−∞
G(t)dF(t)

]
,

was considered, as well as I1, with the roles of F and G switched.
To explain how I1 and I2 quantify the inclusion of F in G and vice versa, consider

four random variables X (1), X (2), Y (1), and Y (2) which can be constructed from X and
Y . Denote the distribution of F below its median as F1 and above its median as F2,
such that

F1(t) =
{
2F(t), t < F−1(1/2),
1, t ≥ F−1(1/2),

F2(t) =
{
0, t < F−1(1/2),
2F(t) − 1, t ≥ F−1(1/2).

(1)

Thenone can construct the randomvariables X (1) ∼ F1 and X (2) ∼ F2 by conditioning
on X ≤ F−1(0.5) and X ≥ F−1(0.5), respectively, and similar for Y (1) and Y (2). Now
I2 = P(X (1) ≤ Y ≤ X (2)) and I1 = P(Y (1) ≤ X ≤ Y (2)) holds for proof we refer to
Parkinson et al. (2018).

The following important properties hold for I1 and I2.As I1 and I2 canbe interpreted
as probabilities it holds that I1 + I2 ∈ [0, 1] for F and G absolutely continuous. If G
is continuous and F = G then I1 = I2 = 1/2. Additionally, I1 and I2 are invariant
under strictly monotone, continuous transformations, where the same transformation
φ is being applied to both F and G. For further properties and the proofs of the stated
properties please consult Lemma 2.2 of Parkinson et al. (2018).

Lemma 1 (Lemma 2.19, Parkinson et al. 2018)Let F andG be continuous distribution
functions and F−1(1/2) = G−1(1/2) then I1 + I2 = 1.

In order to construct an estimator for I2, all observations of both groups shall be
ranked. Without loss of generality we will assume that X1 < X2 < · · · < Xn (to
simplify notation). All the X -observations below their median are X1, . . . , XK where
K is the largest integer with K ≤ (n + 1)/2. Their ranks within both groups will be
denoted by RX<

1 , . . . , RX<
K , the remaining ranks by RX>

K+1, . . . , R
X>
n . In case of ties
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228 J. H. Parkinson-Schwarz, A. C. Bathke

we will use midranks. Further define

RX<· =
K∑
i=1

RX<
i and RX>· =

n∑
i=K+1

RX>
i .

Lemma 2 (Lemma 2.11, Parkinson et al. 2018) For RX>· and RX<· defined as above,
a consistent estimator for I2 is given by

Î2 = 2

mn
(RX>· − RX<· ) + 1

2
c,

with c = −n/m for n even and c ≈ −n/m for n odd, and n and m large. A similar
consistent estimator for I1 can be provided.

Theorem 1 Let F and G be continuous distribution functions with F−1(1/2) =
G−1(1/2). Then the estimators of I1 and I2 as given in Lemma 2 are biased. More
precisely, E[ Î1 + Î2] < 1.

Proof As stated in Lemma 1 I1 + I2 = 1 if F−1(1/2) = G−1(1/2). To show that the
estimators are biasedwewill show that the expectation of the sumof the two estimators
is systematically below one, thus implying that at least one of the two estimators must
be biased. From the fact that I1 and I2 are symmetric it should be self-evident that the
bias arises from the combination of the two estimators.

Without loss of generality, assume X1 < X2 < · · · < Xn and Y1 < Y2 < · · · < Ym
with K and L denoting the indices of the respective medians of the X and the Y
samples. Due to the fact that the underlying distributions are continuous we do not
consider the case of ties between the observations as the probability for this is zero.

We will consider the expression of the estimators through indicator functions, i.e.

Î1 + Î2 = 2

mn

[( m∑
j=L+1

n∑
i=1

1{Xi < Y j } −
L∑
j=1

n∑
i=1

1{Xi < Y j }
)

×
( n∑

i=K+1

m∑
j=1

1{Y j < Xi } −
K∑
i=1

m∑
j=1

1{Y j < Xi }
)]

.

Rearranging the expression we obtain

2

mn

[ K∑
i=1

m∑
j=L+1

(1{Xi < Y j } − 1{Y j < Xi }) +
n∑

i=K+1

L∑
j=1

(1{Y j < Xi } − 1{Xi < Y j })

K∑
i=1

L∑
j=1

(−1{Y j < Xi } − 1{Xi < Y j }) +
n∑

i=K+1

m∑
j=L+1

(1{Xi < Y j } + 1{Y j < Xi })
]

.

