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Abstract
The present paper discusses drawbacks and limitations of likelihood-based inference
in sequential clinical trials for treatment comparisonsmanaged viaResponse-Adaptive
Randomization. Taking into account the most common statistical models for the pri-
mary outcome—namely binary, Poisson, exponential and normal data—we derive the
conditions under which (i) the classical confidence intervals degenerate and (ii) the
Wald test becomes inconsistent and strongly affected by the nuisance parameters, also
displaying a non monotonic power. To overcome these drawbacks, we provide a very
simple solution that could preserve the fundamental properties of likelihood-based
inference. Several illustrative examples and simulation studies are presented in order
to confirm the relevance of our results and provide some practical recommendations.

Keywords Confidence intervals · Ethics · Hypothesis testing · Power · Target
allocations · Type-I errors

1 Introduction

Over the past decades a growing stream of statistical papers on the topic of Response-
Adaptive Randomization (RAR) has flourished, especially in the context of phase-III
clinical trials for treatment comparisons, also due to the encouragement of U.S. gov-
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ernment agencies and Health Authorities (CHMP 2007; FDA 2018). RAR procedures
are sequential allocation rules in which the allocation probabilities change on the
basis of earlier responses and past assignments; the aim is to balance the experimental
goals of drawing correct inferential conclusions and caring about the welfare of each
patient, the so-called individual-versus-collective ethics dilemma (for a recent review,
seeHu andRosenberger 2006;Atkinson andBiswas 2014; Baldi andGiovagnoli 2015;
Rosenberger and Lachin 2015). A cornerstone example is the randomized Play-the-
Winner (PW) suggested for binary trials (see, e.g., Wei and Durham 1978; Ivanova
2003). The peculiarity of the PW rule is that the allocation proportion of each of the
two treatments converges to the relative risk of the other, so that (asymptotically) the
majority of patients will receive the best treatment. Another example, for normal and
survival outcomes, is the treatment effect mapping (Rosenberger 1993), where the
assignments are based on a function that links the difference between the treatment
effects to the ethical skew of the allocation probability (Rosenberger and Seshaiyer
1997; Bandyopadhyay and Biswas 2001; Atkinson and Biswas 2005b).

Since the statistical object of drawing correct inferential conclusions about the iden-
tification of the best treatment and its relative superiority often conflictswith the ethical
aim of maximizing the subjects care, some authors formalize these goals into suitable
combined/constrained optimization problems (see, e.g., Rosenberger et al. 2001; Baldi
Antognini and Giovagnoli 2010). The ensuing optimal allocations, usually referred
to as targets, depend in general on the unknown treatment effects; although a priori
unknown (the so-called local optimality problem), they can be approached by RAR
procedures that estimate sequentially the model parameters in order to progressively
approach the chosen target. Classical examples are the Efficient Randomized Adap-
tive DEsign (ERADE) proposed by Hu et al. (2009) and the doubly-adaptive biased
coin design (Hu and Zhang 2004). Under a different perspective, the same trade-off
between ethics and inference represents a special case of the so-called exploration-
versus-exploitation dilemma in the Bayesian literature of bandit problems, where at
each step an agent wants to simultaneously acquire new knowledge and optimize
his/her decisions based on existing information (see for review Villar et al. 2015a, b).

Although the adaptation process induces a complex dependence structure, several
authors provide the conditions under which the classical asymptotic likelihood-based
inference is still valid for RAR procedures (see, e.g., Durham et al. 1997; Melfi and
Page 2000; Baldi Antognini and Giovagnoli 2005). Essentially, the crucial one regards
the limiting allocation proportion induced by the chosen RAR rule, that should be
a non-random quantity different from 0 and 1. Excluding some extremely ethical
procedures, such as the randomly reinforced urn designs (May and Flournoy 2009),
such condition is generally satisfied by the existing RAR rules and therefore the usual
asymptotic properties of the MLEs are preserved; indeed the large majority of the
literature has been focussed on the asymptotic likelihood-based inference, where the
Wald test is the cornerstone (Rosenberger and Sriram 1996; Rosenberger et al. 1997;
Melfi et al. 2001; Hu and Zhang 2004; Atkinson and Biswas 2005a, b; Geraldes et al.
2006; Tymofyeyev et al. 2007; Azriel et al. 2012). Under RAR procedures, Yi and
Li (2018) theoretically prove that the Wald statistics is first order efficient, while Yi
and Wang (2011) show via simulations that, although asymptotically equivalent to
likelihood ratio and score tests, it performs better in small samples. However, several
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simulation studies exhibit that, in some circumstances, such an approach presents
anomalies in terms of coverage probabilities of confidence intervals, as well as inflated
type-I errors (see, e.g., Rosenberger and Hu 1999; Yi and Wang 2011; Atkinson and
Biswas 2014; Baldi Antognini et al. 2018), especially for targets with a strong ethical
component.

The aim of this paper is to demonstrate the inadequacy of asymptotic likelihood-
based inference for RAR procedures, in terms of both confidence intervals and
hypothesis testing. We stress the crucial role played by the chosen target, the vari-
ance function of the statistical model and the presence of nuisance parameters, that
could (i) compromise the quality of the Central Limit Theorem (CLT) approximation
of the standard MLEs and (ii) lead to a vanishing Fisher information. In particular,
these degeneracies could happen when the variance function is unbounded or when
the target allocations approach either 0 or 1 (that depends on both the chosen ethical
component and on the relative superiority of a given treatment wrt the other), showing
also how the functional form of the target could induce a non monotonic power func-
tion. We prove that the Wald test could become inconsistent, it may display a strong
dependence on the nuisance parameters, and the standard confidence intervals could
degenerate.

Since the common approach of the practitioners consists in superimposing a min-
imum percentage of allocations to each treatment, we demonstrate that by re-scaling
the target some of these drawbacks could be circumvented. We show how a suitable
choice of the threshold can be matched with a strong ethical skew of the target without
compromising the inferential precision. Several illustrative examples are provided for
normal, binary, Poisson and exponential data and simulation studies are performed in
order to confirm the relevance of our results.

