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Abstract
Within the framework of probability models for overdispersed count data, we propose
the generalized fractional Poisson distribution (gfPd), which is a natural generalization
of the fractional Poisson distribution (fPd), and the standard Poisson distribution. We
derive some properties of gfPd and more specifically we study moments, limiting
behavior and other features of fPd. The skewness suggests that fPd can be left-skewed,
right-skewed or symmetric; this makes the model flexible and appealing in practice.
We apply the model to real big count data and estimate the model parameters using
maximum likelihood. Then, we turn to the very general class of weighted Poisson
distributions (WPD’s) to allow both overdispersion and underdispersion. Similarly
to Kemp’s generalized hypergeometric probability distribution, which is based on
hypergeometric functions, we analyze a class of WPD’s related to a generalization
of Mittag–Leffler functions. The proposed class of distributions includes the well-
known COM-Poisson and the hyper-Poisson models. We characterize conditions on
the parameters allowing for overdispersion and underdispersion, and analyze two
special cases of interest which have not yet appeared in the literature.
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1 Introduction andmathematical background

The negative binomial distribution is one of the most widely used discrete probabil-
ity models that allow departure from the mean-equal-variance Poisson model. More
specifically, the negative binomial distribution models overdispersion of data relative
to the Poisson distribution. For clarity, we refer to the extended negative binomial
distribution with probability mass function

P(X = x) = �(r + x)

�(r)x
pr (1 − p)x , x = 0, 1, 2, . . . , (1)

where r > 0. If r ∈ {1, 2, . . . }, x is the number of failures which occur in a sequence
of independent Bernoulli trials to obtain r successes, and p is the success probability
of each trial.

One limitation of the negative binomial distribution in fitting overdispersed count
data is that the skewness and kurtosis are always positive. An example is given in
Sect. 2.1.1, in which we introduce two real world data sets that do not fit a nega-
tive binomial model. The data sets reflect reported incidents of crime that occurred
in the city of Chicago from January 1, 2001 to May 21, 2018. These data sets are
overdispersed but the skewness coefficients are estimated to be respectively -0.758
and -0.996. Undoubtedly, the negative binomial model is expected to underperform in
these types of count populations. These data sets are just two examples in a yet to be
discovered non-negative binomial world, thus demonstrating the real need for a more
flexible alternative for overdispersed count data. The literature on alternative prob-
abilistic models for overdispersed count data is vast. A history of the overdispersed
data problem and related literature can be found in Shmueli et al. (2005). In this paper
we consider the fractional Poisson distribution (fPd) as an alternative. The fPd arises
naturally from the widely studied fractional Poisson process (Saichev and Zaslavsky
1997; Repin and Saichev 2000; Jumarie 2012; Laskin 2003; Beghin and Orsingher
2009; Cahoy et al. 2010; Meerschaert et al. 2011). It has not yet been studied in depth
and has not been applied to model real count data. We show that the fPd allows big
(large mean), both left- and right-skewed overdispersed count data making it attractive
for practical settings, especially now that data are becoming more available and bigger
than before. fPd’s usually involve one parameter; generalizations to two parameters
are proposed in Beghin and Orsingher (2009) and Herrmann (2016). Here, we take a
step forward and further generalize the fPd to a three parameter model, proving the
resulting distribution is still overdispersed.

One of the most popular measures to detect the departures from the Poisson distri-
bution is the so-called Fisher index which is the ratio of the variance to the mean (≶ 1)
of the count distribution. As shown in the crime example of Sect. 2.1.1, the computa-
tion of the Fisher index is not sufficient to determine a first fitting assessment of the
model, which indeed should take into account at least the presence of negative/positive
skewness. To compute all these measures, the first three factorial moments should be
considered. Consider a discrete random variable X with probability generating func-
tion (pgf)
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GX (u) = EuX =
∑

k≥0

ak
(u − 1)k

k! , |u| ≤ 1, (2)

where {ak} is a sequence of real numbers such that a0 = 1. Observe that Q(t) =
GX (1 + t) is the factorial moment generating function of X . The k-th moment is

EXk =
k∑

r=1

S(k, r)ar , (3)

where S(k, r) are the Stirling numbers of the second kind (Di Nardo and Senato 2006).
By means of the factorial moments it is straightforward to characterize overdisper-
sion or underdispersion as follows: letting a2 > a21 yields overdispersion whereas
a2 < a21 gives underdispersion. Let c2 and c3 be the second and third cumulant of X ,
respectively. Then, the skewness can be expressed as

γ (X) = c3

c3/22

= a3 + 3a2 + a1[1 − 3a2 + a1(2a1 − 3)]
(a1 + a2 − a21)

3/2
. (4)

If the condition

lim
n→∞

an
(n − k)! = 0, k ≤ n, (5)

is fulfilled, the probability mass function of X can be written in terms of its factorial
moments (Daley and Narayan 1980):

P(X = x) = 1

x !
∑

k≥0

ak+x
(−1)k

k! , x ≥ 0. (6)

As an example, the very well-known generalized Poisson distribution which
accounts for both under and overdispersion (Maceda 1948; Consul and Jain 1973),
put in the above form has factorial moments given by a0 = 1 and

ak =
h(λ2)∑

r=0

1

r !λ1(λ1 + λ2(r + k))r+k−1e−(λ1+λ2(r+k)), λ1 > 0, (7)

where h(λ2) = ∞ and k = 1, 2, . . ., if λ2 > 0. While h(λ2) = M − k and k =
1, . . . , M , if max(−1,−λ1/M) ≤ λ2 < 0 and M is the largest positive integer for
which λ1 + Mλ2 > 0.