Now we will consider the two lines separately, ignoring the factor 2/mn for the time
being.
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Testing for equality of distributions 229

In the second line the indicators are complimentary, respectively, as −1{Y j <

Xi } − 1{Xi < Y j } = −1 and 1{Xi < Y j } + 1{Y j < Xi } = 1. This means that the
second line can be reduced to

K · L · (−1) + (n − (K + 1))(m − (L + 1)) · 1 (2)

As for the first line, we will immediately consider its expectation. Rearranged we
obtain

K∑
i=1

m∑
j=L+1

(2E[1{Xi < Y j }] − 1) +
n∑

i=K+1

L∑
j=1

(1 − 2E[1{Xi < Y j }]). (3)

As we are showing that the expectation of the sum of the estimators remains system-
atically below 1, we will simply show that even if (3) is maximized it is smaller than
1. The indicator function can only take the values 0 and 1 such that the expectation of
it lies in the interval [0, 1]. Now (3) will be maximized if the first expectation takes
the value 1 and the second expectation takes value 0. Then the maximization of (3) is
given through

K · (m − (L + 1)) + (n − (K + 1)) · L . (4)

Taking (2) and (4) we obtain

E[ Î1 + Î2] ≤ 2

mn

[
K · (m − L − 1) + L · (n − K − 1) − K L + (n − K − 1)(m − L − 1)

]

= 2

mn

[
mn − 2LK − m − n − 1

]
.

To further simplify that term, we will assume that m and n are even such that m = 2L
and n = 2K . Then we have

E[ Î1 + Î2] ≤ 2

2L2K

[
2L2K − 2LK − 2L − 2K + 1

]

= 1

2LK

[
2LK − (2L + 2K − 1)

]

= 1 − 2L + 2K − 1

2LK
< 1,

as the term (2L + 2K − 1)/2LK is positive for all L, K ∈ N.
Similar, it can be shown that E[ Î1 + Î2] is truly smaller than 1, if n, m, or both

are uneven. Thus we can conclude that Î1 + Î2 is a biased estimator for I1 + I2 if
F−1(1/2) = G−1(1/2). �	
Remark 1 The bias of Î1 + Î2 depends on the two probabilities P(XK < YL+1) and
P(YL < XK+1). The larger those two are the smaller the bias will be.

Lemma 3 Under certain criteria that are specified in detail in Parkinson et al. (2018),

(n + m)1/2
(
Î2 − I2

)
converges to a normal distribution with expectation zero.
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230 J. H. Parkinson-Schwarz, A. C. Bathke

Based on the above Lemmas, I2 can be consistently estimated, and asymptotic infer-
ence for I2 will be possible based on the rank statistics, provided the variance of

(n + m)1/2
(
Î2 − I2

)
can also be consistently estimated. For a special case, we can

provide a consistent rank-based variance estimator
In the following assume G−1(0.5) = F−1(0.5) holds, that is, the distributions F

and G are assumed to have the same median. In this case, I2 can be expressed through
four random variables that can be constructed from X and Y . This result, along with an
approach introduced by Konietschke (2009), provides the following way to construct
a variance estimator.

Analogously to the X -sample earlier, without loss of generality, assume that Y1 <

Y2 < · · · < Ym and divide them into two groups at the index L , with L the largest
integer for which L ≤ (m + 1)/2. Additionally, without loss of generality, split the
sample of X at the index K such that X1, . . . , XK are below and XK+1, . . . , Xn are
above the median. We then compare the samples of X and Y which are below their
respective medians with each other. We denote their ranks in the combined group by
RX(<)
i and RY (<)

i for X1, . . . , XK and Y1, . . . ,YL and their averages by R̄X(<)· and

R̄Y (<)· . Similarly define R̄X(>)· and R̄Y (>)· for those that are above their respective
medians. Finally, the observations are (additionally) ranked only within each of these
four groups and these within-group ranks are denoted by R(X<)

i , R(Y<)
i , R(X>)

i , and

R(Y>)
i , respectively.

