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Abstract
It is quite common that the structure of a time series changes abruptly. Identifying these
change points and describing themodel structure in the segments between these change
points is of interest. In this paper, time series data is modelled assuming each segment
is an autoregressive time series with possibly different autoregressive parameters. This
is achieved using two main steps. The first step is to use a likelihood ratio scan based
estimation technique to identify these potential change points to segment the time
series. Once these potential change points are identified, modified parametric spectral
discrimination tests are used to validate the proposed segments. A numerical study
is conducted to demonstrate the performance of the proposed method across various
scenarios and compared against other contemporary techniques.

Keywords Changepoint detection · Autoregressive time series · Likelihood ratio
scan statistics · Multiple testing problems

1 Introduction

The statistical properties of time series data, such as mean and variance or the
coefficients of the regression model, may change abruptly at unknown time points.
Identifying those unknown time points is referred to as change point detection or
time series segmentation. The change point problem was first considered by Page
(1954) and Page (1955) for quality control. Since then, the topic has been explored
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theoretically and computationally in the field of statistics and computer science, and
has been applied to economics (Bai and Perron 2003; Bai 2010), finance (Aue and
Horváth 2013; Andreou and Ghysels 2009), and biology (Olshen et al. 2004; Niu and
Zhang 2012). Furthermore, see the recent survey papers by Jandhyala et al. (2013),
Aminikhanghahi and Cook (2017) and Truong et al. (2020) for the development of
univariate or multivariate time series segmentation methods.

There are essentially two types of approaches for detecting unknown change points
under a parametric design: the model selection method and the traditional hypothesis
testing method. Model selection or exact segmentation methods generally include two
elements, a cost function and an optimization algorithm. The computational complex-
ity depends on the complexity of data and the number of change points. In contrast, the
approximate segmentation methods have significantly less computational cost when
there are more change points. Here, we follow in the direction of the approximate
segmentation methods.

One popular representation of the approximate segmentation methods is the binary
segmentation (BS) family of methods. The core idea is that BS tests if there is a
change point in the process at each step or iteration (see Fryzlewicz 2014 for a detailed
description). BS has gained huge popularity due to the minor computational cost and
its user-friendliness. However, the method may ignore change points if the length
of the segment is relatively short. Hence, Olshen et al. (2004) further improved the
BS algorithm, and proposed the circular BS (CBS) method. Fryzlewicz (2014) pro-
posed the wild BS (WBS) approach to detect the number and locations of changes
in a piecewise stationary model when the values of the parameters change. Another
representation of the approximate segmentation methods is bottom-up segmentation,
which is less explored than the BS algorithm (we recommend the paper by Keogh et al.
2001 for further details). Bottom-up segmentation is also easy to apply: the first step
is to obtain a sequence of overestimated change points; the second step is to eliminate
the falsely-detected ones.

However, both the BS algorithm and the bottom-up method may suffer from the
multiple testing problem. Eichinger et al. (2018) mentions in regards to the BS algo-
rithm that “it can be difficult to interpret the results in terms of significance due to
the multiple testing involved”. Thus, Fryzlewicz (2014) added a randomized segment
selection step to the BS method. Li et al. (2016) proposed multiscale change point
segmentation with controlled false discovery rate (FDR) based on multiscale statistics
considered by Frick et al. (2014) for inferring the changes in the mean of an inde-
pendent sequence of random variables. Cao and Wu (2015) developed a large scale
multiple testing procedure for data with clustered signals. The earlier references that
introduced FDR for multiple change point detection include Niu and Zhang (2012)
and Hao et al. (2013), which are motivated by genome data. Hitherto, only a small
amount of literature attempts to address this issue. When the observations are depen-
dent, detecting multiple change points is quite a difficult task, especially in the case
of autoregressive processes. Davis et al. (1995) studied the asymptotic behavior of the
likelihood ratio statistic in testing if a change point has occurred in the mean, the auto-
covariance structure or the order of an autoregressive process. Later on, Davis et al.
(2006) estimated all the parameters of a piecewise stationary autoregressive process
by using a genetic algorithm to optimize an information criterion as objective func-
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tion. Hušková et al. (2007) firstly derived the limiting behavior of various max-type
test statistics under the hypothesis of whether there is an autocorrelation coefficient
change in an autoregressive time series, then compares the asymptotic results of these
test statistics with corresponding resampling procedures in the paper of Hušková et al.
(2008). Peštová and Pešta (2017) developed a method based on the ratio type statistic
to test at most one possible regression parameter change in an AR(1) series. Chakar
et al. (2017) proposed a robust approach for estimating change points in the mean
of an AR(1) process. Korkas and Fryzlewicz (2017) upgraded the WBS algorithm
by applying a locally stationary wavelet process for estimating change points in the
second-order structure of a piecewise stationary time series model. Yau and Zhao
(2016) proposed a likelihood ratio scan method (LRSM) to estimate change points in
piecewise stationary processes.

