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Abstract
Models that capture symmetries present in the data have been widely used in different
applications, with early examples from psychometric and medical research. The aim
of this article is to study a random effects model focusing on the covariance structure
that is block circular symmetric. Useful results are obtained for the spectra of these
structured matrices.

Keywords Covariance matrix · Circular block symmetry · Random effects model ·
Symmetry model · Eigenvalue · Eigenvector

1 Introduction

Real populations which are of interests in various research areas such as medicine,
biology, social studies, often exhibit hierarchical structures. For instance, in educa-
tional research, students are grouped within classes and classes are grouped within
schools; in medical studies, patients are nested within doctors and doctors are nested
within hospitals; in breeding studies, offsprings are grouped by sire and sires are
grouped within some spatial factors (region); in political studies, voters are grouped
within districts and districts are grouped within cities; in demographic studies, chil-
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dren are groupedwithin families and families are groupedwithin amacro-context such
as neighborhoods or ethnic communities. It has been recognized that such grouping
induces certain dependence between population units within different clusters and,
hence statistical models based upon independence assumption become invalid.

Mixed linear models are routinely used for data analysis when the data exhibit
dependence and/or various sources of variation can be identified, e.g., repeated mea-
sures, longitudinal and hierarchical data. In general, the mixed linear model has the
following form

Y = Xβ + Zγ + ε, (1)

where Y : n × 1 is a response vector, X : n × p is a known design matrix, β : p × 1
is a vector of fixed effects, γ : k × 1 is a vector of random-effects with a known
incidence matrix Z : n × k, ε : n × 1 is a vector of random errors. It is assumed that
γ ∼ N (0, G), ε ∼ N (0, R), and Cov(γ , ε) = 0. Hence, Y is normally distributed
with expectation Xβ and covariance matrix � = ZGZ′ + R.
In this article, we consider a two factor nested model. Let γ : n2 × 1 and ξ : n2n1 × 1
be two vectors of random effects, where ξ is nested within factor γ , and ε : n2n1×1 be
the vector of random errors. Further, it is assumed that γ ∼ N (0,�1), ξ ∼ N (0,�2)

and ε ∼ N (0, σ 2 In2n1). Thus, the model in (1) becomes:

Y = Xβ + (In2 ⊗ 1n1)γ + (In2 ⊗ In1)ξ + (In2 ⊗ In1)ε, (2)

where β and X are defined as before, 1ni and Ini denote a column vector of size ni
with all elements equal to 1 and the identity matrix of order ni , respectively, and the
symbol ⊗ stands for the Kronecker product. Hence,

Y ∼ N (Xβ,�), where � = Z1�1Z′
1 + �2 + σ 2 In2n1, Z1 = In2 ⊗ 1n1 .

Two-level hierarchical (nested) model (2) can, for example, be used to model data
comprising the petal length and petal width measurements of Kalanchoe flowers col-
lected on n plants from the same greenhouse (Liang et al. 2015). From each plant,
there have been randomly chosen n2 Kalanchoe flowers, all of them have four petals
(n1 = 4). The correlation between the observations on any two petals within a single
flower is supposed to be a function of the number of petals between them, since the
arrangement of petals is circular within each Kalanchoe flower. Therefore, to describe
the intra-flower correlation a covariance matrix with circular structure is applied. The
inter-flower correlation is described using the compound symmetric covariancematrix.
Hence, the mixed linear model (2) used to fit the data becomes:

yi = μ112 + (I3 ⊗ 14)γ + (I3 ⊗ I4)ξ + ε,

where yi : 12 × 1 is a vector of observations on plant i , i = 1, . . . , n, μ is a general
mean, γ : 3 × 1 is the vector of inter-plant random effects, ξ : 12 × 1 is the vector of
intra-plant random effects and ε is the vector of random errors. Furthermore, γ , ξ and ε

are assumed to be independently distributed as N (0,�1), N (0,�2) and N (0, σ 2 I12),
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Toeplitz-type covariance matrices in random effects models 2511