The paper is structured as follows. Starting from the notation and somepreliminaries
in Sect. 2, Sect. 3 dealswith likelihood-based inference, highlighting its inadequacy for
RAR procedures in Sect. 4, with several examples showing the practical implication
of the above-mentioned drawbacks. Section 5 discusses our proposal of re-scaling the
target and its properties and Sect. 6 deals with some concluding remarks.

2 Preliminaries

2.1 Notation andmodel

Suppose that statistical units come to the trial sequentially and are assigned to one of
two competing treatments, say A and B. At each step i ≥ 1, let δi be the indicator
managing the allocation of the i th subject, namely δi = 1 if he/she is assigned to A and
0 otherwise. Given the treatment assignments, the observed outcomes Y s relative to
either treatment are assumed to be independent and identically distributed belonging
to the natural exponential family with quadratic variance function Y ∼ NQ(θ; v(θ)),
where θ ∈ Θ ⊆ R denotes the mean and the variance v = v(θ) > 0 is at most a
quadratic function of themean (Morris 1982). In this setting, θ = (θA; θB)t denotes the
treatment effects and from now on we letΘ = supΘ andΘ = inf Θ . Special cases of
particular relevance for applications are theBernoulli distribution (with θ j ∈ (0; 1) and

123



160 A. Baldi Antognini et al.

v(θ j ) = θ j (1−θ j )) for binary outcomes, the Poissonmodel (θ j ∈ R
+ and v(θ j ) = θ j )

for count data, the exponential distribution (θ j ∈ R
+ and v(θ j ) = θ2j ) for survival

outcomes, while the normal homoscedastic model is also encompassed for continuous
responses (where θ j ∈ R and v(θ j ) = v ∈ R

+ is the common nuisance parameter).
In this setting, the treatment outcomes are stochastically ordered on the basis of their
effects and from now on (without loss of generality) we assume that high responses are
preferable. As it is well known, the NQ class contains two more basic models, such
as the negative binomial and the generalized hyperbolic secant distribution, which
however may be less appealing for practical applications, especially in the clinical
context.

After n steps, let NAn = ∑n
i=1 δi and NBn = n − NAn be the assignments to

both treatments, so that πn = n−1NAn is the allocation proportion to A (respectively,
1−πn to B). Then, theMLEs of the treatment effects coincide with the sample means,
namely θ̂An = N−1

An

∑n
i=1 δi Yi and θ̂Bn = N−1

Bn

∑n
i=1(1−δi )Yi , while the normalized

Fisher information is Mn = diag (πn/vA; [1 − πn]/vB) (see Baldi and Giovagnoli
2015).

2.2 Target allocations and RAR rules

Motivated by ethical demands, Response-Adaptive procedures have been proposed
with the aim of skewing the assignments towards the treatment that appears to be
superior or,more in general, of converging to suitable limiting allocation proportions—
say ρ = ρ(θ) ∈ (0; 1) to A (and 1 − ρ to B, respectively)—namely ideal allocations
of the treatments representing a valid trade-off among ethics and inference.

In the context of binary trials, a classical example is the PW rule (Zelen 1969),
under which a success on a given treatment leads to assigning the same treatment to
the next unit, while a failure implies switching to the competitor. Under this procedure,
the allocation proportion of treatment A converges to

ρPW (θ) = 1 − θB

2 − θA − θB
, (1)

which is also the limiting allocation of the randomized PW (Wei and Durham 1978)
and of the Drop-the-Loser rule (Ivanova 2003). Differently, for normal homoscedastic
trials Bandyopadhyay and Biswas (2001) and Atkinson and Biswas (2005b) suggested
RAR procedures targeting

ρN (θ) = Φ

(
θA − θB

T

)

, (2)

where Φ is the cumulative distribution function (cdf) of the standard normal and
T > 0 a tuning parameter. Although ρPW and ρN are considered ethical targets, as
the majority of subjects are assigned to the best treatment, they do not have a formal
mathematical justification. On the other hand, by expressing ethical aims and infer-
ential goals into suitable design criteria, several authors provided optimal allocations
via combined/constrained optimization problems. An example for binary trials is the
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target proposed by Rosenberger et al. (2001) and further generalized by Tymofyeyev
et al. (2007), namely

ρZ (θ) =
√

θA√
θA + √

θB
,

which is aimed at minimizing the expected number of failures for a given variance of
the estimated treatment difference, while

ρR(θ) = θA

θA + θB
,

corresponds to the so-called A- and E-optimal design for exponential and Poisson
data, respectively (Baldi and Giovagnoli 2015). Clearly, these targets also encompass
normal homoscedastic data provided that the treatment effects are positive (Zhang and
Rosenberger 2006).

In order to favour the best treatment, the targets should depend on a suitable dis-
crepancy measure between the unknown treatment effects (like, e.g., the treatment
difference in ρN , the ratio between the effects for ρR or the relative risk in ρPW ),
so that the target function ρ links the relative superiority of a given treatment to the
ethical skewness of the allocations. Moreover, as for (2), the targets could also depend
on a non-negative constant T—chosen by the experimenter—managing their ethical
skew (i.e., for low values of T the target tends to strongly skew the assignments to
the best treatment, while as T grows the ethical component vanishes and ρ tends to
balance the allocations). Therefore, common assumptions are:

A1: ρ is a continuous function invariant under label permutation of the treatments,
namely ρ(θA; θB) = 1 − ρ(θB; θA),

A2: ρ is increasing in θA and decreasing in θB ,

ensuring that (i) both treatments are treated likewise and (ii) the best treatment should
be favoured increasingly as its relative superiority grows.

Remark 1 Note that, on the basis of the underlying statistical model, the well-known
Neyman allocation ρ(θ) = √

vA/(
√

vA+√
vB) - i.e., the A-optimal design—may not

have any ethical appeal, since the majority of patients could be assigned to the worst
treatment. Indeed, for binary and normal outcomes it does not satisfy assumption A2,
while for Poisson and exponential data the Neyman target is ethical and corresponds
to ρZ and ρR , respectively.