In this paper, we develop a new Multiple Comparisons Procedure for a Multiple
Change Point Problem (MCP-MCP, or MCP2 for short), to estimate the number and
locations of change points in a piecewise stationary autoregressive model. The pro-
cedure includes three simple steps: the first step is to apply the likelihood ratio scan
statistics by Yau and Zhao (2016) to obtain a set of potentially overestimated change
points; the second step is to use the spectral discrimination procedure developed by
Grant and Quinn (2017) to eliminate possibly falsely discovered change points; the
third step is to use a classic controlling FDR procedure and an adjusted p-value Bon-
ferroni procedure to address the multiple testing issue. Our work is mainly inspired by
Yau and Zhao (2016) and Korkas and Fryzlewicz (2017) and, to the best of our knowl-
edge, is the first paper to address the multiple testing issue taking the dependency into
account as a bottom-up segmentation method.

As indicated by Mercurio and Spokoiny (2004), it is highly risky to treat non-
stationary data as though they are from a stationary process when making predictions
and forecasting. Therefore, the estimation accuracy tends to be very important and
the exact properties of estimates need careful attention. In our simulation study, we
focus on the correct estimated number and locations of change points. The structure
of the paper is as follows. In Sect. 2, we provide the details of the MCP2 method.
In Sect. 3, through extensive simulation experiments and in Sect. 4, through two real
data examples, we evaluate the performance of the MCP2, LRSM andWBS methods.
Lastly, we conclude the paper in Sect. 5 with discussion and comments on future
research.

2 Amultiple comparisons procedure for change point detection

2.1 Non-stationary time series segmentation as amultiple testing problem

We start this section by demonstrating the autoregression process segmentation
problem, and how it can be viewed as a multiple hypothesis testing problem. Let
x1, x2, . . . , xT be a sequence of an autoregression process, with q the unknown num-
ber of change points and k1, k2, . . . , kq their respective unknown positions, where
1 < k1 < k2 < · · · < kq < T . The autoregression process with multiple change
points is illustrated as below
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xt =
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(1)
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β
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· · ·
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(q+1)
0 + β

(q+1)
1 xt−1 + · · · + β

(q+1)
pq+1 xt−pq+1 + ε

(q+1)
t , t = kq + 1, . . . , T

where εt ∼ i .i .d.N (0, σ 2
t ) and each segment is a stationary autoregression of order p

(AR(p)) and independent of each other. This problem can be expressed as a classical
single hypothesis testing problem, as follows. Letting θt be the parameters that generate
the data at each time point, t = 1, . . . , kq , . . . , T ,

H0 : θ1 = · · · = θkq+1 = · · · = θT

H1 : θ1 = · · · = θk1 �= θk1+1 = · · · = θk2 �= · · · �= θkq+1 = · · · = θT (1)

If H1 is supported, the data are split into q + 1 segments, (x1, x2, . . . , xk1 ),
(xk1+1, xk1+2, . . . , xk2 ), . . ., (xkq+1, xkq+2, . . . , xT ), with different generating param-

eters for each segment denoted by θi := (pi , β
(i)
pi , σ 2(i)