correspondingly, with �1 having a compound symmetric structure and �2 exhibiting
a circular pattern.
As mentioned above, the presence of a hierarchical structure generally implies depen-
dence within groups of observations. The dependence structure which is described
via the covariance matrices can exhibit special patterns, for example an intraclass
correlation pattern. Nowadays, the interest of studying various patterned covariance
structures is increasing, see e.g. Srivastava et al. (2008),Klein andZezula (2009), Leiva
and Roy (2010), Liang et al. (2015), Roy et al. (2018), Kopčová and Žežula (2020).
The reason is that unstructured covariance matrices may not be suitable to model the
error structure in general. The number of unknown parameters in a p × p unstruc-
tured covariance matrix is p(p+1)/2. A parsimonious version of a covariance matrix
may be both useful and meaningful when modelling data, especially for small sample
sizes. E.g. in a p × p symmetric circular Toeplitz matrix, there are only [p/2] + 1
unknown parameters, the [•] stands for the integer part. Furthermore, in longitudinal
studies, the number of covariance parameters to be estimated grows rapidly with the
number of measured occasions and may approach or even become larger than the
number of subjects enrolled in the study (Fitzmaurice et al. 2004). In such situations
it is common to impose some structures on the covariance matrix, e.g., autoregressive
or banded structures in order to reduce the number of unknown parameters. If we
have a tenable prior knowledge about the true covariance structures of the random
variables in the model, incorporation of this knowledge may increase the reliability of
the estimation procedure. For example, Ohlson and von Rosen (2010) studied linearly
structured covariance matrices in a classical growth curvemodel. Since the variance of
the estimator of the mean parameter μ is usually a function of the covariance matrix,
it is crucial to have a correct assumption about the covariance. Furthermore, an appro-
priate covariance structure also plays an important role in statistical diagnostics, such
as outlier detection and influential observation identification, see, e.g., Pan and Fang
(2002).
In this work we will study model (2) with a covariance structure that is block circular
symmetric. Circular symmetricmodelwas considered byOlkin andPress (1969). They
provided MLEs for the parameters in such models, constructed different likelihood
ratio tests (LRT) for testing different types of symmetry in the covariance matrix and
tests concerning the mean structure. Olkin (1973) extended the circular symmetric
model to the case where circular symmetry appeared in blocks, and blocks were
unstructured. For this model, the covariance structure was studied and various LRTs
were obtained.
The presence of symmetry in the data at one or several levels yields a patterned depen-
dence structurewithin or between the corresponding levels in themodel (Dawid 1988).
Symmetry here means, for example, that the units within given group are exchange-
able (Draper et al. 1993), i.e., dependence between neighboring units remains the
same (invariant) after re-arrangement of units. Perlman (1987) discussed and summa-
rized results related to group symmetry models. These are linear models for which the
covariance structure of Y is assumed to satisfy certain symmetry restrictions, namely
D(Y) = D(QY) = QD(Y)Q′ for some orthogonal matrices, where D(•) stands
for the covariance matrix. Properties of some patterned covariance matrices arising
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under different symmetry restrictions in balanced mixed models have been studied in
Nahtman (2006), Nahtman and von Rosen (2008) and von Rosen (2011).
The aim of this article is to extend models that are circular symmetric in blocks
(Olkin 1973), so-called dihedral block symmetry models. We prove that in case when
both circular symmetry and exchangeability are present, these models have specific
patterned blocks.Wewill follow up and combine in a certain sense the results obtained
in Nahtman (2006), and Nahtman and von Rosen (2008) concerning the covariance
structures in model (2). We shall obtain expressions for the spectra of block circular
symmetric covariance matrices which take into account the block structure.
The organization of the article is as follows. At the end of this section we give some
examples concerning circular symmetry models. Section 2 states the preliminaries
and presents some definitions and spectral properties of symmetric circular Toeplitz
matrices. In Sect. 3 symmetry restrictions that yield the block circular symmetric
covariance structure are studied. Section 4 provides the results concerning the spectra
of block circular symmetric matrices. Section 5 comprises concluding remarks.

1.1 Some examples of circular symmetry models

Circular (block) symmetry models have been utilized in situations when there is
a spatial circular layout on one factor and another factor satisfies the property of
exchangeability.

Example 1 In a signal processing problem, Olkin and Press (1969) and Olkin (1973)
studied a signal received from a point source (satellite) located at the geocenter of a
regular polygon of n sides. Identical signal receivers were placed at the n vertices,
and the signal received at the i th vertex was characterized by k components, e.g. xi =
(xi1, . . . , xik)′. Assuming that the signal strength was the same in all directions along
the vertices, the covariance matrices between the signals had a circular symmetric
structure, i.e. Cov(xi , xi+ j ) = � j = �n− j , j = 0, 1, . . . , n. Additionally, it might
be possible to have a more general data structure, which contains another symmetric
(with exchangeable categories) space factor (e.g., region), so that the data has the
circulant property in the receiver (vertices) dimension and a symmetric pattern in the
spatial dimension.

Example 2 In some public health studies (see Hartley and Naik 2001), the disease
incidence rates of (relatively homogeneous) city sectors placed around the city center
may be circularly correlated. Additionally, if there are n2 sectors within n1 cities
in the data, and Yi j denotes disease incidence rate in the i th sector of the j th city,
then the covariance matrix of Yi j exhibits circular block symmetry when cities are
exchangeable, i = 1, . . . , n2, j = 1, . . . , n1. Similarly, during an outbreak of a
disease, the disease incidence rate in any sector around the initial ethological agent
may be correlated with those adjacent sectors. With the existence of exchangeability
of cities, this pattern of covariance structure is appropriate.

Example 3 Gotway and Cressie (1990) described a data set concerning soil-water-
infiltration and it can be incorporated in our context by some modifications. As the
location varies across the field, the ability of water to infiltrate soil will vary spatially
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so that locations nearby are more alike with regard to infiltration, than those far apart.
Soil-water-infiltration measurements Yi j (uniresponse) or Yi jk (multiresponse) were
made at n2 locations contained by n1 towns,whichmay be assumed to be exchangeable
by our prior knowledge.

For Examples 1–3, the circular property occur at the lowest level while the exchange-
ability is at the highest level.

2 Preliminaries

In this section, we will give some important definitions and provide useful results con-
cerning certain patterned matrices which will be used in the subsequent. The concept
of invariance is important throughout this work.

Definition 1 The covariance matrix D(ξ) of a random variable ξ is called invariant
with respect to the transformation Q if D(ξ) = D(Qξ), i.e. D(ξ) = QD(ξ)Q′, and
Q is an orthogonal matrix.

Next we will introduce specific matrices which are essential here and discuss their
properties.

Definition 2 A permutationmatrix (P-matrix) is an orthogonal matrix whose columns
can be obtained by permuting the columns of the identity matrix.

Definition 3 An orthogonal matrix SP = (pi j ) : n × n is a shift permutation matrix
(SP-matrix) if

pi j =
{
1, if j = i + 1 − n1(i>n−1),

0, otherwise,

where 1(.) is the indicator function.

Definition 4 Amatrix T = (ti j ) with [n/2]+ 1 distinct elements, where [.] stands for
the integer part, and for i, j = 1, . . . , n,

ti j =
{
t| j−i |, if | j − i | ≤ [n/2],
tn−| j−i |, otherwise,

is called a symmetric circular Toeplitz matrix (SC-Toeplitz matrix). The matrix T :
n × n has the form

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

t0 t1 t2 · · · t1
t1 t0 t1 · · · t2

t2 t1 t0
. . .

...
...

...
...