Another example is given by the Kemp family of generalized hypergeometric fac-
torial moments distributions (GHFD) (Kemp and Kemp 1974) for which the factorial
moments are given by

ak = � [(a + k); (b + k)] λk

� [(a); (b)]
, k ≥ 0, (8)
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where � [(a); (b)] = ∏p
i=1 �(ai )/

∏q
j=1 �(b j ), with a1, . . . , ap, b1, . . . , bq ∈ R

and p, q non negative integers. The factorial moment generating function is Q(t) =
pFq [(a); (b); λt], where

pFq [(a); (b); z] = pFq(a1, . . . , ap; b1, . . . , bq ; z) =
∑

m≥0

(a1)m · · · (ap)m
(b1)m · · · (bq)m

zm

m! ,

(9)

and (a)m = a(a+1) · · · (a+m−1),m ≥ 1.Both overdispersion and underdispersion
are possible, depending on the values of the parameters (Tripathi and Gurland 1979).
The generalized fractional Poisson distribution (gfPd), which we introduce in the next
section, lies in the same class of the Kemp’s GHFD but with the hypergeometric
function in (9) substituted by a generalized Mittag–Leffler function (also known as
three-parameter Mittag–Leffler function or Prabhakar function). In this case, as we
have anticipated above, the model is capable of not only describing overdispersion but
also having a degree of flexibility in dealing with skewness.

It is worthy to note that there exists a second family of Kemp’s distributions,
still based on hypergeometric functions and still allowing both underdispersion and
overdispersion. This is known the Kemp’s generalized hypergeometric probability
distribution (GHPD) (Kemp 1968) and it is actually a special case of the very gen-
eral class of weighted Poisson distributions (WPD). Taking into account the above
features, we thus analyze the whole class of WPD’s with respect to the possibility of
obtaining under and overdispersion. In Theorem 3.2 we first give a general necessary
and sufficient condition to have an underdispersed or an overdispersed WPD random
variable in the case in which the weight function may depend on the underlying Pois-
son parameter λ. Special cases ofWPD’s admitting a small number of parameters have
already proven to be of practical interest, such as for instance the well-known COM-
Poisson (Conway andMaxwell 1962) or the hyper-Poisson (Bardwell and Crow 1964)
models. Here we present a novel WPD family related to a generalization of Mittag–
Leffler functions in which the weight function is based on a ratio of gamma functions.
The proposed distribution family includes the above-mentioned well-known classi-
cal cases. We characterize conditions on the parameters allowing overdispersion and
underdispersion and analyze two further special cases of interest which have not yet
appeared in the literature. We derive recursions to generate probability mass functions
(and thus random numbers) and show how to approximate the mean and the variance.

The paper is organized as follows: in Sect. 2, we introduce the generalized fractional
Poisson distribution, discuss some properties and recover the classical fPd as a special
case. These models are fit to the two real-world data sets mentioned above. Sect. 3
is devoted to weighted Poisson distributions, their characteristic factorial moments
and the related conditions to obtain overdispersion and underdispersion. Furthermore,
the novel WPD based on a generalization of Mittag–Leffler functions is introduced
and described in Sect. 3.1: we discuss some properties and show how to get exact
formulae for factorial moments by using Faà di Bruno’s formula (Stanley 2012). Two
special models are then characterized depending on the values of the parameters and
compared to classical models. Finally, some illustrative plots end the paper.
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2 Generalized fractional Poisson distribution (gfPd)

Definition 2.1 A random variable X δ
α,β

d= gfPd(α, β, δ, μ) if

P(X δ
α,β = x) = �(δ + x)

x !�(δ)
μx�(β)Eδ+x

α,αx+β(−μ),

μ > 0; x ∈ N; α, β ∈ (0, 1]; δ ∈ (0, β/α], (10)

where

Eτ
η,ν(w) =

∞∑

j=0

(τ ) j

j !�(η j + ν)
w j , (11)

w ∈ C; �(η),�(ν),�(τ ) > 0, is the generalized Mittag–Leffler function (Prabhakar
1971) and (τ ) j = �(τ + j)/�(τ) denotes the Pochhammer symbol.