Given a desired ρ, RAR rules based on sequential estimation could be employed
to converge to it. After a starting sample of n0 subjects assigned to both treatments
to derive non-trivial estimates of the unknown parameters, at each step n > 2n0
the treatment effects are estimated by means of θ̂n = (θ̂An; θ̂Bn)

t and the target is
estimated accordingly by ρ(θ̂n), so the next assignment is forced to converge to ρ.
For instance, ERADE (Hu et al. 2009) randomizes the allocations by

Pr(δn+1 = 1 | δ1,Y1, . . . , δn,Yn) =

⎧
⎪⎨

⎪⎩

γρ(θ̂n), if πn > ρ(θ̂n)

ρ(θ̂n), if πn = ρ(θ̂n),

1 − γ
[
1 − ρ(θ̂n)

]
, if πn < ρ(θ̂n)
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where γ ∈ [0; 1) is the randomization parameter of the allocation process.

3 Asymptotic likelihood-based inference for RAR procedures

Assuming that the inferential goal consists in estimating/testing the superiority of a
given treatment with respect to the gold standard (say A wrt B), the parameter of
interest is the treatment difference Δ = θA − θB , while θB is usually regarded as a
nuisance parameter (namely, θB is a common baseline whileΔ represents the additive
effect of the relative superiority/inferiority of A over B). Although the MLEs remain
the same as the non-sequential setting’s ones, this is not true for their distribution
because of the complex dependence structure generated by the adaptation process.
However, if the RAR design is chosen so that

C1: limn→∞ πn = ρ(θ) ∈ (0; 1) a.s.

with ρ(θ) satisfying assumptions A1-A2, then the standard asymptotic inference is
allowed. Indeed,

lim
n→∞Mn = M = diag

(
ρ(θ)

vA
; 1 − ρ(θ)

vB

)

a.s.

and the MLEs are still consistent and asymptotically normal with
√
n(θ̂n − θ) ↪→

N (02,M−1), where 02 is the 2-dim vector of zeros. Thus, let Δ̂n = θ̂An − θ̂Bn , then√
n(Δ̂n − Δ) ↪→ N (

0, σ 2
)
, where

σ 2
ρ = vA

ρ(θ)
+ vB

1 − ρ(θ)
(3)

and, due to the continuity of the target, limn→∞ ρ(θ̂n) = ρ(θ) a.s. Letting v̂ jns be
consistent estimators of the treatment variances, then

σ̂ 2
n = v̂An

ρ(θ̂n)
+ v̂Bn

1 − ρ(θ̂n)

is a consistent estimators of σ 2
ρ and the (1 − α)% asymptotic confidence interval is

C I (Δ)1−α =
(

Δ̂n ± z1−α/2σ̂n√
n

)

, (4)

where zα is the α-percentile of Φ.
For what concerns hypothesis testing, the inferential aim typically lies in testing

H0 : Δ = 0 against H1 : Δ > 0 (or H1 : Δ 	= 0). The asymptotic test is usually
performed via the Wald statistic Wn = √

nΔ̂n σ̂
−1
n which, under H0, converges to the

standard normal distribution. Thus, given the alternative H1 : Δ > 0, the power of the
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α-level test is Pr
(√

n(Δ̂n − Δ) > z1−ασ̂n − √
nΔ

)
, which can be approximated by

Φ
(√

nΔσ−1
ρ − z1−α

)
, Δ ≥ 0, (5)

due to the consistency of σ̂ 2
n . As stated by several authors (Lehmann 1999; Hu and

Rosenberger 2006; Tymofyeyev et al. 2007), this approximation is accurate and par-
ticularly effective in the moderate-large sample setting of phase-III trials therefore
neither for early phase studies with small sample sizes, nor asymptotically (where
different approaches aimed at providing proper local approximation of the power
around specific value of Δ as n → ∞ could be suitable like e.g. the local alternative
framework).

Even if less interesting in the actual practice, the two-sided alternative H1 : Δ 	= 0
can be encompassed analogously. Under H0,W 2

n converges in distribution to a central
chi-square χ2

1 with 1 degree of freedom; while under H1, W 2
n could be approximated

by a non-central χ2
1 with non-centrality parameter nΔ2σ−2

ρ , namely the square of
the crucial quantity in (5). As is well-known, the power is an increasing function
of the non-centrality parameter and it is maximized by the Neyman allocation, also
minimizing (3).

4 Inadequacy of likelihood-based inference

Note that condition C1 avoids the extreme scenarios ρ = 0 or 1; however, most of the
targets suggested in the literature satisfy the following property:

lim
θA→Θ

ρ(θA; θB) = 1 or lim
θA→Θ

ρ(θA; θB) = 0, for every θB . (6)

It is worth stressing that, even if the symmetric assumption A1 holds, ρ → 1 as
θA → Θ does not imply that ρ → 0 as θA → Θ and vice-versa (see, e.g., ρPW in
(1)).

Ifρ satisfies (6) or if the variance function of the statisticalmodel is unbounded, then
the asymptotic variance σ 2

ρ tends to diverge and the quality of the CLT approximation
could be damaged, thus compromising any likelihood-based inferential procedure.
This translates in both i) unreliable asymptotic confidence intervals and ii) anomalous
behaviour of the power of the Wald test.

4.1 Confidence Intervals

The following Theorem shows the drawbacks of the asymptotic likelihood-based con-
fidence intervals, that could degenerate not only for statistical models with unbounded
variance, but also when the chosen target is characterized by a strong ethical compo-
nent, i.e., if ρ satisfies (6).

Theorem 1 The asymptotic variance σ 2
ρ and the width of the asymptotic C I (Δ)1−α

diverge if the variance function is unbounded, i.e. when Θ = ∞ and limθ→Θ v(θ) =
∞, or if ρ is chosen so that
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lim
θA→Θ

ρ(θA; θB) = 1 or lim
θA→Θ

v(θA)

ρ(θA; θB)
= ∞, for every θB ∈ Θ.