. . .
. . .

t1 t2 · · · t1 t0

⎞
⎟⎟⎟⎟⎟⎟⎠

≡ Toep(t0, t1, t2, . . . , t1). (3)
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An alternative way to define SC-Toeplitz matrix T , see Olkin (1973), is given by

T=

⎛
⎜⎜⎜⎜⎝

t1 t2 t3 · · · tn
tn t1 t2 · · · tn−1
tn−1 tn t1 · · · tn−2
· · · · · · · · · · · ·
t2 t3 t4 · · · t1

⎞
⎟⎟⎟⎟⎠ , where t j = tn− j+2, j =2, . . . , n.

Definition 5 A symmetric circular matrix SC(n, k) is defined in the following way:

SC(n, k) = Toep(

n︷ ︸︸ ︷
0, . . . , 0︸ ︷︷ ︸

k

, 1, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
k−1

)

or equivalently

(SC(n, k))i j =
{
1, if |i − j | = k or |i − j | = n − k,

0, otherwise,

where k = 1, . . . , [n/2].
For notational convenience denote SC(n, 0) = In .

Example 2.1 For n = 4, the matrices given in Definitions (2)-(4) are the following

P =

⎛
⎜⎜⎝
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠ , SP =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ , SC(4, 1) =

⎛
⎜⎜⎝
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟⎟⎠ .

It is easy to see that

Toep(t0, t1, t2, . . . , t1) =
[n/2]∑
k=0

tk SC(n, k). (4)

This way of representing SC-Toeplitz matrix can be useful when deriving MLEs for
the model (2), see Olkin and Press (1969) and Olkin (1973).
The spectral properties of SC-Toeplitz matrices can, for example, be found in
Basilevsky (1983). Nahtman and von Rosen (2008) gave some additional results con-
cerning multiplicities of the eigenvalues of such matrices.

Lemma 1 Let T : n × n be a SC-Toeplitz matrix and let λh, h = 1, . . . , n, be an
eigenvalue of T .
(i) If n is odd, then

λh = t0 + 2
[n/2]∑
j=1

t j cos(2πhj/n). (5)

123



Toeplitz-type covariance matrices in random effects models 2515

It follows that, λh = λn−h, h = 1, . . . , n − 1, and there is only one eigenvalue, λn,
which has multiplicity 1, all other eigenvalues are of multiplicity 2.
If n is even, then

λh = t0 + 2
n/2−1∑
j=1

t j cos(2πhj/n) + tn/2cos(πh). (6)

It follows that, for h �= n, n/2 : λh = λn−h, there are only two eigenvalues, λn and
λn/2, which have multiplicity 1, and all other eigenvalues are of multiplicity 2.
(ii) The number of distinct eigenvalues for SC-Toeplitz matrix is

[ n
2

] + 1.
(iii) A set of eigenvectors (v1, . . . , vn) corresponding to the eigenvalues λ1, . . . , λn,
is defined by

vhi = 1√
n

(cos(2π ih/n) + sin(2π ih/n)) , i, h = 1, . . . , n. (7)

Furthermore, Lemma 1 provides also eigenvalues and eigenvectors for the matrix
SC(n, k) given in Definition 5. An important observation is that the eigenvectors of a
SC-Toeplitz matrix T in (7) do not depend on the elements of T . A consequence of
this result is the following.

Theorem 1 Any pair of two SC-Toeplitz matrices of the same size commute.

Another important result which will be used in Sect. 4, is presented in the next lemma,
see Nahtman (2006) together with its proof.

Lemma 2 Let Jn = 1n1′
n. The matrix � = (a − b)In + b Jn has two distinct eigen-

values, λ0 = a − b and λ1 = a + (n − 1)b of multiplicities n − 1 and 1, respectively.

3 Block circular symmetric covariancematrices

As mentioned above, the presence of symmetry in the data at one or several levels
yields a patterned dependence structure within or between the corresponding levels
(Dawid 1988). In this sectionwe shall obtain symmetry restrictions that yield the block
circular symmetric covariance structures.
Let us consider model (2). We are specifically interested in the covariance matrices
of the observation vector Y = (Yi j ) and random factors in this model under circular
symmetry. A crucial assumption will be that if we permute or rotate the levels of one
factor (i.e. permute or rotate the i th- or the j th-index in Yi j ), the others will not be
affected. This leads to the concept of marginal invariance (see Nahtman 2006), i.e.
levels within a factor can be permuted or shifted without any changes in the covariance
structure of the model.
Thus, a symmetry model belongs to a family of models where the covariance matrix�

remains invariant under a finite group G of orthogonal transformations (see Perlman
1987). In the subsequent, we say that � is G-invariant. Definition 6 provides more
formal definition.
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Definition 6 Symmetry models determined by the group G comprises a family of
models with positive definite covariance matrices that are G-invariant, i.e.

SG = {�|G�G′ = � for all G ∈ G}. (8)

The intraclass correlation model and the circular symmetry model are examples of
symmetry models.
Let us define the following (finite) groups of orthogonal transformations:

G0 = {SP1 ⊗ SP2|SP i is a shift (rotation) matrix, i = 1, 2}, (9)

G1 = {P1 ⊗ P2|P i is a permutation matrix, i = 1, 2}, (10)

G2 = {P21|P21 = P ⊗ SP}, (11)

G3 = {P12|P12 = SP ⊗ P}. (12)

The following symmetry models can be considered.
(i) Symmetry model with complete block symmetry covariance matrices

SG1 = {�|G�G′ = � for all G ∈ G1} (13)

implies that the covariance matrix � remains invariant under all permutations of the
corresponding factor levels. Here, all the covariance matrices are of the form

⎛
⎜⎜⎜⎜⎝
A B · · · B

B A
. . .

...
...