To show non-negativity, notice that

�(δ + x)

�(δ)
Eδ+x

α,αx+β(−μ) ≥ 0 ⇐⇒ (−1)x
dx

dμx
Eδ

α,β(−μ) ≥ 0, (12)

that is, Eδ
α,β(−μ) is completely monotone. From De Oliveira et al. (2011), it is known

that Eδ
α,β(−μ) is completely monotone if α, β ∈ (0, 1], δ ∈ (0, β/α] and thus the

pmf in (10) is non-negative.
Note that the probability mass function can be determined using the following

integral representation (Polito and Tomovski 2016):

P(X δ
α,β = x) = �(β)

x !�(δ)
μx

∫

R+
e−μy yδ+x−1φ(−α, β − αδ;−y)dy, (13)

where the Wright function φ is defined as the convergent sum (Kilbas et al. 2006)

φ(ξ, ω; z) =
∞∑

r=0

zr

r !�[ξr + ω] , ξ > −1, ω, z ∈ R. (14)

Remark 2.1 The random variable X δ
α,β has factorial moments

ak = �(β)�(δ + k)

�(αk + β)�(δ)
μk, k ≥ 0. (15)

Hence the pgf is GXδ
α,β

(u) = �(β)Eδ
α,β(μ(u − 1)), |u| ≤ 1.
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By expressing the moments in terms of factorial moments and after some algebra
we obtain

E[X δ
α,β ] = �(β)δμ

�(β + α)
, (16)

Var[X δ
α,β ] = �(β)δμ

�(β + α)
+ �(β)δμ2

(
(δ + 1)

�(β + 2α)
− �(β)δ

�(β + α)2

)
. (17)

Theorem 2.1 X δ
α,β exhibits overdispersion.

Proof We have

a2 > a21 ⇔ δ + 1

�(2α + β)
>

δ�(β)

�2(α + β)

⇔ δ

(
�(β)

�2(α + β)
− 1

�(2α + β)

)
<

1

�(2α + β)
(18)

and

�(β)

�2(α + β)
− 1

�(2α + β)
> 0 as Beta(β, α) > Beta(α + β, α). (19)

Thus, the distribution is overdispersed for

δ <
Beta(α + β, α)

Beta(β, α) − Beta(α + β, α)
. (20)

Observe that the function βBeta(β, α) is increasing in β for α, β ∈ (0, 1) as

∂

∂β
βBeta(β, α) = Beta(β, α)(1 + β(ψ(β) − ψ(α + β)) > 0, (21)

where ψ is the digamma function. Note that (21) is positive by formula (1.3.3) of
Lebedev (1972) as ψ is increasing on (0,∞). Thus

βBeta(β, α) < (α + β)Beta(α + β, α) ⇔ β

α
<

Beta(α + β, α)

Beta(β, α) − Beta(α + β, α)
(22)

and for δ ∈ (0, β/α) the bound (20) is always verified. ��

2.1 Fractional Poisson distribution

This section analyzes the classical fPd, which is a special case of gfPd, and is obtained
when β = δ = 1. The fPd can model asymmetric (both left-skewed and right-skewed)
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overdispersed count data for all mean count values (small and large). The fPd has
probability mass function (pmf)

P(Xα = x) = μx Ex+1
α,αx+1(−μ), x = 0, 1, 2, . . . , (23)

where μ > 0, α ∈ [0, 1].
Notice that if α = 1, the standard Poisson distribution is retrieved, while for α = 0

we have X0
d= Geo (1/(1 + μ)). Indeed,

P(X0 = x) = μx

x !
∞∑

j=0

( j + x)!
j ! (−μ) j = 1

1 + μ

(
μ

1 + μ

)x

, x ≥ 0. (24)

Furthermore, the probability mass function can be determined using the following
integral representation (Beghin and Orsingher 2010):

P(Xα = x) = μx

x !
∫

R+
e−μy yx Mα(y)dy, (25)

where the M-Wright function (Mainardi et al. 2010)

Mα(y) =
∞∑

j=0

(−y) j

j !�[−α j + (1 − α)] = 1

π

∞∑

j=1

(−y) j−1

( j − 1)! �(α j) sin(πα j) (26)

is the probability density function of the random variable S−α with S
d= α+-stable

supported in R+. By using (25), the cumulative distribution function turns out to be

FXα (x) =
∞∑

r=0

(
x + r − 1

x

)
(−1)rμ−(r+1)

�(1 − α(r + 1))
1(x>0)(x). (27)

Remark 2.2 From (2.1), the random variable Xα has factorial moments

ak = μkk!
�(1 + αk)

, k ≥ 0. (28)

Hence the probability generating function is GXα (u) = E1
α,1 (μ (u − 1)), |u| ≤ 1.

With respect to the symmetry structure of Xα , from (4) and (28), the skewness of
Xα reads

γ (Xα) =
1

μ2�(1+α)
+ 6

μ�(1+2α)
+ 6

�(1+3α)
− 3

μ[�(1+α)]2
− 6

�(1+α)�(1+2α)
+ 2

[�(1+α)]3
(

1
μ�(1+α)

+ 2
�(1+2α)

− 1
[�(1+α)]2

)3/2 .

(29)
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Fig. 1 Probability mass functions of Xα for α = 0.1, 0.5, 0.75, 0.9, and μ = 20

Moreover,

lim
μ→∞ γ (Xα) =

6
�(1+3α)

− 6
�(1+α)�(1+2α)

+ 2
[�(1+α)]3

(
2

�(1+2α)
− 1

[�(1+α)]2
)3/2 = 0, (30)

which correctly vanishes if α = 1, like the ordinary Poisson distribution.