), i = 1, . . . , q + 1.
The ambitious objective is to estimate the number of change points q, the location

vector k = (k1, k2, · · · , kq) and the parameters for each segment θi . It is not prac-
tical to achieve this objective through the aforementioned single hypothesis testing
framework, hence we decompose (1) to multiple hypothesis tests

H0(i) : θki−1+1:ki = θki+1:ki+1

H1(i) : θki−1+1:ki �= θki+1:ki+1 (2)

for i = 1, . . . , q. Since we assume that each segment is an independent time series,
(2) can be viewed as a multiple testing problem by determining whether two adjacent
segments (xki−1+1, xki−1+2, . . . , xki ) and (xki+1, xki+2, . . . , xki+1 ) have beengenerated
by the same underlying stochastic process.We use a parametric spectral discrimination
approach to solve this problem.

2.2 Change points exploration by using scan statistics

In Sect. 2.1, we did not define the range of q, which could be any value between 0
and T . Therefore, as the first step, a possibly overestimated set of change points will
be estimated by using the likelihood ratio scan statistics proposed by Yau and Zhao
(2016). A brief introduction is given in this section.

For a window radius h we define a corresponding scanning window Rt (h) and
observations as

Rt (h) = t − h + 1, . . . , t + h

xRt (h) = xt−h+1, . . . , xt+h
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The likelihood ratio scan statistics is then

LSh(t) = 1

h
Lt−h+1,...,t (t, θ̂1) + 1

h
Lt+1,...,t+h(t, θ̂2) − 2

h
Lt−h+1,...,t+h(t, θ̂ ),

where L(θ) =
T∑

t=1

log fθ (xt | xt−1, . . . , xt−p)

By scanning the observed time series data, a sequence of LSh(t) will be obtained at
t = h, h + 1, …, T − h. If h meets certain criteria, at most one change point outputs
in Rt (h), and if there is a change at t , then LSh(t) tends to be large. Hence, a set
of potential change points k̂ = (k1, k2, . . . , kq) will be obtained after the scanning
process.

2.3 A likelihood ratio test for comparing time series

Given a set of estimated change points, we then apply a modified version of the para-
metric spectral discrimination test proposed by Grant and Quinn (2017) to test if the
adjacent segments are from the same autoregressive process. We fit the autoregressive
models

xt + βx,1xt−1 + . . . + βx,px xt− j = εt

yt + βy,1yt−1 + . . . + βy,py yt− j = ut ,

to two adjacent segments of lengths T1 and T2, respectively, where {εt } and {ut } are
independent processeswith zeromean andvariancesσ 2

ε andσ 2
u , respectively.Although

the test is developed as though {εt } and {ut } are i.i.d and Gaussian, the asymptotic
distribution of the test statistic holds under much weaker conditions (Grant 2018).
Note that we are also assuming that the processes have zero mean, and in practice the
time series are mean-corrected before analysis. That is, we do not consider a shift in
mean between segments to constitute a change point, but rather consider only changes
in the second-order properties. The hypothesis test is

H0 : βX , j = βY , j for all j, σ 2
ε = σ 2

u

HA : Not H0.

Under the null hypothesis, the underlying processes share the same autocovariance
structure, or, in other words, have the same spectral density (hence the term spectral
discrimination tests). In order to compute the likelihood ratio statistic, we need the
maximum likelihood estimators of the parameters under both H0 and HA. Under HA,
the processes are independent and the parameters can be estimated separately using,
for example, the Levinson–Durbin algorithm (Levinson 1947; Durbin 1960). For a
given order p, the algorithm computes the estimators

β̂ p = −Γ̂ −1
p γ̂ p,
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σ̂ 2
p = γ̂ (0) + (

γ̂ p)′
β̂ p,

where

β̂ p = [
β1 · · · βp

]′
, γ̂ p = [

γ (1) · · · γ (p)
]′

, γ̂ ( j) = 1

T

T−1∑

t= j

xt xt− j ,

T is the sample size and Γ̂p is the p× pmatrix with (i, j)th entry given by γ̂ (|i − j |).
These estimators are the solutions to the Yule–Walker equations, and represent method
of moment estimators of the model parameters. Asymptotically, they are equivalent to
the maximum likelihood estimators under Gaussianity. Under H0, for j = 0, . . . , p,
we define

c ( j) = 1

T1 + T2

⎛

⎝
T1−1∑

t= j

xt xt− j +
T2−1∑

t= j

yt yt− j

⎞

⎠ .