In particular, for exponential and Poisson data, the width of C I (Δ)1−α diverges as
Δ grows regardless of the chosen target, while for normal homoscedastic outcomes,
the asymptotic CI degenerates for every target satisfying (6). As regards binary trials,
C I (Δ)1−α degenerates under ρPW , while it does not diverge adopting ρR.

Proof Theproof followsdirectly from(3) bynoticing that condition limθA→Θ ρ(θA; θB) =
0 for every θB ∈ Θ is only necessary but not sufficient, since the variance func-
tion could vanish as θA → Θ . For normal homoscedastic, exponential and Poisson
data the proof is straightforward. For binary trials, under the PW target, the asymp-
totic C I (Δ)1−α degenerates, since limθA→Θ ρPW (θA; θB) = 1 for every θB ∈ (0; 1)
(although limθA→Θ ρPW (θA; θB) = (1 − θB)/(2 − θB) > 0). Adopting ρR instead,
C I (Δ)1−α does not diverge since, for every θB ∈ (0; 1), limθA→Θ ρR(θA; θB) = (1+
θB)−1 < 1 and limθA→Θ ρR(θA; θB) = 0, but limθA→Θ v(θA)/ρR(θA; θB) = θB < 1.


�
The divergence of the asymptotic CIs strongly depends on the speed of convergence
of the target to 0 or 1. For instance, taking into account ρN in (2), this can be severely
accentuated by the effect of the tuning constant, since T induces a scaling effect by
contracting/expanding the treatment difference Δ (for T > 1 or T < 1, respectively).
Thus, small choices of T may deteriorate the quality of the CLT approximation as
well as accelerate the divergence of the asymptotic variance σ 2

ρ , even for values of θA
close to θB (i.e., for values of Δ close to 0) and not only as θA tends either to Θ or
Θ).

Example 1 In order to stress how small values of T could severely undermine the
precision of likelihood-based inferential procedure, we perform a simulation study
with 100000 normal homoscedastic trials (v = 1) by employing ERADE (γ = 0.5)
with n = 250. Taking into account ρN , Fig. 1 shows the simulated distributions of the
MLE Δ̂n , as Δ and T vary, while Table 1 summarizes the behaviour of the simulated
95% asymptotic confidence intervals for Δ, where Lower (L) and Upper (U) bounds
are obtained by averaging the endpoints of the simulated trials (within brackets the
corresponding theoretical values derived by (4)).

WhenΔ = 0, low values of T severely damage the CLT approximation leading to a
non-negligible increase of the density in the tails; whereas, for Δ > 0 the distribution
of Δ̂n presents a positive skewness, regardless of the value of T .

For T ≥ 1, analytical and simulated confidence bounds are quite close; however,
as Δ grows, the impact of the skewness affects the quality of the CLT approximation.
Regardless ofΔ, small values of T severely damage the accuracy of theC I (Δ)0.95, that
tends to diverge extremely fast. The empirical coverage confirms the above-mentioned
behaviour and tends to 1 as the width of the intervals grows. Moreover, as showed by
many authors (see, e.g., Coad and Woodroofe 1998), although asymptotically unbi-
ased, theMLEs underRARprocedures are biased for finite samples. Even for n = 250,
Δ̂n tends to overestimate Δ for positive values of the treatment difference and this
effect is exacerbated for low values of T .
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Fig. 1 Simulated distribution of Δ̂n adopting ρN as T and Δ vary

4.2 Hypothesis Testing

Taking now into account hypothesis testing, for every fixed value of the nuisance
parameter θB ∈ Θ (and v ∈ R

+ for normal homoscedastic data), the power function
(5) is governed by the non-negative function

tρ(Δ) = Δ

σρ

= θA − θB
√

v(θA)
ρ(θA;θB )

+ v(θB )
1−ρ(θA;θB )

, θA − θB ≥ 0. (7)

Notice that the Wald test could present inflated type-I errors. Indeed, when θA = θB ,
from assumption A1, ρ(θ) = 1 − ρ(θ) = 1/2 and therefore tρ(0) = 0 for every
θB ∈ Θ regardless of the chosen target. Moreover, since in this case σρ = 2

√
v(θB),

inflated type-I errors could be present only if v(θB) � 0. This is the reason why a
slightly inflation is detected in several simulation studies of both binary trials with low
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success probabilities and normal trials with small values of v (Zhang and Rosenberger
2012; Atkinson and Biswas 2014; Rosenberger and Lachin 2015).

Under the alternative hypothesis, the power could exhibit anomalous behaviour,
especiallywhenρ has a strong ethical skew. In particular,we shall show that, for a given
statistical model, some target allocations may induce a non monotonic power—that
could also degenerate as the difference between the treatment effects grows—making
the Wald test not consistent. Indeed, for every size, if tρ(Δ) in (7) vanishes as Δ

grows, from (5) the power tends to Φ (−z1−α) = α (i.e., the significance level), as the
following Theorem shows.

Theorem 2 When Θ < ∞, if limθA→Θ ρ(θA; θB) = 1 for every θB ∈ Θ , then the

Wald test is not consistent. The same conclusion still holds when Θ = ∞, provided
that limθA→∞(θA − θB)2[1 − ρ(θA; θB)] = 0, for every θB ∈ Θ . In particular, for
binary trials the Wald test is consistent under ρR, while it is not adopting ρPW . Taking
into account Poisson, exponential and normal homoscedastic models, ρR guarantees
the consistency of the Wald test, while ρN induces the inconsistency of the test.