Lemma 4 (Lemma 2.20, Parkinson et al. 2018)Let F andG be continuous distribution
functions. Assume G−1(1/2) = F−1(1/2) holds true. Further, define

s2X1 = 1

L2(K − 1)

K∑
i=1

(
RX(<)
i − R(X<)

i − R̄X(<)· + K + 1

2

)2
,

s2X2 = 1

(m − L)2(n − K − 1)

n∑
j=K+1

(
RX(>)
j − R(X>)

j − R̄X(>)· + n − K + 1

2

)2
,

and s2Y1 and s2Y2 analogously. A consistent variance estimator for Î2 is

s22 = L + K

2

( s2X1
K

+ s2Y1
L

) + n + m − L − K

2

( s2X2
n − K

+ s2Y2
m − L

)
.

Here, consistency is to be understood as Var( Î2)/s22 → 1 in probability.

This is the same variance estimator as for Î1.

Theorem 2 Let I1 and I2 be defined as before, and Î1 and Î2 denote the rank estimators
as introduced above. Further let s22 be the variance estimator as given in Lemma 4.
Consider the null hypothesis H0 : F ≡ G versus H1 : F �= G and the test statistics
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Testing for equality of distributions 231

NOi , i = 1, 2, defined by

NOi := √
n + m

(
Îi − 0.5

s2

)
.

Under the null hypothesis NOi , i = 1, 2 is asymptotically distributed according to a
standard normal distribution.

Remark 2 Instead of the standard normal distribution, one may also approximately
use a t-distribution with n + m − 1 degrees of freedom. Simulations showed that,
especially for small sample sizes, the t-distribution provided a better approximation
to the sampling distribution of NOi .

Using the results of Theorem 2 we can design a test for equal distributions.

Theorem 3 Consider the null hypothesis H0 : F ≡ G versus the alternative H1 : F �=
G. Under the null hypothesis it holds that NOi , i = 1, 2, is asymptotically distributed
according to a standard normal procedure. Denote with p1 and p2 the, through the
Bonferroni–Holm procedure, adjusted p-values of the test statistics NO1 and NO2,
respectively. Then H0 is to be rejected if p1 < α or p2 < α.

Remark 3 Due to the way the variance estimator is constructed, it is possible that it
can be zero. This can occur if the assumption of equal medians is so strongly violated
in the data set that the true proportions of observations of Y1 below the median of X
and of X2 above the median of Y or vice versa are (close to) zero. In these situations
it intuitively appears justified to reject the null hypothesis.

In such cases only an upper p-value can be provided. Following the idea as given
in Chapter 3.5.3 of Brunner et al. (2018), the data sets are shifted until the variance
estimator is truly greater than zero. The resulting p-value of the test statistic based on
the shifted data is an upper limit of the true p-value.

Remark 4 As shown earlier we have a bias for Î1 and Î2 under the null hypothesis
and all alternatives where the underlying distribution functions have equal medians.
To minimize this bias we propose a modification to the existing procedure. When
calculating Î2 we will add an extra observation to the data set Y , namely the median
of the X -observations. And vice versa for I1. With this modification it is possible to
obtain I1 + I2 > 1 which reduces the bias of the estimators.

3 Simulation

3.1 General settings

In order to investigate the small sample properties of the test statistics concerning Type
I and Type II error, we have performed simulation studies in R (R version 3.2.3, R Core
Team, 2017). Additionally, simulations to check the correctness and robustness of the
new test procedure were run. As to put the error rates into context, the Kolmogorov–
Smirnov test and theWilcoxon-rank-sum test were also calculated using the same data.
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232 J. H. Parkinson-Schwarz, A. C. Bathke

Fig. 1 Q–Q plot of the empirical quantiles of NO1 (x-axis) versus the theoretical tn+m−1 percentiles (y-
axis) for different sample sizes corresponding to the theoretical result in Theorem 2. The (red) line is the
bisecting line. (Color figure online)

All simulations for our testing method used the adaptation as proposed in Remark 4.
Further simulationswithout the adaptation, which are omitted here , showed an inflated
Type I error for small sample sizes.

3.2 Empirical confirmation of Theorem 2

In this part we will confirm the limiting distribution as given in Theorem 2. Consider
data distributed with F = G = exp(0.5). The sample sizes in all 4 settings are equal
and given by 20, 35, 50, 100. For each setting we ran 1000 simulations.