2.1.1 Simulation and parameter estimation

The integral representation (25) allows visualization of the probability mass function
of Xα (see Fig. 1). Figure 1 shows the flexibility of the fPd. The probability distri-
bution ranges from zero-inflated right-skewed (α → 0) to left-skewed (α → 1) and
symmetric (α = 1) overdispersed count data. To compute the integral in (25) bymeans
of Monte Carlo techniques, we use the approximation,

pα
x ≈ μx

x !

⎛

⎝ 1

N

N∑

j=1

e−μY j Y x
j

⎞

⎠ , (31)

where Y ′
j s

iid= S−α. Note that the random variable S can be generated using the
following formula (Kanter 1975; Chambers et al. 1976):

S
d= sin(απU1)[sin((1 − α)πU1)]1/α−1

[sin(πU1)]1/α| lnU2|1/α−1 , (32)

whereU1 andU2 are independently and uniformly distributed in [0, 1]. Thus, fractional
Poisson random numbers can be generated using the algorithm below.
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Fig. 2 Skewness coefficient for μ = 0.5, 1, 3 and its limit as functions of α ∈ (0, 1)

Algorithm:
Step 1. Set X = 0, and T = 0.
Step 2. While {T ≤ 1}

T = T + V 1/α S

X = ifelse(T ≤ 1, X + 1, X)

Step 3. Repeat steps 1 − 2, n times.

Note that the random variable V follows the exponential distribution with density
function μ exp(−μv), v ≥ 0. Algorithms for generating random variables from the
exponential density function are well-known. Hence, the algorithm allows estimation
of the kth moment, i.e., EXk

α.

Figure 2 shows the plot of the skewness coefficient (30) as a function of μ and α.

Unlike the negative binomial, the fPd can accommodate both left-skewed and right-
skewed count data making it more flexible. Thus, the fPd is more flexible than the
negative binomial, especially if the number of failures becomes large.

We applied the fractional Poisson model fPd(α, μ) to two data sets, named Data
1 and Data 2, which are about the reported incidents of crime that occurred in the
city of Chicago from 2001 to present.1 The sample distributions together with their
description are shown in Fig. 3.

Furthermore, we compared fPd(α, μ) with the negative binomial NegBinom(size,
mean) using the usual chi-square goodness-of-fit test statistic and the maximum
likelihood estimates for both models. Note that the chi-square test statistic follows,
approximately, a chi-square distribution with (k − 1 − p) degrees of freedom where
k is the number of cells and p is the number of parameters to be estimated plus one.

For illustration purposes, we used grid search for the fPd(α, μ) as it is relatively fast
due to α being bounded in (0, 1) and toμ, which is just in the neighborhood of the true
data mean scaled by �(1 + α). Observe that 5 × 105 random numbers are used in all
the calculations. From the results below, the fractional Poisson distribution fPd(α, μ)

provides better fits than the negative binomial NegBinom(size,mean) model for both

1 https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2/data.
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Fig. 3 (Left) The number of all incidents from 2001 to 2018 for each police district. (Right) The number
of incidents described as “$500 AND UNDER” for each police district

Table 1 Comparison between fPd(α, μ) and NegBinom(si ze,mean) fits

Estimates fPd NegBinom

MLE for Data 1 (α̂, μ̂) = (0.866, 41574.1) (si ze,mean) = (1.602, 45590.17)

MLE for Data 2 (α̂, μ̂) = (0.85, 3607) (si ze,mean) = (1.69, 4019.61)

Chi-square for Data 1 71191.64 202542.7

Chi-square for Data 2 6442.634 21819.39

P-value for Data 1, d f = 70939 0.254 0

P-value for Data 2, d f = 6442 0.495 0

data sets at 5% level of significance. This exercise clearly demonstrates the limitation
of the negative binomial in dealing with left-skewed count data (Table 1).

2.2 The case for gfPd(˛,˛, 1,�)

When β = α and δ = 1, we have Xα,α
d= gfPd(α, α, 1, μ) with

P(Xα,α = x) = �(α)μx Ex+1
α,α(x+1)(−μ), μ > 0; x ∈ N; α ∈ (0, 1]. (33)

Proposition 2.1 The probability mass function can be written as

P(Xα,α = x) = �(α + 1)
μx

x !
∫

R+
y−α(x+1)e−μy−α

νS(dy), (34)

where νS is the distribution of a random variable S whose density has Laplace trans-
form exp(−tα).