Proof Given a chosen target ρ, the Wald test is not consistent when tρ(Δ) in
(7) vanishes as Δ grows. For Θ < ∞, from Theorem 1 this is satisfied iff
limθA→Θ ρ(θA; θB) = 1 for every θB ∈ Θ . For Θ = ∞, the same conclusion still

holds provided that as θA → ∞, σ 2
ρ diverges faster than θ2A. Since for the NQ

class the variance function v(·) is at most quadratic, this holds iff limθA→∞(θA −
θB)2{v(θB)/[1 − ρ(θA; θB)]}−1 = limθA→∞(θA − θB)2[1 − ρ(θA; θB)] = 0, for
every θB ∈ Θ . For binary trials, assuming the PW target in (1) the power tends to α as
Δ grows, since limθA→Θ ρPW (θA; θB) = 1, for every θB ∈ (0; 1). Whereas, adopting

ρR , limθA→Θ ρR(θA; θB) = (1 + θB)−1 < 1 for every θB ∈ (0; 1) and therefore the
test is consistent. Taking into account Poisson, exponential and normal homoscedastic
models, adoptingρR the test is consistent since limθA→∞(θA−θB)2[1−ρR(θA; θB)] =
θB(θA −θB)2(θA +θB)−1 = ∞ for every θB ∈ R (even if limθA→∞ ρR(θA; θB) = 1).
By using ρN the test is not consistent since limθA→∞(θA −θB)2[1−ρN (θA; θB)] = 0
for every θB ∈ R. 
�
Remark 2 Although condition limθA→Θ ρ(θA; θB) = 1 is always necessary for the
inconsistency of the Wald test, for binary trials it is also sufficient, making the PW
rule unsuitable for likelihood-based inference. Excluding the binary case, in order to
reliably apply theWald statistic,ρ should satisfy limθA→∞(θA−θB)2[1−ρ(θA; θB)] >

0 for every θB ∈ Θ .

Remark 3 Although our approach complements the one of Yi and Li (2018), Theorems
1 and 2 clearly conflict with their results. In particular, the authors show that the Wald
statistic achieves the upper bound of the asymptotic power and derive the rates of
coverage error probability of the corresponding confidence intervals. Their results
depend on the boundedness of the remainder term in the Taylor expansion of Lemma
1 in Yi and Li (2018), where the authors state that if ρ ∈ (0; 1) then there exists
r ∈ (0; 1/2] such that r ≤ ρ ≤ 1 − r . However, this condition does not hold for
targets satisfying (6) (for instance, �r ∈ (0; 1/2] bounding ρN ).

123



168 A. Baldi Antognini et al.

0.25

0.50

0.75

0.0 0.1 0.2 0.3
Δ

n = 100

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3
Δ

n = 250

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3
Δ

n = 400

 Nuisance θB = 0.7 θB = 0.8 θB = 0.9

Fig. 2 Simulated power of the Wald test adopting ρPW as θB and n vary

Example 2 To underline how the adoption of the PW target could severely undermine
the reliability of the Wald test, we perform a simulation study with 100,000 binary
trials by employing ERADE (γ = 0.5). Figure 2 shows the simulated power as Δ

varies for θB = 0.7, 0.8 and 0.9 for different sample sizes.
As theoretically proved, the power tends to the significance level α regardless of the

sample size.Moreover, the power function is decreasing not only at θA ≈ 1 but also for
smaller and potentially crucial differences between the treatment effects, especially
for small samples. For instance, when n = 100, for θB = 0.9 the maximum power is
about 25% attained at Δ = 0.07 (i.e., θA = 0.97), while for θB = 0.8 the power is
always lower than 75% and rapidly decreases for Δ ≥ 0.16. Even with n = 250, the
power does not reach 1 when θB > 0.8; although such a degenerating behaviour is
attenuated as the sample size increases, it still persists also for n = 400.

An additional drawback of the PW target is related to its functional form. Indeed,
although condition A2 is satisfied (namely, ρPW is decreasing in θB and therefore
1− ρPW is increasing in θB), for any fixed difference Δ = θA − θB , the allocation to
B is decreasing in θB as the following table shows.
Indeed, the PW target could be rewritten as

ρPW (θA; θB) = 1 − θB

2(1 − θB) − (θA − θB)
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Table 2 The behaviour of the
treatment allocation proportions
adopting ρPW for Δ = 0.2

θA θB ρPW 1 − ρPW

0.9 0.7 0.750 0.250

0.8 0.6 0.667 0.333

0.5 0.3 0.583 0.417

0.3 0.1 0.563 0.437

and therefore, for a fixed difference θA − θB , its derivative wrt θB is

θA − θB

[2(1 − θB) − (θA − θB)]2 > 0, θA > θB

leading to a negative derivativewrt θB of 1−ρPW (i.e., the target allocation of treatment
B).

Besides consistency, an additional natural requirement of the test is that the power
should be monotonically increasing in Δ (i.e., in θA for every θB ∈ Θ), in order to
identify with high precision the best treatment as its relative superiority grows. From
(7), provided that ρ is differentiable, the power of the Wald test is increasing iff, for
every θB ∈ Θ ,

2σ 2
ρ

θA − θB
≥ v′(θA)

ρ(θA; θB)
+ρ′

θA
(θA; θB)

{
v(θB)

[1 − ρ(θA; θB)]2 − v(θA)

ρ2(θA; θB)

}

, θA > θB

(8)
where f ′

x = ∂ f /∂x denotes the partial derivative of f wrt x (to avoid cumbersome
notation, we shall omit the subscript for the derivative of scalar functions). In addition
to the statistical model, condition (8) regards the chosen target and needs to be satisfied
for every θA > θB , involving the entire functional form of ρ (not only its limits and the
speed of convergence to them as in Theorems 1 and 2). Clearly, if the target induces the
inconsistency of the test, then (8) fails to hold, instead if ρ guarantees the consistency
of the test, it does not necessarily ensure the monotonicity of the power, as shown in
Fig. 5. For instance, as also discussed by Baldi Antognini et al. (2018), for normal
homoscedastic data v′ = 0 and the power is increasing in Δ iff ρ is chosen so that,
for every θB ∈ R

ρ(θA; θB)[1−ρ(θA; θB)] ≥ (θA−θB)[ρ(θA; θB)−1/2]ρ′
θA

(θA; θB), θA > θB . (9)

Clearly, this condition fails to hold for ρN , while it is satisfied by ρR . Analogously, for
binary trials adopting ρPW the power of theWald test is not monotonically increasing.
Indeed, condition (8) can be restated as

2

θA − θB
− θA − θB

(2 − θA − θB)(1 − θA)
≥ (1 − 2θA)(1 − θA) + (θA−θB )(θA+θB−1)(1−θB )

2−θA−θB

θA(1 − θA)2 + θB(1 − θB)2
,
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where, for every θB ∈ (0; 1), as θA tends to Θ = 1 the LHS tends to −∞ while the
RHS tends to 1/(1 − θB) > 0.