The Q–Q plots of the empirical quantiles of the test statistic NO1 versus the t-
distribution percentiles can be seen in Fig. 1. For all sample sizes the middle quantiles
are adequate but bigger differences can be noticed for the outer quantiles. For higher
sample sizes the empirical distribution agrees very well with the theoretically justified
t-distribution. The corresponding Q–Q plots for NO2 can be found in the supplemen-
tary material and show similar results.

3.3 Visual power analysis

For the second set of simulations we analyses the power of the three tests, keeping one
distribution fixed and varying the parameters of the second distribution. The sample
sizes were n = m = 50 in all settings. The results were then visualized for a first
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Fig. 2 Plot of the power using the (niche) overlap testwith respect to the expectation (x-axis) and variance (y-
axis). Lighter colors indicate low power, darker colors high power. The red lines indicate the true expectation
and variance of X , while expectation and variance for Y varies. (Color figure online)

interpretation of the strengths of the individual tests. For all settings we ran 1000
simulations.

3.3.1 Setting 1

In the first setting the X -observationswere drawn froma normal distributionwithmean
0 and variance 1. Several Y -observations were drawn also from a normal distribution
but with different parameters ranging from −1 to 1 for the mean and 0.25 to 2.5 for
the variance. The power for each combination was visualized in Fig. 2 for the new test,
in Fig. 3 for the Kolmogorov–Smirnov test, and in Fig. 4 for the Wilcoxon-rank-sum
test.

Comparing the three plots one can quite easily see somekey-differences between the
tests. While the newly proposed test had lower power for detecting small differences
in the mean of the two distributions, it had the highest power out of the three for
detecting small differences in the variances. The Kolmogorov–Smirnov test showed
almost opposite behavior, uncovering small differences in the mean but not in the
variance. Due to its reliance on the non-parametric relative effect the Wilcoxon-rank-
sum test is only capable of detecting location differences in a location-scale model.

3.3.2 Setting 2

In the second setting the X -observations were drawn from a beta distribution with
parameters a = 2 and b = 3. Several Y -observations were drawn from beta distribu-
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234 J. H. Parkinson-Schwarz, A. C. Bathke

Fig. 3 Plot of the power using the Kolmogorov–Smirnov test with respect to the expectation (x-axis) and
variance (y-axis). Lighter colors indicate low power, darker colors high power. The (red) lines indicate the
true expectation and variance of X , while expectation and variance for Y varies. (Color figure online)

Fig. 4 Plot of the power using the Wilcoxon-rank-sum test with respect to the expectation (x-axis) and
variance (y-axis). Lighter colors indicate low power, darker colors high power. The (red) lines indicate the
true expectation and variance of X , while expectation and variance for Y varies. (Color figure online)
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Testing for equality of distributions 235

Fig. 5 Plot of the power using the (niche) overlap test with respect to the parameters of the beta-distribution
a on the x-axis and b on the y-axis. Lighter colors indicate low power, darker colors high power. The (red)
line indicates the combinations of a and b for which the expectation is the same as for X . (Color figure
online)

tions with parameters ranging from 0.5 to 4 for a and 0.5 to 5.5 for b. The power for
each combination was visualized in Fig. 5 for our test, in Fig. 6 for the Kolmogorov–
Smirnov test, and in Fig. 7 for the Wilcoxon-rank-sum test.

In this settings both parameters take influence on the expectation and the variance.
Along the red line all three tests only obtained a low power. TheKolmogorov–Smirnov
test quickly increased the power when moving away from the scenario of equal expec-
tations, see Fig. 6. Similar behavior could be observed when looking at the power plot
of the Wilcoxon-rank-sum test, Fig. 7. Looking at Fig. 5 one notices bigger differ-
ences. Moving along the red line, and away from the true parameters, i.e. the scenario
of equal expectations but differing variances, the newly introduced test increased its
power faster than the other two tests. However moving away from the red line, the
power increased more slowly.

3.4 Error analysis based on sample size

In this part we calculated the Type I and Type II error for several different combinations
of F and G and for different sample sizes. For all settings we ran 1000 simulations.