Proof Note that

1

x !
∫

R+
y−α(x+1)e−μy−α

νS(dy) = 1

x !
∑

k≥0

(−μ)k

k!
∫

R+
y−αk−α(x+1)νS(dy) (35)
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Table 2 Maximum likelihood
estimates for gfPd(α, α, 1, μ)

Estimates gfPd(α, α, 1, μ)

MLE for Data 1 (α̂, μ̂) = (0.844, 38276)

MLE for Data 2 (α̂, μ̂) = (0.794, 3020)

Chi-square for Data 1 15609324

Chi-square for Data 2 966402.5

= 1

x !
∑

k≥0

(−μ)k

k!
�(1 + k + x + 1)

�(1 + αk + α(x + 1))

=
∑

k≥0

(−μ)k

k!
�(k + x + 1)

αx !�(αk + α(x + 1))

= 1

α
Ex+1

α,α(x+1)(−μ). ��

The above result provides an algorithm to evaluate the probability mass function as

P(Xα,α = x) = �(α + 1)
μx

x ! E
(
S−α(x+1)e−μS−α

)

≈ �(α + 1)
μx

x !

⎛

⎝ 1

N

N∑

j=1

S−α(x+1)
j e−μS−α

j

⎞

⎠ . (36)

Thus, we can now estimate α and μ using maximum likelihood just like in the fPd
case. The maximum likelihood estimates for the two crime datasets above are given in
Table 2 below. The chi-square goodness-of-fit test statistics are large, indicating bad
fits.

Remark 2.3 From (2.1), the random variable Xα,α has factorial moments

ak = �(α)μkk!
�(α + αk)

, k ≥ 0. (37)

Thus the pgf is GXα,α (u) = �(α)E1
α,α (μ (u − 1)), |u| ≤ 1.

From (4) and (37), the symmetry structure of Xα,α can be determined as follows:

γ (Xα,α) =
�(α)

(
6

�(4α)
+ 6

μ�(3α)
+ 1

μ2�(2α)
− 6

�(2α)�(3α)
+ 2

�(2α)3
− 3

μ�(2α)2

)

(
1

μ�(2α)
+ 2

�(3α)
− 1

�(2α)2

)3/2 .

(38)
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Moreover,

lim
μ→∞ γ (Xα,α) =

�(α)
(

6
�(4α)

− 6
�(2α)�(3α)

+ 2
�(2α)3

)

(
2

�(3α)
− 1

�(2α)2

)3/2 = 0, (39)

which vanishes if α = 1 (Poisson distribution). Moreover, (39) is non-negative and
decreasing: this explains the bad fits indicated by the large chi-square values above.

3 Underdispersion and overdispersion for weighted Poisson
distributions

Weighted Poisson distributions (Rao 1965) provide a unifying approach for modelling
both overdispersion and underdispersion (Kokonendji et al. 2008). Let Y be a Poisson
random variable of parameter λ > 0 and let Yw be the corresponding WPD with
weight function w.

Theorem 3.1 If Ew(Y + k) < ∞ for all k ∈ N, and ak = λkh(λ, k), where h(λ, k) =
Ew(Y+k)
Ew(Y )

, satisfies (5), then Yw has factorial moments ak.

Proof It is enough to observe that the pgfGYw(u) can bewritten in form (2) as follows:

GYw(u) =
∑

k≥0

(u + 1 − 1)k
e−λλkw(k)

k!Ew(Y )
=

∑

k≥0

(u − 1)k

k!
∑

j≥0

e−λλ j+kw( j + k)

j !Ew(Y )

=
∑

k≥0

(u − 1)k

k! λkh(λ, k). (40)

��
Let T be the linear left-shift operator acting on number sequences. Let us still

denote with T its coefficientwise extension to the ring of formal power series in
R+[[λ]] (Stanley 2012). Next proposition links overdispersion and underdispersion
of Yw respectively to a Turán-type and a reverse Turán-type inequality involving T .

Theorem 3.2 The random variable Yw is overdispersed (underdispersed) if and only
if

f (λ)T 2 f (λ) > (<) [T f (λ)]2, (41)

where f (λ) = Ew(Y ).

Proof The random variable Yw is overdispersed if and only if a2 > a21 , that is
Ew(Y )Ew(Y + 2) > [Ew(Y + 1)]2. Equivalently,

⎛

⎝
∑

k≥0

λk

k! w(k)

⎞

⎠

⎛

⎝
∑

k≥0

λk

k! w(k + 2)

⎞

⎠ >

⎛

⎝
∑

k≥0

λk

k! w(k + 1)

⎞

⎠
2

, (42)
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and the result follows observing that T j f (λ) = ∑
k≥0

λk

k! T
j [w(k)] for j = 1, 2. ��

Remark 3.1 Observe that when w does not depend on λ, then T j f (λ) = D j
λ f (λ) for

j = 1, 2. In this case, condition (41) is equivalent to f (λ)D2
λ f (λ) > (<) [Dλ f (λ)]2,

i.e. log-convexity (log-concavity) of f . This is already known in the literature (see
Theorem 3 of Kokonendji et al. (2008)).

Remark 3.2 Note that from (42) we have

∑

k≥0

λk

k!

⎛

⎝
k∑

j=0

(
k

j

)
w( j)w(k − j + 2)

⎞

⎠

>
∑

k≥0

λk

k!