Replacing γ̂ ( j) by c ( j) in the Levinson–Durbin algorithm gives estimators for the
common parameters. The test statistic is

Λ = T1 log

(
σ̂ 2
0

σ̂ 2
ε;A

)

+ T2 log

(
σ̂ 2
0

σ̂ 2
u;A

)

, (3)

where σ̂ 2
ε;A and σ̂ 2

u;A are the estimators of σ 2
ε and σ 2

u under HA, and σ̂ 2
0 is the estimator

of the common residual variance under H0. We reject H0 when Λ is greater than the
100 (1 − α)th percentile of the χ2 distribution with px + py − p + 1 degrees of
freedom.

Since the orders are unknown in practice, they can be estimated using, for example,
an information criterion such as BIC. This is easily incorporated into the Levinson–
Durbin algorithm. However, it was shown in Grant and Quinn (2017) that the test
performs poorly when the underlying time series are not truly autoregressive. The
proposed solution was to use autoregressive approximation by fixing the orders, under
both H0 and HA, as px = py = p = �(log Tmin)

v�, where v > 1, Tmin = min (T1, T2)
and �(log Tmin)

v� is the integer component of (log Tmin)
v . The null hypothesis is then

rejected when Λ is greater than the 100 (1 − α)th percentile of the χ2 distribution
with p+ 1 degrees of freedom. The test then performs well even when the time series
are not autoregressive, with the cost being some loss in power in the autoregressive
case.

It is possible to adjust the test to consider a change in mean as a change point. In
this case, the models we fit (using the fixed autoregressive order approach outlined
above) are

(xt − μX ) + βx,1 (xt−1 − μX ) + . . . + βx,p
(
xt− j − μX

) = εt

(yt − μY ) + βy,1 (yt−1 − μY ) + . . . + βy,p
(
yt− j − μY

) = ut ,
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and the null hypothesis is

H∗
0 : βX , j = βY , j for all j, σ 2

ε = σ 2
u μX = μY .

Letting

μ̂X = 1

T1

T1−1∑

j=0

xt , μ̂Y = 1

T2

T2−1∑

j=0

Yt , μ̂ = 1

T1 + T2
(T1μ̂X + T2μ̂Y ) ,

we replace γ̂ ( j) and c ( j) by

γ̂ ∗ ( j) = 1

T

T−1∑

t= j

(xt − μ̂X )
(
xt− j − μ̂X

)

and

c∗ ( j) = 1

T1 + T2

⎧
⎨

⎩

T1−1∑

t= j

(xt − μ̂)
(
xt− j − μ̂

) +
T2−1∑

t= j

(yt − μ̂)
(
yt− j − μ̂

)

⎫
⎬

⎭

respectively. The test statistic is then computed in the same way using parameter
estimates from the Levinson–Durbin algorithm. The null hypothesis is rejected when
Λ is greater than the 100 (1 − α)th percentile of the χ2 distribution with p+2 degrees
of freedom.

2.4 Approaches for multiple hypothesis tests

Generally, for a single hypothesis test, we specify a Type I error, say 0.05, and make
a conclusion based on the test statistic which meets this specification while giving the
highest power. When multiple hypotheses are tested simultaneously, the probability
of at least one incorrect “statistically significant” outcome is increased with as the
number of independent tests increases, which may result in incorrect conclusions.
Thus, it is necessary to evaluate the tests as a whole. Numerous procedures have
been proposed for this multiple comparison problem. In this paper, we implement two
classical procedures: Controlling the false discovery rate, proposed by Benjamini and
Hochberg (1995) (BH); and the adjusted p-values approach of Wright (1992).