Proposition 1 For normal, binary, exponential and Poisson data, ρR always guaran-
tees that the power of the Wald test is monotonically increasing in Δ.

Proof For the normal homoscedastic model, inequality (9) is trivially satisfied since
2θA(θA + θB) ≥ (θA − θB)2 for every θA ≥ θB > 0. For Poisson and exponential
data, condition (8) still holds since, for every θB ∈ R

+,

θB

θA + θB
≤ 1 ≤ 1 + 4θAθB

θ2A − θ2B
, θA ≥ θB > 0.

In the context of binary trials, inequality (8) becomes

θA{θA − θB + 2θB(2 − θA − θB)} ≥ 0

which is clearly satisfied for 1 > θA ≥ θB > 0. 
�

As previously discussed, ρR is able to preserve the fundamental properties of theWald
test, namely the consistency and the monotonicity of its power. However, this target
strongly depends on the nuisance parameter θB ; indeed, for a fixed difference Δ, as
θB grows ρR(θA; θB) → 1/2 and, therefore, its ethical improvement tends to vanish
as well as the induced power. For instance, from (7), under exponential outcomes
tρR (Δ) = Δ/(θA + θB), while for Poisson data tρR (Δ) = Δ/

√
2(θA + θB) and both

of them vanish as θB grows, for every fixed θA. Figure 3 confirms graphically the
crucial role played by θB in terms of power: given a difference Δ = 0.5, under the
exponential model the power decreases from 0.94 to 0.10 as θB grows from 1 to 10
(while for Poisson data it goes from 0.97 to 0.34).

5 A possible solution for likelihood-based inference: the re-scaled
target

From Theorems 1 and 2, it is quite evident that some anomalous behaviours could be
prevented by assuming a target that is not characterized by a strong ethical component,
namely under which (6) fails to hold. Indeed, if the target is chosen so that 0 < l1 ≤
ρ(θ) ≤ l2 < 1 for every θ , then the Wald test is consistent, while C I (Δ)1−α does not
diverge provided that v(·) is bounded.

Moreover, to mitigate the effects of the nuisance parameters, a possible way con-
sists in adopting targets that depend only on the treatment difference Δ and not on θB ,
namely ρ = ρ�(Δ); however, this is only a partial solution, since the nuisance param-
eter affects any likelihood-based inferential procedure through the variance function.
In this setting, assumptions A1-A2 become

A: ρ� is continuous and increasing with ρ�(Δ) = 1 − ρ�(−Δ).
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Fig. 3 Simulated power of the Wald test for exponential and Poisson data adopting ρR with n = 250

For instance, under normal, Poisson and exponential data ρ� could be interpreted as
the cdf of a continuous r.v. with support in R and symmetric around 0, as ρN = ρ�

N in
(2) (Baldi Antognini et al. 2018). While, for binary trials, the target

ρ�
G(Δ) = 1

2
+ ωΔ

2(2 − ω)
, Δ ∈ (−1; 1),

is the asymptotic allocation of the doubly-adaptive weighted difference design, sug-
gested by Geraldes et al. (2006). It is obtained by a suitable weighted combination of
two linear randomization functions, one for ethics and the other dictated by balance,
where ω ∈ [0; 1] reflects the relative importance of ethics. Note that ρ�

G guarantees
the consistency of the Wald test and the reliability of the CIs, since as θA → Θ = 1,
ρ�
G(Δ) → (2 − ω)−1 < 1, while as θA → Θ = 0, ρ�

G(Δ) → (1 − ω)/(2 − ω) > 0,
for every ω < 1.

By combining these suggested solutions, even when the desired ρ� is characterized
by a strong ethical improvement, a possible way to overcome some degeneracies
consists in re-scaling the target, namely by letting

ρ�
r (Δ) = 1 − r + ρ�(Δ)(2r − 1), with r ∈ (1/2; 1). (10)
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Fig. 4 Simulated distribution of Δ̂n adopting ρ�
Nr

(r = 0.9) as T and Δ vary

Transformation (10) simply contracts the image of ρ�, which is re-scaled in [1−r; r ],
while preserving its functional form. Clearly, for r = 1 no re-scaling transformation is
applied, namely ρ�

1(Δ) = ρ�(Δ), while the case r = 1/2 corresponds to the balanced
allocation.

Although the anomalous scenarios induced by the unboundedness of the variance
function—i.e., by the statistical model—cannot be overcome, by adopting ρ�

r some
degeneracies caused by the target could be avoided, since the Wald test is consistent
and C I (Δ)1−α does not diverge.

Remark 4 Since under condition C1 the treatment allocation proportion πn of a RAR
design is a consistent estimator of the target, another possible way to overcome some
drawbacks of likelihood-based asymptotic procedures consists in estimating σ 2

ρ by
σ̆ 2
n = v̂An/πn + v̂Bn/[1 − πn]. Indeed, given a starting sample of 2n0 assignments,

for any fixed n, πn ∈ [ηn; 1 − ηn], where ηn = n0/n ∈ (0; 1/2) is the percentage
of (non-adaptive) allocations initially made on either treatment. In practice, πn �
ρ(θ̂n)(1 − ηn) + [1 − ρ(θ̂n)]ηn , that substantially corresponds to assume a re-scaled
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target with r = r(n) = 1 − ηn . Unfortunately, this approach could be useful only for
clinical trials where ηn is non-negligible (i.e., for quite small samples), otherwise n0
should be chosen as an increasing function of n (Baldi Antognini et al. 2018).