. . .
. . . B

B · · · B A

⎞
⎟⎟⎟⎟⎠ , (14)

where both A and B are compound symmetry matrices. (Nahtman 2006, Theorem
2.2.) proved that G1-invariance implies a specific structure given in (14).
(ii) Symmetry model with circular (dihedral) block symmetry covariance matrices

SG0 = {�|G�G′ = � for all G ∈ G0}. (15)

Here, the covariance structure remains invariant under all rotations (and reflections)
of the corresponding factor levels. For example, when there are four blocks in the
covariance matrix, it has the following form (Perlman 1987):

⎛
⎜⎜⎝
A B C B
B A B C
C B A B
B C B A

⎞
⎟⎟⎠ , (16)

where A, B, and C are SC-Toeplitz matrices given by (3) (Nahtman and von Rosen
2008, Theorem 3.3.). These models have been studied and applied intensively during
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the last decades (see for example,Olkin andPress 1969;Olkin 1973;Marin andDhorne
2002, 2003; Liang et al. 2015; Marques and Coelho 2018).
The novelty of our work is the study of symmetry models with G2- and G3-invariant
covariance matrices. We shall show that a symmetry model determined by group G2 or
G3 is a special case of (i) or (ii), respectively, with an additional feature that blocks in
the covariance matrix� have another pattern. So� reflects both compound symmetry
and circular symmetry appear simultaneously.We also showhow the symmetrymodels
determined by groups G2 and G3 are related to each other.
The following should be specially noted: it is important to distinguish between full
invariance and partial invariance. Full invariance concerns the covariancematrix D(Y)

of observation vectorY implying invariance for all factors in amodel. Partial invariance
concerns the covariance matrices of some (not all) factors in the model.
Nahtman (2006) and Nahtman and von Rosen (2008) gave the two following results,
regarding the invariant covariance matrix of the main effect γ in model (2). Let SP
be a SP-matrix and P be a P-matrix.

Theorem 2 (Nahtman 2006) The covariance matrix �1 : n2 × n2 of the factor γ is
invariant with respect to all permutations P if and only if it has the following structure:

�1 = c0 In2 + c1 Jn2 , (17)

where c0 and c1 are constants.

Theorem 3 (Nahtman and von Rosen 2008) The covariance matrix �1 : n2 × n2 of
the factor γ is shift invariant with respect to all shift permutations SP , if and only if
it has the following structure:

�1 = Toep(τ0, τ1, τ2, . . . , τ1) =
[n2/2]∑
k=0

τk SC(n2, k), (18)

where the matrices SC(n2, k), k = 0, . . . , [n2/2], are given by Definition 5, and
τk, k = 0, . . . , [n2/2], are constants.
The next theorems reveal the structure of the covariance matrix of the factor repre-
senting the 2nd-order interaction effects ξ in model (2) which is invariant with respect
to G2 or G3.
Theorem 4 The matrix D(ξ) = �2 : n2n1 × n2n1 in model (2) is invariant with
respect to all orthogonal transformations defined by P21 = P ⊗ SP , if and only if it
has the following structure:

�2= In2⊗
[n1/2]∑
k=0

τk SC(n1, k)+(Jn2−In2)⊗
[n1/2]∑
k=0

τk+[n1/2]+1SC(n1, k), (19)

where τk and τk+[n1/2]+1 are constants, and matrices SC(n1, k) are defined in Defi-
nition 5, k = 0, . . . , [n1/2].
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Remark 3.1 To emphasize the block-symmetric structure of a G2-invariant matrix �2
given in (19), �2 can be presented as

�2 =

⎛
⎜⎜⎜⎝

�(1) �(2) · · · �(2)

�(2) �(1) · · · �(2)

...
...

. . .
...

�(2) �(2) · · · �(1)

⎞
⎟⎟⎟⎠ = In2 ⊗ �(1) + (Jn2 − In2) ⊗ �(2), (20)

where �(1) = ∑[n1/2]
k=0 τk SC(n1, k), �(2) = ∑[n1/2]

k=0 τk+[n1/2]+1SC(n1, k).
The number of distinct elements of �2 given in (20) is 2([n1/2] + 1).

The next example illustrates a G2-invariant covariance matrix.

Example 3.1 For n2 = 4, n1 = 4, we have the following covariance matrix of the
2nd-order interaction effect of ξ in model (2):

�2 =

⎛
⎜⎜⎝
A B B B
B A B B
B B A B
B B B A

⎞
⎟⎟⎠ ,

where A =

⎛
⎜⎜⎝

τ0 τ1 τ2 τ1
τ1 τ0 τ1 τ2
τ2 τ1 τ0 τ1
τ1 τ2 τ1 τ0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

τ3 τ4 τ5 τ4
τ4 τ3 τ4 τ5
τ5 τ4 τ3 τ4
τ4 τ5 τ4 τ3

⎞
⎟⎟⎠ . (21)

Since n2 = 4 and n1 = 4 there are 3 distinct elements in both A and B, respectively.
Next, we obtain the structure of the covariance matrix which is G3-invariant.
Theorem 5 The matrix D(ξ) = �2 : n2n1 × n2n1 is invariant with respect to all
orthogonal transformations defined by P12 = SP ⊗ P if and only if it has the
following structure:

�2 =
[n2/2]∑
k=0

[
SC(n2, k) ⊗ �(k)

]
, (22)

where �(k) = τk In1 + τk+[n2/2]+1(Jn1 − In1), τk and τk+[n2/2]+1 are constants.
SC(n2, k) is a SC-matrix, given in Definition 5.

Remark 3.2 A G3-invariant covariance matrix �2 has the following block structure:

�2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�(0) �(1) �(2) · · · �(2) �(1)

�(1) �(0) �(1) · · · �(3) �(2)

�(2) �(1) �(0) · · · �(4) �(3)

...
...

...
. . .

...
...

�(2) �(3) �(4) · · · �(0) �(1)

�(1) �(2) �(3) · · · �(1) �(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
[n2/2]∑
k=0

[
SC(n2, k) ⊗ �(k)

]
.

(23)
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where �(k) = τk In1 + τk+[n2/2]+1(Jn1 − In1). The number of distinct elements of
�2 is 2([n2/2] + 1).
In the next example G3-invariant �2 will be illustrated when n2 = 4 and n1 = 4.