3.4.1 Type I error

In the following the observations were drawn from the same distribution F = G.
We considered the distributions F1 = N (0, 1), F2 = Exp(1/2), F3 = B(2, 3),
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236 J. H. Parkinson-Schwarz, A. C. Bathke

Fig. 6 Plot of the power using the Kolmogorov–Smirnov test with respect to the parameters of the beta-
distribution a on the x-axis and b on the y-axis. Lighter colors indicate low power, darker colors high power.
The (red) line indicates the combinations of a and b for which the expectation is the same as for X . (Color
figure online)

Fig. 7 Plot of the power using the Wilcoxon-rank-sum test with respect to the parameters of the beta-
distribution a on the x-axis and b on the y-axis. Lighter colors indicate low power, darker colors high
power. The (red) line indicates the combinations of a and b for which the expectation is the same as for X .
(Color figure online)
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Table 1 Type I error for several
different distributions according
to sample size for the (niche)
overlap test (NO), the
Kolmogorov–Smirnov test (KS),
and the Wilcoxon-rank-sum test
(WR)

10 20 30 40 50 60 70 80 90 100

NO F1 5.5 3.0 3.1 2.8 3.2 3.4 2.9 3.0 3.4 3.4

NO F2 5.6 4.1 3.3 3.4 3.1 3.9 2.8 2.8 4.6 3.3

NO F3 5.4 5.1 4.0 3.9 3.1 3.8 3.9 3.4 3.4 3.4

NO F4 5.0 5.0 3.1 3.2 4.4 4.3 3.1 4.3 4.9 3.9

NO F5 4.6 2.8 4.1 3.5 4.0 4.0 3.7 3.9 3.2 3.7

NO F6 4.5 4.5 3.5 2.8 3.3 3.7 3.2 3.3 2.1 3.1

KS F1 1.2 3.0 4.0 3.6 4.1 5.3 2.6 4.0 3.1 4.2

KS F2 1.2 4.0 4.1 2.7 3.9 4.6 2.8 3.3 3.9 3.6

KS F3 1.1 3.4 3.8 3.8 4.1 4.2 3.3 3.7 4.4 4.0

KS F4 1.6 3.4 3.7 2.9 3.8 3.9 2.6 4.0 3.2 3.1

KS F5 0.7 3.1 2.4 2.5 3.4 6.0 3.3 3.6 3.7 3.3

KS F6 0.8 3.5 3.0 2.7 5.2 5.7 3.5 3.1 3.5 4.0

WR F1 4.8 4.6 6.6 5.6 4.8 5.7 3.9 5.6 4.3 5.2

WR F2 5.1 5.8 5.5 4.4 5.3 4.9 4.7 4.5 5.4 5.3

WR F3 3.9 5.7 5.3 5.8 5.9 3.9 5.4 4.7 6.3 5.0

WR F4 4.6 5.2 5.9 5.2 5.5 4.6 4.7 5.4 5.1 5.6

WR F5 3.9 4.9 3.4 5.1 4.1 4.8 5.5 4.2 4.2 4.6

WR F6 2.9 4.9 4.0 4.5 4.8 5.5 5.0 4.3 4.5 4.7

F4 = U (0, 1), F5 = X 2
1 , and F6 = t10 for sample sizes ranging from 10 to 100 in

steps of 10. The sample sizes were equal in all settings.
As one can see in Table 1 the new test obtained the nominal level of α = 0.05 in

all settings for very small sample sizes (n = m = 10, n = m = 20), whereas for
higher sample sizes, it was a little bit conservative. The Kolmogorov–Smirnov test
was too conservative for small sample sizes. For moderate to higher sample sizes, the
Kolmogorov–Smirnov test was closer to the nominal level but remained conservative.
In the settings considered, the Wilcoxon-rank-sum test maintained the nominal level
well for all sample sizes.

3.4.2 Type II error

The combination of distributions we analyzed can be found in Table 2. Again we
considered sample sizes ranging from 10 to 100 in steps of 10. The sample sizes were
equal in all settings.

The simulation settings were chosen in a manner that the differences were hard to
detect, using combinations of distributions with equal expectation, variance or both.
This led to high Type II errors, especially for small sample sizes, but showed the
differences between the tests more accurately. For bigger differences between the
two distributions, all tests obtained low Type II errors and thus those simulations are
omitted in this paper. The results of the simulations can be found in Table 3.