⎛

⎝
k∑

j=0

(
k

j

)
w( j + 1)w(k − j + 1)

⎞

⎠ (43)

and some algebra leads us to the following sufficient condition for overdispersion or
underdispersion: the random variable Yw is overdispersed (underdispersed) if

k+1∑

j=0

[(
k

j

)
−

(
k

j − 1

)]
w( j)w(k − j + 2) > (<) 0. (44)

Notice that Ew(Y ) is a function of the Poisson parameter λ. For the sake of clar-
ity, from now on, let us denote it by η(λ). Weighted Poisson distributions with a
weight functionw not depending on the Poisson parameter λ are also known as power
series distributions (PSD) (Johnson et al. 2005) and it is easy to see that the factorial
generating function in this case reads

Q(t) = η[λ(t + 1)]
η(λ)

(45)

with factorial moments

ar = λr

η(λ)

dr

dλr
[η(λ)], r ≥ 1. (46)

A special well-known family of PSD is the generalized hypergeometric probability
distribution (GHPD) (Kemp 1968), where

Q(t) = pFq [(a); (b); λ(t + 1)]

pFq [(a); (b); t] (47)

with pFq given in (9). Depending on the values of the parameters of GHPD both
overdispersion and underdispersion are possible (Tripathi and Gurland 1979). For
p = q = 1, a special case of GHPD is the hyper-Poisson distribution (Bardwell and
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Crow1964). In the next sectionwewill analyze an alternativeWPD inwhich the hyper-
Poisson distribution remains a special case and that exhibits both underdispersion and
overdispersion.

3.1 A novel flexibleWPD allowing overdispersion or underdispersion

Let Yw be a WP random variable with weight function

w(k) = �(k + γ )

�(αk + β)ν
, (48)

where γ > 0, min(α, β, ν) ≥ 0, α + β > 0. Moreover, if γ = β and ν ≥ 1 then β is
allowed to be zero. Since it is a PSD, the random variable Yw is characterized by the
normalizing function

η(λ) = η
γ,ν
α,β(λ) =

∞∑

k=0

λk

k!
�(k + γ )

�(αk + β)ν
. (49)

The convergence of the above series can be ascertained as follows. Let γ ≤ 1; by
Gautschi’s inequality (see Qi (2010), formula (2.23)) we have the upper bound

η(λ) ≤ �(γ )

�(β)ν
+

∞∑

k=1

λkkγ−1

�(αk + β)ν
, (50)

which converges by ratio test and taking into account the well-known asymptotics for
the ratio of gamma functions (see Tricomi and Erdélyi (1951)). Now, let γ > 1. In
this case an upper bound can be derived by formula (3.72) of Qi (2010):

η(λ) <
�(γ )

�(β)ν
+

∞∑

k=1

λk(k + γ )γ−1

�(αk + β)ν
. (51)

Again, this converges by ratio test and recurring to the above-mentioned asymptotic
behaviour of the ratio of gamma functions.

The random variable Yw specializes to some well-known classical random vari-
ables. Specifically, we recognize the following:

1. If γ = β = α = ν = 1, we recover the Poisson distribution as the weights equal
unity for each k.

2. If γ = β = α = 1, we recover the COM-Poisson distribution (Conway and
Maxwell 1962) of Poisson parameter λ and dispersion parameter ν.

3. If γ = α = ν = 1 we obtain the hyper-Poisson distribution (Bardwell and Crow
1964).

4. If γ = ν = 1 we obtain the alternative Mittag–Leffler distribution considered e.g.
in Bardwell and Crow (1964) and Herrmann (2016).

5. If γ = 1 we recover the fractional COM-Poisson distribution (Garra et al. 2018).
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6. If ν = 1 we obtain the alternative generalized Mittag–Leffler distribution (Pogány
and Tomovski 2016).

Since Yw is a PSD, it is easy to derive its factorial moments,

ar = λr

η
γ,ν
α,β(λ)

∞∑

k=r

λk−r

(k − r)!
�(k + γ )

�(αk + β)ν
= λr

η
γ+r ,ν
α,αr+β(λ)

η
γ,ν
α,β(λ)

, (52)

from which the moments are immediately derived by recalling formula (3).

Remark 3.3 Since η
γ+r ,ν
α,αr+β(λ) = ∑

j≥0
λ j

j ! A j,r with

A j,r = �( j + r + γ )

�[α( j + r) + β)]ν , (53)

by using Faà di Bruno’s formula (Stanley 2012) one has

ar = λr
∑

j≥0

λ j

j !
j∑

i=0

(
j

i

)
A j−i,r Di with

Di =
i∑

k=0

(−1)k A−(k+1)
0,0 Bi,k(A1,0, . . . , Ai−k+1,0), (54)

where {A j,0} and and {Bi,k} are the coefficients of η
γ,ν
α,β(λ) and the partial Bell expo-

nential polynomials (Stanley 2012), respectively.