Example 3.2 Let n2 = 4, n1 = 4, then according to (23)

�2 =

⎛
⎜⎜⎝
A B C B
B A B C
C B A B
B C B A

⎞
⎟⎟⎠ ,

where A =

⎛
⎜⎜⎝

τ0 τ3 τ3 τ3
τ3 τ0 τ3 τ3
τ3 τ3 τ0 τ3
τ3 τ3 τ3 τ0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

τ1 τ4 τ4 τ4
τ4 τ1 τ4 τ4
τ4 τ4 τ1 τ4
τ4 τ4 τ4 τ1

⎞
⎟⎟⎠ ,

C =

⎛
⎜⎜⎝

τ2 τ5 τ5 τ5
τ5 τ2 τ5 τ5
τ5 τ5 τ2 τ5
τ5 τ5 τ5 τ2

⎞
⎟⎟⎠ . (24)

The number of distinct elements in matrices A, B and C is 2, respectively. Corre-
spondingly there are 6 distinct elements in �2.
It is interesting to observe that the G2-invariant matrix �2 : 16 × 16 in (21) has a
different structure from the G3-invariant matrix �2 : 16 × 16 in (24). One is block
compound symmetry with SC-Toeplitz blocks (denoted by�BCS−T ), another is block
SC-Toeplitz with compound symmetric blocks (denoted by �BCT−CS). Transforma-
tion P12 and P21 only affect indices of a response vector Y = (yi j ), and the question
is whether the labeling of yi j (observations) affects the covariance structure of the
model. The answer is negative. The relationship between the two covariance struc-
tures, obtained in Theorem 4 and 5, respectively, is presented in the theorem below.
In the following theorem the commutation matrix is used. This matrix has among
others the property of switching the order of matrices in the Kronecker product. For
the definition and properties of the commutation matrix we refer to Magnus and
Neudecker (1986).

Theorem 6 With rearrangement of the observations in the response vector Y in model
(2), the covariance matrix �BCS−T given in (19), can be transformed into the covari-
ance matrix �BCT−CS given in (22), i.e. �BCT−CS = K n1,n2�BCS−T K ′

n1,n2 , where
K n1,n2 : n2n1 × n2n1 is the commutation matrix K n1,n2 = ∑n1

i=1

∑n2
j=1(ei d

′
j ) ⊗

(d j e′
i ), where ei is the i th column vector of In1 and d j is the j th column vector of

In2 .

Proof From Theorem 4 we have

�BCS−T = In2⊗
[n1/2]∑
k=0

τk SC(n1, k)+(Jn2 − In2)⊗
[n1/2]∑
k=0

τk+[n1/2]+1SC(n1, k)
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= In2 ⊗ τ0SC(n1, 0) + . . . + In2⊗τ[n1/2]SC(n1, [n1/2])
+ (Jn2 − In2) ⊗ τ[n1/2]+1SC(n1, 0) + . . .

+ (Jn2 − In2) ⊗ τ2[n1/2]+1SC(n1, [n1/2]).

Using the following property of the Kronecker product (cA)⊗ B = A⊗(cB),where
c is an arbitrary scalar, we have

�BCS−T = τ0 In2 ⊗ SC(n1, 0) + . . . + τ[n1/2] In2 ⊗ SC(n1, [n1/2])
+ τ[n1/2]+1(Jn2 − In2) ⊗ SC(n1, 0) + . . .

+ τ2[n1/2]+1(Jn2 − In2) ⊗ SC(n1, [n1/2])
= [

τ0 In2 + τ[n1/2]+1(Jn2 − In2)
]

︸ ︷︷ ︸
�(0)

⊗SC(n1, 0) + . . .

+ [
τ[n1/2] In2 + τ2[n1/2]+1(Jn2 − In2)

]
︸ ︷︷ ︸

�([n1/2])

⊗SC(n1, [n1/2])

=
[n1/2]∑
k=0

[
�(k) ⊗ SC(n1, k)

]
,

where �(k) = τk In2 + τk+[n1/2]+1(Jn2 − In2), k = 0, . . . , [n1/2]. Moreover, let
Y = (

y11, y12, . . . , y1n1 , . . . , yn21, yn22, . . . , yn2n1
)′. Applying K n1,n2 to Y yields,

(K n1,n2Y) = (y11, y21, . . . , yn11, . . . , y1n2 , y2n2 , . . . , yn1n2)
′,

the labeling of the Y components is changed.
With the help of the commutation matrix, we can interchange the elements of the
Kronecker product, namely,

K n1,n2

[n1/2]∑
k=0

[
�(k) ⊗ SC(n1, k)

]
K ′

n1,n2 =
[n1/2]∑
k=0

[
SC(n1, k) ⊗ �(k)

]
,

and the structure of �BCT−CS in Theorem 5 is obtained.
If the covariance matrix has the structure �BCT−CS , using the commutation matrix
K n2,n1 , we obtain the same structure as in Theorem 4, i.e.,

�BCS−T = K n2,n1�BCT−CSK ′
n2,n1

= In1⊗
[n2/2]∑
k=0

τk SC(n2, k)+(Jn1 − In1)⊗
(n2/2)∑
k=0

τk+[n2/2]+1SC(n2, k).


�
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We use a simple example to demonstrate the result of Theorem 6.

Example 3.3 Let �BCS−T has a structure given in Theorem 4. For n2 = 3, n1 = 4,
let

Y = (y11, y12, y13, y14, y21, y22, y23, y24, y31, y32, y33, y34)
′

and the structure of the covariance matrix �BCS−T is illustrated in Example 3.1.
According to Theorem 6, there exists a commutation matrix K 4,3 such that

K4,3Y = (y11, y21, y31, y12, y22, y32, y13, y23, y33, y14, y24, y34)
′

and�BCT−CS = K 4,3�BCS−T K ′
4,3. The example shows that, (21) and (24) reflect the

dependence structure of the same data, which however, arise from different labeling
of factor levels.