Although the re-scaling correction could also be applied to targets depending on nui-
sance parameters, in general it does not protect against the non monotonicity of the
power function discussed in Section 4. However, since 0 < ρ′

rθA
= (2r−1)ρ′

θA
< ρ′

θA
,

then monotonicity condition (8) tends to be satisfied as r decreases (namely when the
target tends to be balanced); thus, as it will be shown in Examples 3 and 4, this
drawback could be strongly mitigated/overcome by re-scaling the target with a proper
choice of r .

Example 3 To show how a re-scaled target not depending on the nuisance could
improve the precision of likelihood-based inference, we perform a simulation study in
the same setting of Example 1 by adopting ρ�

Nr
with r = 0.9. Figure 4 shows the sim-

ulated distributions of Δ̂n as T andΔ vary, while Table 3 summarises the behaviour of
the simulated 95% asymptotic confidence interval for Δ, where Lower (L) and Upper
(U) bounds are obtained by averaging the endpoints of the simulated trials (within
brackets the theoretical values derived by (4)).

Adopting ρ�
Nr
, the reliability of the C I (Δ)0.95 drastically increases: analytical and

simulated bounds almost coincide for every value of T and Δ. Although for small
values of T (i.e., for a high ethical component) the width of the confidence intervals
slightly grows, this does not compromise the inferential precision. By limiting the
skewness and the variability of theMLE’s distribution, the re-scaled target significantly
improves the accuracy of the asymptotic confidence intervals, also confirmed by the
empirical coverage which is always quite close to the nominal value. Note that the
re-scaling correction seems also to reduce the bias of theMLEs, in particular for higher
values of the treatment difference.

As regards hypothesis testing, Fig. 5 shows the power of the Wald test adopting
ρ�
Nr

as T and r vary (the case r = 1 corresponds to ρ�
N ).

Regardless of the values of T , the re-scaled target (i.e., r < 1) always preserves
the consistency of the test. However, this target does not satisfies condition (9) and,
for small values of T , the decreasingness of the power is accentuated as r tends to 1.
Even for T = 0.5 or T = 0.3, by selecting r ≤ 0.95, monotonicity condition (9) is
fulfilled; in this way the ethical component of the target could be strongly improved
without compromising inference.

Example 4 Ideally, the re-scaling correction should be applied to targets with a strong
ethical skew—i.e., satisfying (6)—that (i) fulfill (8) to guarantee a monotonic power
function of the Wald test and (ii) depend on the treatment effects only through the
differenceΔ (tomitigate the effects of the nuisance parameters). As previously shown,
whenadoptingρPW noneof these conditions is satisfied; however, the re-scaledversion
ρPWr could still overcome ormitigate some of the above-mentioned drawbacks. To see
this, we perform a simulation study in the same setting of Example 2, by comparing
the performances of ρPW and ρPWr with r = 0.9. Figure 6 shows the simulated power
of the Wald test as Δ varies for θB = 0.7, 0.8 and 0.9 for n = 100, 250 and 400,
while Table 4 summarizes the behaviour of the simulated 95% asymptotic confidence

123



174 A. Baldi Antognini et al.

Ta
bl
e
3

L
ik
el
ih
oo
d-
ba
se
d
si
m
ul
at
ed

as
ym

pt
ot
ic
C
I(

Δ
) 0

.9
5
ad
op

tin
g

ρ
� N
r
(r

=
0.
9)

as
T
an
d

Δ
va
ry

Δ

0
0.
5

1.
5

L
Δ̂
n

U
E
C

L
Δ̂
n

U
E
C

L
Δ̂
n

U
E
C

T
2

−0
.2
5

0.
00

0.
25

0.
95

0.
24

0.
50

0.
76

0.
95

1.
17

1.
51

1.
84

0.
98

(−
0.
25

)
(0

.2
5)

(0
.2
5)

(0
.7
5)

(1
.2
2)

(1
.7
8)

1
−0

.2
5

0.
00

0.
25

0.
95

0.
24

0.
51

0.
77

0.
96

1.
12

1.
51

1.
91

0.
98

(−
0.
25

)
(0

.2
5)

(0
.2
4)

(0
.7
6)

(1
.1
6)

(1
.8
4)

0.
5

−0
.2
5

0.
00

0.
25

0.
95

0.
22

0.
53

0.
83

0.
95

1.
05

1.
50

1.
95

0.
97

(−
0.
25

)
(0

.2
5)

(0
.2
0)

(0
.8
0)

(1
.0
9)

(1
.9
1)

0.
3

−0
.2
6

0.
00

0.
26

0.
94

0.
17

0.
54

0.
90

0.
96

1.
05

1.
50

1.
95

0.
97

(−
0.
25

)
(0

.2
5)

(0
.1
4)

(0
.8
6)

(1
.0
9)

(1
.9
1)

L
,U

av
er
ag
e
lo
w
er

an
d
up

pe
r
si
m
ul
at
ed

bo
un

ds
(t
he
or
et
ic
al
en
dp

oi
nt
s
in

br
ac
ke
ts
),
E
C
em

pi
ri
ca
lc
ov
er
ag
e

123



A simple solution to the inadequacy of... 175

0.25

0.50

0.75

1.00

0 1 2 3 4
Δ

T = 1

0.25

0.50

0.75

1.00

0 1 2 3 4
Δ

T = 0.5

0.25

0.50

0.75

1.00

0 1 2 3 4
Δ

T = 0.3

r 0.9 0.95 0.99 1

Fig. 5 Power of the Wald test for normal outcomes adopting ρ�
Nr

and ρ�
N as T and r vary

interval for Δ, where Lower (L) and Upper (U) bounds are obtained by averaging the
endpoints of the simulated trials (within brackets the theoretical values derived by (4)).
If compared to ρPW (see Fig. 2), the re-scaled target ρPWr guarantees the consistency
of the Wald test, also strongly improving the behaviour of the power function. The
improvement in the inferential precision is remarkable: for instance, with n = 100
and θB = 0.9, for Δ = 0.08 the power is about 40% with a gain of 13% wrt the non
re-scaled version, while for n = 250 the power increases of 18%. For what concerns
CIs, although ρPW performs quite well, the asymmetric distribution of the MLEs
causes a right shift of the CI with a slight increase in the width (that is exacerbated for
θA > 0.95). On the other hand, the adoption of ρPWr leads to narrower and centered
CIs with a correct empirical coverage.