Furthermore, the probability mass function reads

P(Yw = x) = λx

x !
�(x + γ )

�(αx + β)ν

1

η
γ,ν
α,β(λ)

, x ≥ 0. (55)

Concerning the variability of Yw, by using Theorem 3 of Kokonendji et al. (2008),
the preceding Lemma and the succeeding Corollary, that is by imposing log-convexity
(log-concavity) of the weight function, we write for y ∈ R+,

d2

dy2
log

�(y + γ )

�(αy + β)ν
= d

dy

[
1

�(y + γ )

d

dy
�(y + γ ) − ν

�(αy + β)

d

dy
�(αy + β)

]

= d

dy

[
ψ(y + γ ) − να ψ(αy + β)

]
, (56)

where ψ(z) is the Psi function (see Lebedev (1972), Section 1.3). In addition, by
considering formula (6.4.10) of Abramowitz and Stegun (1964),

d2

dy2
log

�(y + γ )

�(αy + β)ν
=

∞∑

r=0

(y + γ + r)−2 − να2
∞∑

r=0

(αy + β + r)−2. (57)

123



2984 D. Cahoy et al.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ = 0.1
λ = 0.5
λ = 1

Fig. 4 Probability mass functions (59) for λ = 0.1, 0.5, 1, β = 0.5, and ν = 0.1

Therefore log-convexity (log-concavity) of w(y) is equivalent to the condition

ν < (>)

∑∞
r=0(y + γ + r)−2

α2
∑∞

r=0(αy + β + r)−2
, ∀ y ∈ R+. (58)

This yields that if (58) holds, then Yw is overdispersed (underdispersed).

Remark 3.4 (Classical special cases) If α = β = γ = 1, then Yw is the COM-Poisson
random variable and (58) correctly reduces to the ranges ν > 1 giving underdispersion
and ν ∈ [0, 1) giving overdispersion. If α = γ = ν = 1, then Yw is the hyper-Poisson
random variable and (58) correctly reduces to the ranges β > 1 (overdispersion) and
β ∈ [0, 1) (underdispersion). This holds as β �→ ∑∞

r=0(y + β + r)−2 is decreasing
for all fixed y ∈ R+.

In the two next sections we analyze two special cases of interest, the first of which,
to the best of our knowledge, is still not considered in the literature.

3.1.1 Model I

We first introduce the special case in which α = 1, γ = β, β > 0, and β is allowed
to be zero only if ν ≥ 1. This is a three-parameter (λ, ν, β) model which retains
the same simple conditions for underdispersion and overdispersion as for the COM-
Poisson model. Indeed, formula (58) reduces to ν > 1 and ν ∈ [0, 1), respectively.
However, this model is more flexible than the COM-Poisson model because of the
presence of the parameter β. Notice that the pmf can be written as

P(Yw = x) = 1

x ! exp
(
x log λ + (1 − ν) log�(x + β) − log η

β,ν
1,β (λ)

)
, (59)

which suggests that Model I belongs to the exponential family of distributions with
parameters log λ and 1 − ν, where β is a nuisance parameter or is known. Figures 4
and 5 show sample shapes of this family of distributions.
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Fig. 5 Probability mass functions (59) for λ = 0.5, 2, 5, 10, β = 0.1, and ν = 1.1

Note that distributions in Fig. 4 (Fig. 5) are overdispersed (underdispersed). Also,

P(Yw = x + 1) = λ

(x + 1)(x + β)ν−1 P(Yw = x). (60)

This gives a procedure to calculate iteratively the probability mass function and gen-
erate random numbers. The only thing to figure out is to compute η

β,ν
1,β (λ) in order to

obtain P(Yw = 0) = 1/[�(β)ν−1η
β,ν
1,β (λ)].

An upper bound for the normalizing function η
β,ν
1,β (λ) can be determined similarly

to Minka et al. (2003), Section 3.2, taking into consideration that the multiplier

λ( j + β)1−ν/( j + 1) (61)

is ultimately monotonically decreasing. Hence, we can approximate the normalizing
constant ηβ,ν

1,β (λ) by truncating the series and bound the truncation error Rk̃ ,

η
β,ν
1,β (λ) =

k̃∑

j=0

λ j

j ! �( j + β)1−ν + Rk̃

<

k̃∑

j=0

λ j

j ! �( j + β)1−ν + λk̃+1�(̃k + 1 + β)1−ν

(̃k + 1)!
∞∑

j=0

ε
j
k̃

<

k̃∑

j=0

λ j

j ! �( j + β)1−ν + λk̃+1�(̃k + 1 + β)1−ν

(̃k + 1)! (1 − ε̃k)
, (62)

where k̃ is such that for j > k̃ the multiplier (61) is already monotonically decreas-
ing and bounded above by ε̃k ∈ (0, 1). Correspondingly, denoting with η̃

β,ν
1,β (λ) =

∑k̃
j=0

λ j

j ! �( j + β)1−ν , the relative truncation error Rk̃/η̃
β,ν
1,β (λ) is bounded by
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Fig. 6 Probability mass functions (64) for λ = 0.5, 2, 5, 10, β = 0.5, and γ = 0.1

λk̃+1�(̃k + 1 + β)1−ν

(̃k + 1)! (1 − ε̃k )̃η
β,ν
1,β (λ)

. (63)

As a last remark, we can further simplify the model obtaining a two-parameter
model. In order to do so, let ν = β, with β > 0. The obtained model still allows for
underdispersion (β > 1) and overdispersion (β ∈ (0, 1)) and it should be directly
compared with the COM-Poisson and the hyper-Poisson models.