4 Spectra ofG2 andG3-invariant matrices

In this section we study the spectra of the covariance matrices�2, given in Theorem 4
and Theorem 5, respectively. The novelty of our results is that we use the eigenvalues
of the blocks which constitute corresponding matrices as presented in (20) and (23),
instead of direct calculation of the eigenvalues using the elements of �2. Here, the
concept of commutativity is important since if two normal matrices commute then they
have a joint eigenspace and can be diagonalized simultaneously (see e.g. Kollo and
von Rosen 2005, Chapter 1). The multiplicities of the eigenvalues and the number of
distinct eigenvalues will also be given.

Theorem 7 Let the covariance matrix �2 : n2n1 × n2n1 be G2-invariant and have a
structure given in (20). Let λ

(i)
h be the eigenvalue of �(i) : n1 × n1 with multiplicity

mh, i,= 1, 2, h = 1, . . . , [n1/2]+ 1. The spectrum of �2 consists of the eigenvalues
λ

(1)
h −λ

(2)
h , each of multiplicity (n2−1)mh, and λ

(1)
h +(n2−1)λ(2)

h , each of multiplicity
mh. The number of distinct eigenvalues is 2([n1/2] + 1).

Proof The SC-matrices SC(ni , ki ), ki = 0, . . . , [ni/2] commute. So �(1) and �(2)

commute as well, and they have a joint eigenspace. Hence, there exists an orthogonal
matrix V 2, such that V ′

2�
(1)V 2 = �(1) and V ′

2�
(2)V 2 = �(2), where �(i) =

diag(λ(i)
1 , . . . , λ

(i)
n1 ), i = 1, 2. Furthermore, In2 ⊗ �(1) and (Jn2 − In2) ⊗ �(2) also

commute. Define the orthogonal matrix V 1 = (n−1/2
2 1n2

...H), where H : n2×(n2−1),
satisfies H ′1n2 = 0 and H ′H = In2−1. Then V ′

1 Jn2V 1 is the following diagonal
matrix: V ′

1 Jn2V 1 = diag
{
n2, 0n2−1

}
. Let V = V 1 ⊗ V 2, then using the property

of the Kronecker product (A ⊗ B)(C ⊗ D) = AC ⊗ BD, we have

V ′�2V = (V ′
1 ⊗ V ′

2)(In2 ⊗ �(1))(V 1 ⊗ V 2)

+ (V ′
1 ⊗ V ′

2)
[
(Jn2 − In2) ⊗ �(2)

]
(V 1 ⊗ V 2)
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= (V ′
1V 1) ⊗ (V ′

2�
(1)V 2) + (V ′

1(Jn2 − In2)V 1) ⊗ (V ′
2�

(2)V 2)

= In2 ⊗ �(1) + diag
{
n2 − 1,−In2−1

} ⊗ �(2), (25)

where diag
{
n2 − 1,−In2−1

}
denotes a diagonal matrix. The obtained matrix in (25)

is a diagonal matrix and the elements in �(1) and �(2) are obtained from Lemma 1,
as well as their multiplicities. We know that there are

[ n1
2

] + 1 distinct eigenvalues in
�(i), i = 1, 2. From the diagonal matrix (25), the number of distinct eigenvalues in
�2 is obtained. 
�
Now we illustrate the results obtained in Theorem 7 on two examples.

Example 4.1 Let�2 = I3⊗�(1)+(J3−I3)⊗�(2),where�(1) = ∑2
k1=0 τk1 SC(4, k1)

and �(2) = ∑2
k1=0 τk1+3SC(4, k1).

The block �(1) : 4 × 4, is a SC-Toeplitz matrix with three distinct eigenvalues:

λ
(1)
1 = τ0 − τ2, λ

(1)
2 = τ0 − 2τ1 + τ2, λ

(1)
3 = τ0 + 2τ1 + τ2,

with multiplicities m1 = 2, m2 = 1 and m3 = 1, respectively.
Similarly, the block �(2) : 4× 4, is a SC-Toeplitz matrix with three distinct eigenval-
ues:

λ
(2)
1 = τ3 − τ5, λ

(2)
2 = τ3 − 2τ4 + τ5, λ

(2)
3 = τ3 + 2τ4 + τ5,

with the same multiplicities mh, h = 1, . . . , 3, as in �(1).
Let mλi denote the multiplicity of the eigenvalue λi . The distinct eigenvalues of �2 :
12 × 12 are:

λ1 = λ
(1)
1 − λ

(2)
1 = τ0 − τ2 − τ3 + τ5, mλ1 = (3 − 1)m1 = 4,

λ2 = λ
(1)
2 − λ

(2)
2 = τ0 − 2τ1 + τ2 − τ3 + 2τ4 − τ5, mλ2 = (3 − 1)m2 = 2,

λ3 = λ
(1)
3 − λ

(2)
3 = τ0 + 2τ1 + τ2 − τ3 − 2τ4 − τ5, mλ3 = (3 − 1)m3 = 2,

λ4 = λ
(1)
1 + (n2 − 1)λ(2)

1 = τ0 − τ2 + 2(τ3 − τ5), mλ4 = m1 = 2,

λ5 = λ
(1)
2 + (n2 − 1)λ(2)

2 = τ0 − 2τ1 + τ2 + 2(τ3 − 2τ4 + τ5), mλ5 = m2 = 1,

λ6 = λ
(1)
3 + (n2 − 1)λ(2)

3 = τ0 + 2τ1 + τ2 + 2(τ3 + 2τ4 + τ5), mλ6 = m3 = 1.

Example 4.2 Let�2 = I3⊗�(1)+(J3−I3)⊗�(2),where�(1) = ∑1
k1=0 τk1 SC(3, k1)

and �(2) = ∑1
k1=0 τk1+2SC(3, k1).