As per the previous subsection, we can obtain unadjusted p-values p(1), p(2), . . . ,
p(q) corresponding to the multiple hypotheses considered in (2). Let P(1) ≤ P(2) ≤
· · · ≤ P(q) be the ordered p(1), p(2), . . . , p(q) from smallest to largest. The BH
multiple-testing procedure is as follows.
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For each i = 1, 2, . . . , q, if P(i) ≤ i
q α

then reject all H(i)

k̂∗ = (k1, k2, . . . , kq∗) is the final estimates of change points.

Next, we adopt the adjusted p-values method by Bonferroni procedure as follows.

For each i = 1, 2, . . . , q, if q × p(i) ≤ α

then reject all H(i)

k̂∗ = (k1, k2, . . . , kq∗) is the final estimates of change points.

3 Simulation study

3.1 Choice of scanning window

In this section, we use nine classic examples to compare the performance of the
MCP2 method with methods from recent literature including the likelihood ratio scan
method (LRSM) by Yau and Zhao (2016) and the wild binary segmentation method
(WBS) by Korkas and Fryzlewicz (2017). Except for model G, the models used in
the simulation study also were considered by Yau and Zhao (2016). For each model,
we simulated 100 sequences. The first step of both the LRSM and MCP2 method is
to obtain the possible change points by using likelihood ratio scan statistics, which
involves the tuning parameter — scanning radius h. Theoretically, the LRSM requires
r log(T )2 ≤ h ≤ mlk/2, wheremlk denotes the minimum length between the adjacent
change points, T is the length of the time series, and r is specified by the user. The
scanning radius h = max{50, 2 log(T )2} is suggested by Yau and Zhao (2016) as a
rule-of-thumb. However, the LRSM may not be applicable when the h ≤ mlk/2 is
violated, additionally, h ≤ mlk/2 criterion is not practical as the minimum distance
of neighboring change points is unknown.

Hence, we implement a sensitivity analysis to study the optimal choice of h in the
MCP2 method for each model, displayed by Table 1. In the table, % : N̂ = N denotes
the the percentage that the estimated number of change points is the actual number.We
also investigate average degrees of freedom of χ2 distribution, as p = �(log Tmin)

v�,
the length of segment may be affected by the scanning window h.

We have tested multiple values of h, it is shown that the choice of h has an impact
on the detection rate (% : N̂ = N ). Optimal scanning window h can be selected based
on two criteria. We first consider choosing the minimum value of h which gives the
maximum detection rate (% : N̂ = N ). Second, we select the value of h which is less
than the first segment’s length. For example, the exact change point of Model D is
located at 50, although the detection rate increased as h increased, the optimal value
of h should be less than 50; otherwise, the actual change point is dismissed at the
beginning. The optimal scanning window for each model is summarised in Table 2.