3.1.2 Model II

If we set α = ν = 1 we get another three-parameter (λ, γ, β) model, special case
of the alternative generalized Mittag–Leffler distribution (see point 6 above). The
reparametrization β = ξγ together with condition (58) shows that both overdispersion
(ξ > 1) and underdispersion (ξ ∈ (0, 1)) are possible. This comes from the fact that
ω �→ ∑∞

r=0(y + ω + r)−2 is decreasing for all fixed y ∈ R+. As for Model I, the
probability distribution belongs to the exponential family with parameter log λ, with
γ and β as nuisance parameters. Explicitly, the pmf reads

P(Yw = x) = λx

x !
�(x + γ )

�(x + β)

1

η
γ,1
1,β(λ)

, x ≥ 0, (64)

and, as in the previous Sect. 3.1.1, the iterative representation

P(Yw = x + 1) = λ(x + γ )

(x + 1)(x + β)
P(Yw = x), (65)

allows an approximated evaluation of the pmf with error control, and consequently
random number generation. Also in this case this holds as the involved multiplier
is ultimately monotonically decreasing. Figures 6 and 7 show some forms of this
class of distributions. Observe that distributions in Fig. 6 (Fig. 7) are underdispersed
(overdispersed).
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Fig. 7 Probability mass functions (64) for λ = 0.5, 2, 5, 10, β = 0.1, and γ = 1.1

If we further let λ = 1, we obtain a two-parameter model, still allowing for under-
dispersion if β ∈ (0, γ ) (or equivalently ξ ∈ (0, 1)) and overdispersion if β > γ (or
ξ > 1), which is also directly comparable with the two-parameter Model I above, the
COM-Poisson model, and the hyper-Poisson model.

3.1.3 Comparison

We now compare Model I and Model II with known models that allow overdispersion
andunderdispersion such as theCOM-Poisson, generalizedPoisson andhyper-Poisson
models as cited above. Note that the hyper-Poisson distribution satisfies

P(Yw = x + 1) = λ

(x + β)
P(Yw = x). (66)

For comparison purposes, we first consider the number of fish caught data2 shown
in Fig. 8 (left panel) below. The dataset corresponds to 239 groups (as 11 potential
outliers were removed) that went to a state park and state wildlife biologists asked
visitors how many fish they caught. The mean fish caught is around 1.48 while the
variance is 8.04. Furthermore, the optimx (for hyper-Poisson, Model I and Model
II), COMPoissonReg (for COM-Poisson), compoisson (for COM-Poisson), and
VGAM (for generalized Poisson) packages in R are used for the maximum likeli-
hood estimation and the chi-square goodness-of-fit tests. In particular, the L-BFGS-B
method from the optimx package is used and 1000 terms were summed for the nor-
malizing constant η

γ,ν
α,β(λ). Just like the comparisons above, a chi-square distribution

is used as reference where the degrees of freedom is the number of cells minus the
number of model parameters. From Table 3, Model I and Model II clearly outper-
form the other models although the generalized Poisson and hyper-Poisson (subcase
of WPD) also provide good fits to the fish count data.

We have also considered the bioChemists data from the pscl package in R,
particularly the count of articles produced by 915 graduate students in biochemistry
Ph.D. programs during last 3 years in the program.The data hasmean 1.69 and variance

2 https://stats.idre.ucla.edu/stat/data/fish.csv.
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Fig. 8 (Left) The fish caught
count data. (Right) The count of
articles produced by graduate
students in biochemistry Ph.D.
programs
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Table 3 Comparison results for the fish count data

Model ML Estimates Chi-square P-value

COM-Poisson (λ̂, ν̂) = (11.5876, 0.9806) 13495000 0

Hyper-Poisson (α̂, β̂) = (37.1126, 170) 18.2259 0.1090

Gen Poisson (λ̂, θ̂ ) = (0.6334, 0.5430) 15.1197 0.2349

Model I (α̂, β̂, ν̂) = (0.9544, 0.2126, 0.0632) 12.6350 0.3178

Model II (α̂, β̂, γ̂ ) = (134.5545, 149.9958, 0.2504) 9.7697 0.5512

Table 4 Comparison results for the article count data

Model ML Estimates Chi-square P-value

COM-Poisson (λ̂, ν̂) = (14.4428, 0.9903) 14156763 0

Hyper-Poisson (α̂, β̂) = (14.5253, 20.3124) 1549.086 1.3487e-34

Gen Poisson (λ̂, θ̂ ) = (0.2991, 1.1886) 121.9043 8.0757e-19

Model I (α̂, β̂, ν̂) = (0.4992, 1.7028, 0.001) 266.8644 9.229e-49

Model II (α̂, β̂, γ̂ ) = (73.17587, 150.001, 1.7985) 21.4124 0.0915

of 3.71, and is showcased in Fig. 8 (right panel). Apparently, Table 4 suggests that
Model II outperforms the rest of the models considered for the article count data.
Overall, there is potential in WPD’s (e.g., Model I and Model II) in flexibly capturing
overdispersed and/or underdispersed count data distributions.
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