Looking first at settings A, B, and C, where both groups had the same expectation
we notice already great differences between the performances. In all three scenarios,
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238 J. H. Parkinson-Schwarz, A. C. Bathke

Table 2 Different combinations of F and G as used to estimate the Type II error

Alternative F G

A N (0, 1) N (0, 1.5) Same expectation

B N (0.5, 1) U (0, 1) Same expectation

C N (0.4, 1) B(2, 3) Same expectation

D N (0, 1) N (0.5, 1) Same variance

E N (2, 1) Exp(1) Same variance

F N (1, 1) Exp(1) Same expectation and variance

G N (1, 2) X 2
1 Same expectation

and variance

Table 3 Type II error for several different distributions according to sample size for the (niche) overlap test
(NO), the Kolmogorov–Smirnov test (KS), and the Wilcoxon-rank-sum test (WR)

10 20 30 40 50 60 70 80 90 100

NO A 90.1 81.5 69.4 57.2 47.0 42.4 33.4 26.3 23.3 16.7

NO B 49.1 8.8 1.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0

NO C 22.6 1.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NO D 87.4 86.4 82.5 80.2 77.6 76.2 72.6 73.2 69.1 64.7

NO E 49.4 22.3 9.7 4.4 2.4 0.3 0.3 0.1 0.0 0.0

NO F 93.1 89.9 88.3 87.2 84.8 80.1 80.7 75.9 72.0 69.6

NO G 73.6 49.3 31.4 19.7 11.4 5.1 2.7 2.1 0.7 0.5

KS A 98.2 94.7 92.2 91.2 89.1 83.3 86.8 84.3 81.4 76.8

KS B 93.0 62.4 29.3 11.3 1.6 0.1 0.0 0.0 0.0 0.0

KS C 88.4 38.4 8.8 1.5 0.0 0.0 0.0 0.0 0.0 0.0

KS D 93.6 80.7 70.6 61.9 47.7 37.2 36.0 27.9 20.2 15.9

KS E 60.2 10.1 2.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0

KS F 97.7 90.9 86.4 86.2 79.9 67.6 74.1 60.5 51.3 48.4

KS G 94.6 73.5 49.0 33.1 10.9 2.3 1.5 0.3 0.1 0.0

WR A 95.6 94.4 94.7 94.4 95.8 94.7 95.1 96.3 95.9 95.8

WR B 92.6 93.4 92.7 92.8 93.2 92.9 92.0 92.8 93.6 91.2

WR C 92.3 92.0 91.9 90.8 91.7 92.0 91.1 92.1 93.7 91.0

WR D 83.4 70.1 52.7 43.5 33.4 25.7 17.4 13.3 8.8 7.1

WR E 37.7 7.7 1.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0

WR F 95.0 92.1 91.4 91.1 90.4 88.1 89.6 86.4 84.3 84.3

WR G 92.2 92.7 91.5 91.9 92.1 93.1 91.8 90.1 89.1 90.2

as expected, the Wilcoxon-rank-sum test fails completely, even for sample sizes of
n = m = 100. The other two methods both were struggling with setting A where the
distributions came from the same family, but improved with increased sample sizes.
In the settings B and C both picked up the differences quite well, with low Type II
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Table 4 Influence of outliers on the Type I error for sample size n = m = 50 for the (niche) overlap test
(NO), the Kolmogorov–Smirnov test (KS), and the Wilcoxon-rank-sum test (WR)

0 1 2 3 4 5 6 7 8 9 10 15

NO 4.2 3.8 5.3 4.2 6.9 6.6 9.7 11.9 14.7 17.8 20.6 40.2

KS 4.8 5.9 5.1 4.7 5.9 6.8 5.0 4.9 6.3 6.9 6.9 7.9

WR 6.7 5.4 5.0 5.0 5.6 6.3 5.0 4.5 4.7 5.8 5.8 4.8

error for sample sizes of n = m = 40 and higher. In all three settings, the new (niche)
overlap test however outperformed the Kolmogorov–Smirnov test.

In settings D and E the expectation differed but the variance was the same. Here
the Wilcoxon-rank-sum test and the Kolmogorov–Smirnov test outperformed the new
test. Even though the (niche) overlap test was able to pick up the differences, the
required sample sizes, especially for situation D, were higher. In general, scenario D
was difficult for all the tests, however the Wilcoxon-rank-sum test kept the Type II
error at a reasonable level for sample sizes of n = m = 50 and higher. In setting E
the Wilcoxon-rank-sum test performed slightly better than the Kolmogorov–Smirnov
test.