6 Discussion

This paper explores in depth the limitations of the likelihood-based approach for
RAR experiments, in terms of asymptotic confidence intervals and hypothesis testing.
Although clinical trials represent one of the most actual fields of application of this
methodology (because of the main concern about the ethical impact on the subjects’
care), RAR procedures could be a useful tool for local optimality problems also in
different contexts like, e.g., industrial experiments. First of all, we show that some
RAR rules as well as some targets can compromise the asymptotic likelihood-based
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Fig. 6 Simulated power of the Wald test adopting ρPWr (with r = 0.9) as θB and n vary

inference, inducing a degenerating behaviour of the power of the Wald test and unre-
liable CIs. This is particularly true when the empirical evidence strongly suggests the
superiority of one treatment wrt the other or when the ethical component of the target
is remarkable, since this could induce the target to approach either 0 or 1. Furthermore,
these anomalies may also be caused by statistical models with unbounded variance,
and inference could also be strongly compromised due to the effect of nuisance param-
eters.

Our results show that, in general, ρR is able to preserve the fundamental properties
of hypothesis testing, because it guarantees the consistency of the Wald test as well
as the monotonicity of its power; however, its dependence on the nuisance parameter
could damage the inferential precision. On the other hand, the PW rule confirms its
practical inadequacy since i) the asymptotic CIs diverge and ii) the power of the Wald
test is decreasing and tends to the significance level as the difference between the
treatment effects grows, thus severely undermining the inferential precision.

Inspired by the common practice of superimposing a minimum percentage of allo-
cations for each treatment, several authors have recently taken into account RAR
procedures with a minimum prefixed threshold in the assignments to avoid possible
degeneracies (see Tymofyeyev et al. 2007; Sverdlov et al. 2011; Sverdlov and Rosen-
berger 2013; Villar et al. 2015b). In this paper, we prove how a re-scaling correction
of the target could preserve some of the fundamental properties of likelihood-based
inference. In particular, we show that, by adopting a re-scaled target, the consistency of
theWald test and the reliability of the CIs are ensured (provided that the variance func-
tion is bounded), even with a high ethical component. Moreover, choosing a suitable
threshold r significantly improves the accuracy of the asymptotic likelihood-based CIs
(also confirmed by the empirical coverage which is quite closed to the nominal value)
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and overcomes the non monotonicity of the power function. Generally, a choice of
r = 0.9 preserves the inferential accuracy, regardless of the statistical model and of
the adopted target. As regards ρN , r = 0.9 matched with T ≥ 0.5 guarantees good
performances in terms of both ethics and inference. Clearly, these results could also
be applied to the class of Bayesian RAR designs, where frequentist likelihood-based
inference is performed at the end of the trial. Indeed, Bayesian RAR procedures could
also present possible degeneracy in the treatment allocation proportions and there-
fore a re-scaling correction could represent a valid tool for inference. For instance,
as recently discussed by Villar et al. (2018) for the case of several treatments, super-
imposing a minimum percentage of allocation to the control group produces robust
inference by preserving type-I errors even in the case of time trends.

However, in some circumstances, other critical issues related to the unboundedness
of the variance function and the effect of the nuisance parameters cannot be circum-
vented by simply re-scaling the target. This is the case, for example, of ρR and ρZ

under exponential and Poisson responses, respectively (namely, the corresponding
Neyman allocations); their re-scaled versions, while maintaining the same inferen-
tial performances of the non re-scaled counterparts, do not protect against neither the
strong dependence on the nuisance parameter nor the unboundedness of the variance
function. In such situations, alternative inferential approaches could be preferable and
one of the most promising is randomization-based inference (Wei 1988; Rosenberger
1993). Under this framework, the equality of treatment groups corresponds to an
allocation in which the assignments are unrelated to the responses; inference is thus
carried out by computing the distribution of the treatment allocations conditionally
on the observed outcomes, that are treated as deterministic. Since the distribution of
the test depends on the chosen RAR rule, exact results are quite few and, generally,
p-values and the endpoints of confidence intervals are computed by Monte Carlo
methods (for recent contributions see Wang et al. 2020 for randomization tests and
Wang and Rosenberger 2020 for randomization-based interval estimation).

Our results are focussed on the case of two treatments, but a suitable extension to
the multi-armed case could be very relevant. Indeed, for K > 2 treatments, multiple
comparisons between the treatment groups should be taken into account for inference
(some of them with possibly different importance, due to e.g., previous knowledge
about a gold standard, the presence of a control arm). As showed by Tymofyeyev et al.
(2007), Sverdlov et al. (2011) and Baldi Antognini et al. (2019), the optimal design
maximizing the power of the Wald test of homogeneity is a degenerate allocation
involving only the best and the worst treatments without observations on the inter-
mediate ones (here, the treatment order is the usual stochastic order between random
variables). This clearly leads to unreliable inference about the treatment contrasts and,
at the same time, problems also arise from the ethical viewpoint, since more than half
of the patients could be assigned to the less effective treatment. A re-scaling transfor-
mation can still be applied for multidimensional target ρt = (ρ1, . . . , ρK )with ρi ≥ 0
and

∑K
i=1 ρi = 1 by letting, analogously to (10),

ρir = (1 − r)(1 − ρi )/(K − 1) + rρi , for i = 1, . . . , K , with r ∈ (1/K ; 1),
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which ensures that ρir ∈ [(1 − r)/(K − 1); r ] and
∑K

i=1 ρir = 1. However, in
this setting the impact of the re-scaling correction in terms of estimation efficiency
and power needs to be studied. This topic, as well as proper comparisons between
likelihood-based and randomization-based inference, is left for future research.
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