Both blocks �(1) : 3 × 3 and �(2) : 3 × 3 are SC-Toeplitz matrices. The distinct
eigenvalues are:

λ
(1)
1 = τ0 − τ1, m1 = 2; λ

(1)
2 = τ0 + 2τ1, m2 = 1,

λ
(2)
1 = τ2 − τ3, m1 = 2; λ

(2)
2 = τ2 + 2τ3, m2 = 1.
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The distinct eigenvalues of �2 : 9 × 9 are:

λ1 = λ
(1)
1 − λ

(2)
1 = τ0 − τ1 − τ2 + τ3, mλ1 = 4,

λ2 = λ
(1)
2 − λ

(2)
2 = τ0 + 2τ1 − τ2 − 2τ3, mλ2 = 2,

λ3 = λ
(1)
1 + (n2 − 1)λ(2)

1 = τ0 − τ1 + 2(τ2 − τ3), mλ3 = 2,

λ4 = λ
(1)
2 + (n2 − 1)λ(2)

2 = τ0 + 2τ1 + 2(τ2 + 2τ3), mλ4 = 1.

Note The spectrum of�2 (�BCT−CS), given in (23) is the same as of�2 (�BCS−T ) in
(20), and it also can be found from Theorem 6 that�BCT−CS and�BCS−T are similar
matrices, i.e, �BCT−CS = K n1,n2�BCS−T K ′

n1,n2 , where K n1,n2 is an orthogonal
matrix. The characteristic equation is given by the following determinant,

|�BCT−CS − λI | = |K n1,n2�BCS−T K ′
n1,n2 − λI |

= |K n1,n2(�BCS−T − λI)K ′
n1,n2 |=|�BCS−T − λI |.

5 Concluding remarks

In practice, a symmetry model is applied to a data set in which specific symmetry
relations can be identified (Viana 2008). We have derived the covariance structures
under invariance related to two groups of orthogonal transformations (permutations
and rotations). In mixed linear models, particular patterns of the covariance matrices
reflect how the data share common characteristics in different hierarchies. This is
important when performing estimation and testing. When estimating the fixed effects,
the imposed structure can usually improve the precision of the fixed effects estimator.
Furthermore, there might exist a risk of misspecification of the covariance structure
that could result in misleading inference of the fixed effects. Thus, it is also necessary
to discuss different hypotheses of the covariance structures to verify the model (Jensen
1988). In addition, the existence of explicitMLEs for such symmetrymodels should be
studied, for example, Szatrowski (1980) and Ohlson and von Rosen (2010) provided
the explicit MLEs of some patterned covariance structures. Our study of the spectral
properties can be used to obtain explicit MLEs of a covariance matrix which has block
circular symmetric structure and discuss concerning the existence of explicit MLEs.
In this article, we only considered model with two random factors which is common in
empirical studies and it could be of interest to study the caseswithmore factors. In such
cases, the higher order interactions will be involved. For example, whenwe investigate
random effects models with s random factors, the potential structured data might be
possibly identified by considering different groups of symmetry transformations, i.e.,
when different symmetry patterns are observed in different hierarchies.
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Appendix A: Proof of Theorem 4

Proof Let N = n2n1 and P21 ∈ G2, given by (11). The matrix �2 can be written as

�2 =
N∑

k=1

N∑
l=1

σkl(ek ⊗ e′
l),

where ek , el are the kth and the lth columns of the identity matrix IN , respectively.
We can define the element σkl of �2 in a more informative way. Observe that one
can write ek = e2,i2 ⊗ e1,i1 and e′

l = e′
2, j2

⊗ e′
1, j1

, where eh,ih is the ih th column of
the identity matrix Inh , h = 1, 2, and σkl = σ(i2,i1)( j2, j1) = Cov(ξi2i1 , ξ j2 j1), where
k = (i2 − 1)n1 + i1 and l = ( j2 − 1)n1 + j1.

Hence, using the following property of the Kronecker product,

(A ⊗ B)(C ⊗ D) = AC ⊗ BD,

we can express �2 in the following way:

�2 =
n2∑

i2, j2=1

n1∑
i1, j1=1

σ(i2,i1)( j2, j1)(e2,i2 ⊗ e1,i1)(e
′
2, j2 ⊗ e′

1, j1)

=
n2∑

i2, j2=1

n1∑
i1, j1=1

σ(i2,i1)( j2, j1)(e2,i2e
′
2, j2) ⊗ (e1,i1e

′
1, j1).

The G2-invariance implies P21�2P ′
21 = �2, for all P21 ∈ G2. Therefore,

P21�2P ′
21 =

n2∑
i2, j2=1

n1∑
i1, j1=1

σ(i2,i1)( j2, j1)(Pe2,i2e
′
2, j2 P

′) ⊗ (SPe1,i1e
′
1, j1SP

′)

=
∑
i2= j2

n1∑
i1, j1=1

σ(i2,i1)(i2, j1)(Pe2,i2e
′
2,i2 P

′) ⊗ (SPe1,i1e
′
1, j1SP

′)

123

http://creativecommons.org/licenses/by/4.0/


Toeplitz-type covariance matrices in random effects models 2525

+
∑
i2 �= j2

n1∑
i1, j1=1

σ(i2,i1)( j2, j1)(Pe2,i2e
′
2, j2 P

′)⊗(SPe1,i1e
′
1, j1SP

′). (26)

Since P is a P-matrix, it acts on the components of ξ = (ξi j ) via index i , which is
associated with the corresponding factor levels of γ , i = 1, . . . , n2, j = 1, . . . , n1.
For the term Pe2,i2e

′
2, j2

P ′, the invariance of �2 implies that in (26) we may define
constants

σ1(i1)( j1) = σ(i2,i1)(i2, j1), ∀i2 = j2; ∀i1, j1,
σ2(i1)( j1) = σ(i2,i1)( j2, j1), ∀i2 �= j2; ∀i1, j1,

where i1, j1 = 1, . . . , n1, i2, j2 = 1, . . . , n2. Thus, (26) becomes

�2 =
n1∑
i1, j1

σ1(i1)( j1) In2 ⊗ (SPe1,i1e
′
1, j1SP

′)