Settings F and G correspond to scenarios where both, expectation and variance,
were equal, which makes a detection of differences between the group rather hard.
Again the Wilcoxon-rank-sum test failed to detect the differences, even for sample
sizes of n = m = 100. In both settings the small sample size performance of the
NO-Test was better than the one of the Kolmogorov–Smirnov test. On the other hand,
especially in setting F theKolmogorov–Smirnov test obtained lower Type II error rates
for high sample sizes.

3.5 Robustness

Finally we investigate how the tests deal with outliers. In this scenario we had sample
sizes of n = m = 50 and successively added up to 15 outliers. Both original data sets
were drawn from the same distribution, namely F = G = N (0, 1) with the outliers
coming from a N (0, 10) distribution and were added to the second data set. For all
settings 1000 repetitions were performed.

It is desired that tests are robust, such that single outliers don’t effect the test results.
However if several data points stray from the data set they might not be outliers any
more and a robust test should still pick up on this.

With only a few outliers all three tests stay at the nominal level as it would be
desired. With the increase of number of outliers the new test method is the first to
start rejecting the null hypothesis when roughly 10% of the sample size are added
as outliers. The Wilcoxon-rank-sum test seems rather ignorant against the outliers
as even when more than 20% of the sample consists of outliers they stick with the
nominal level. For the Kolmogorov–Smirnov test a slight inflation of rejection rate
can be observed however it is hardly noticeable.
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3.6 Additional simulations

Additional supporting information may be found online in the Supporting Information
section at the end of the article. This includes Web Figure 1, referenced in Sect. 3, and
Web Appendix A, which shows very small and unequal sample size behavior.

3.7 Data example

To apply the new test procedure to a real life data set we chose an epilepsy treatment
data set. The here considered data comes from clinical records of people prescribed
perampanel in routine practice. While Rohracher et al. (2018) pooled observational
data across Europe, we will only analyze the subset of data collected from Depart-
ment of Neurology, Christian DopplerMedical Centre, ParacelsusMedical University,
Salzburg, Austria. Most of that data was already used in Rohracher et al. (2016) where
the study design and data sources are described.

The data set was split into two groups. One containing the people who were still on
perampanel at the 12-month followup, the other containing those that discontinued due
to different reasons (e.g., adverse events). The considered variable was the duration of
epilepsy, in years, before perampanel initiation. Of the 98 patients in the perampanel
group there were 8 missing observations, leaving 90 observations for the analysis. In
the second group only one observation of 65 was missing.

The null hypothesis was that there is no difference in duration of epilepsy between
the two groups. All three tests do not reject the null hypothesis. The p-values of
the new test procedure was equal to 0.908 after application of the Bonferroni-
Holmes procedure. The two individual p-values were given by 0.454 and 0.645. The
Kolmogorov–Smirnov test had a p-value of 0.211 and the Wilcoxon-rank-sum test
had one of 0.350. This implies that no significant difference between the two groups
exist.

Those findings agree with the original findings of Rohracher et al. (2018). The
higher p-value of the new test procedure compared to the other p-values goes along
with the findings of the simulation results.

4 Discussion

In this paper, we have introduced a new test statistic for testing equality of distributions
based on the concept of overlap. The newly introduced testing method showed overall
good behavior in the simulations. Comparing it with standard methods, it showed
some advantages.

The presented test procedure is easy to understand and interpret, and fast to cal-
culate. Its wide application area together with its straightforward interpretation could
make it a useful alternative to existing tests in medicine and several other disciplines.
Even though its performance could be potentially improved via continuity correction it
would come at the cost of its comprehensibility. Additional simulations would be nec-
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essary to determine if a continuity correction would bring a significant improvement
of the test procedure.

The possibilities presented through the idea of the new introduced test procedure are
plentiful. One option would be to provide a goodness of fit test in one sample problem.
As there the ranks could not be calculated due to the lack of a second sample set another
option would need to be found to estimate I1 and I2 as well as the variance estimator.
One possibility would be to draw several sample sets from the fixed distribution and
use those for estimation of the ranks, like a bootstrap procedure. However this option
as well as other approaches should be considered and compared in simulations to find
a well suited procedure for the one-sample case.
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