+
n1∑

i1, j1

σ2(i1)( j1)(Jn2 − In2) ⊗ (SPe1,i1e
′
1, j1SP

′). (27)

The SP-matrix SP acts on the components of ξ = (ξi j ) via index j , which are nested
within γ by assumption. We can express (27) in the following way:

�2 =
∑
i1= j1

σ1(i1)(i1) In2 ⊗ (SPe1,i1e
′
1,i1SP

′)

+
[n1/2]∑
k=1

∑
i1, j1

|i1− j1|=k,
n1−k

σ1(i1)( j1) In2 ⊗ (SPe1,i1e
′
1, j1SP

′)

+
∑
i1= j1

σ2(i1)(i1)(Jn2 − In2) ⊗ (SPe1,i1e
′
1,i1SP

′)

+
[n1/2]∑
k=1

∑
i1, j1

|i1− j1|=k,
n1−k

σ2(i1)( j1)(Jn2 − In2) ⊗ (SPe1,i1e
′
1, j1SP

′).

By the invariance of �2 with respect to the term SPe1,i1e
′
1, j1

SP ′, we may define
constants

τ0 = σ1(i1)(i1),∀i1, τk = σ1(i1)( j1),∀ |i1 − j1| = k, n1 − k,

τ[n1/2]+1 = σ2(i1)(i1),∀i1, τk+[n1/2]+1 = σ2(i1)( j1),∀ |i1 − j1| = k, n1 − k.
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Hence, we have the following structure for �2 :

�2 = In2 ⊗ τ0 In1 + In2 ⊗
[n1/2]∑
k=1

τk SC(n1, k)

+ (Jn2 − In2)⊗τ[n1/2]+1 In1 + (Jn2 − In2)⊗
[n1/2]∑
k=1

τk+[n1/2]+1SC(n1, k)

= In2⊗
[n1/2]∑
k=0

τk SC(n1, k) + (Jn2 − In2)⊗
[n1/2]∑
k=0

τk+[n1/2]+1SC(n1, k).

The structure in (19) is obtained, which implies that the “only if” part of the theorem
is true. The “if” part is shown due to the structure of �2, since

P21�2P ′
21 = (P ⊗ SP)

⎡
⎣In2 ⊗

[n1/2]∑
k=0

τk SC(n1, k)

⎤
⎦ (P ′ ⊗ SP ′)

+ (P⊗SP)

⎡
⎣(Jn2 − In2)⊗

[n1/2]∑
k=0

τk+[n1/2]+1SC(n1, k)

⎤
⎦(P ′⊗SP ′)

= In2 ⊗ SP
[n1/2]∑
k=0

τk SC(n1, k)SP ′

+ (Jn2 − In2) ⊗ SP
[n1/2]∑
k=0

τk+[n1/2]+1SC(n1, k)SP ′,

followed by Theorem 3,

SP
[n1/2]∑
k=0

τk SC(n1, k)SP ′ =
[n1/2]∑
k=0

τk SC(n1, k)

and

SP
[n1/2]∑
k=0

τk+[n1/2]+1SC(n1, k)SP ′ =
[n1/2]∑
k=0

τk+[n1/2]+1SC(n1, k).

The proof is completed. 
�
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Appendix B: Proof of Theorem 5

Proof We use the same technique as in the proof of Theorem 4. Under the condition
P12�2P ′

12 = �2, for all P12 ∈ G3, after the same presentation of �2 as used in
Theorem 4 for �2, we have

�2 =
n2∑

i2, j2=1

n1∑
i1, j1=1

σ(i2,i1)( j2, j1)(SPe2,i2e
′
2, j2 SP

′)⊗(Pe1,i1e
′
1, j1 P

′)

=
n2∑

i2, j2=1

∑
i1= j1

σ(i2,i1)( j2,i1)(SPe2,i2e
′
2, j2 SP

′) ⊗ (Pe1,i1e
′
1,i1 P

′)

+
n2∑

i2, j2=1

∑
i1 �= j1

σ(i2,i1)( j2, j1)(SPe2,i2e
′
2, j2 SP

′) ⊗ (Pe1,i1e
′
1, j1 P

′).

Denoting σ1(i2)( j2) = σ(i2,i1),( j2,i1) for ∀i1 = j1; ∀i2, j2 and σ2(i2)( j2) = σ(i2,i1),( j2, j1)

for ∀i1 �= j1; ∀i2, j2, we have

�2 =
n2∑

i2, j2=1

σ1(i2)( j2)(SPe2,i2e
′
2, j2 SP

′) ⊗ In1

+
n2∑

i2, j2=1

σ2(i2)( j2)(SPe2,i2e
′
2, j2 SP

′) ⊗ (Jn1 − In1)

=
[n2/2]∑
k=0

∑
i2, j2

|i2− j2 |=k,
n2−k

σ1(i2)( j2)(SPe2,i2e
′
2, j2 SP

′) ⊗ In1

+
[n2/2]∑
k=0

∑
i2, j2

|i2− j2 |=k,
n2−k

σ2(i2)( j2)(SPe2,i2e
′
2, j2 SP

′) ⊗ (Jn1 − In1). (28)

Let us now define τk = σ1(i2)( j2),∀|i2 − j2| = k, n2 − k; ∀i1 = j1, and τk+[n2/2]+1 =
σ2(i2)( j2),∀|i2 − j2| = k, n2 − k; ∀i1 �= j1. Thus, (28) becomes

�2 =
[n2/2]∑
k=0

SC(n2, k) ⊗ [
τk In1 + τk+[n2/2]+1(Jn1 − In1)

]
,

and (22) is obtained. Due to the structure of �2, it is straightforward to show that
P12�2P ′

12 = �2. 
�
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