123



Multiple change point detection and validation in autoregressive... 1515

Table 1 Sensitivity test of scanning window h for MCP2BH and MCP2WRI

MCP2WRI h = 1�log(T )2� mlk % : N̂ = N d f h = 1.5�log(T )2� % : N̂ = N d f

Model A

β = 0.4 48 1024 68 4.87 72 71 5.27

β = 0.7 48 1024 65 4.88 72 73 5.22

β =-0.1 48 1024 66 4.88 72 72 5.24

β =-0.7 48 1024 73 4.90 72 73 5.24

Model B 48 256 47 4.94 72 56 5.24

Model C 48 212 58 4.92 72 70 5.47

Model D 48 50 58 4.86 72 65 5.25

Model E 48 274 6 5.06 72 21 5.47

Model F 48 274 8 5.04 72 22 5.45

Model G 48 125 36 4.96 72 64 5.40

Model H 48 125 41 4.95 72 63 5.46

Model I 30 128 75 4.38 45 88 4.81

Model A

β = 0.4 96 1024 75 5.50 120 82 5.72

β = 0.7 96 1024 76 5.45 120 81 5.70

β =-0.1 96 1024 75 5.50 120 74 5.81

β =-0.7 96 1024 79 5.47 120 77 5.77

Model B 96 256 70 5.69 120 87 5.86

Model C 96 212 83 5.74 120 91 5.87

Model D 96 50 70 5.45 120 78 5.62

Model E 96 274 51 5.67 120 62 5.88

Model F 96 274 36 5.74 120 41 5.91

Model G 96 125 74 5.66 120 89 5.82

Model H 96 125 74 5.61 120 60 5.70

Model I 60 128 100 5 75 100 5

Model A

β = 0.4 48 1024 70 4.87 72 71 5.27

β = 0.7 48 1024 68 4.88 72 75 5.22

β =-0.1 48 1024 68 4.88 72 74 5.24

β =-0.7 48 1024 78 4.90 72 75 5.24

Model B 48 256 58 4.94 72 69 5.24

Model C 48 212 74 4.92 72 90 5.47

Model D 48 50 72 4.86 72 75 5.25

Model E 48 274 17 5.06 72 24 5.47

Model F 48 274 14 5.04 72 21 5.45

Model G 48 125 36 4.96 72 60 5.40
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Table 1 continued

MCP2WRI h = 2�log(T )2� mlk % : N̂ = N d f h = 2.5�log(T )2� % : N̂ = N d f

Model H 48 125 45 4.95 72 76 5.46

Model I 30 128 83 4.38 45 92 4.81

Model A

β = 0.4 96 1024 76 5.50 120 84 5.72

β = 0.7 96 1024 77 5.45 120 81 5.70

β =-0.1 96 1024 76 5.50 120 76 5.81

β =-0.7 96 1024 80 5.47 120 78 5.77

Model B 96 256 82 5.69 120 92 5.86

Model C 96 212 95 5.74 120 94 5.87

Model D 96 50 82 5.45 120 83 5.62

Model E 96 274 58 5.67 120 65 5.88

Model F 96 274 39 5.74 120 48 5.91

Model G 96 125 68 5.66 120 79 5.82

Model H 96 125 81 5.61 120 62 5.70

Model I 60 128 100 5 75 100 5

Table 2 Optimal scanning
window h selected for MCP2BH
and MCP2WRI

Model MCP2BH MCP2WRI

h = r�log(T )2�
Model A

β = 0.4 r = 2.5 r = 2.5

β = 0.7 r = 2.5 r = 2.5

β =-0.1 r = 2 r = 2

β =-0.7 r = 2 r = 2

Model B r = 2.5 r = 2.5

Model C r = 2.5 r = 2

Model D r = 1 r = 1

Model E r = 2.5 r = 2.5

Model F r = 2.5 r = 2.5

Model G r = 2.5 r = 2.5

Model H r = 2 r = 2

Model I r = 2 r = 2

3.2 Comparison betweenmethods

To measure the detection accuracy of the methods, we consider evaluating the esti-
mated number of change points and the estimated locations separately. In this paper,
we define the exact detection rate as the proportion that the estimated number of
change points equals to the correct number of change points among 100 sequences,
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Table 3 The simulation performance of MCP2BH, MCP2WRI, LRSM, and WBS method for estimating
the number of change points

MCP2BH MCP2WRI LRSM WBS

N̂ N̂ N̂ N̂
Model A 0∗ 1 ≥ 2 0∗ 1 ≥ 2 0∗ 1 ≥ 2 0∗ 1 ≥ 2

β = 0.4 0.75 0.15 0.10 0.76 0.17 0.07 1 0 0 0.93 0.06 0.01
β = 0.7 0.76 0.16 0.08 0.77 0.19 0.04 1 0 0 0.93 0.06 0.01
β = −0.1 0.75 0.13 0.12 0.76 0.19 0.05 1 0 0 0.95 0.03 0.02
β = −0.7 0.79 0.16 0.05 0.80 0.16 0.04 1 0 0 0.35 0.25 0.40

0 1∗ ≥ 2 0 1∗ ≥ 2 0 1∗ ≥ 2 0 1∗ ≥ 2

Model D 0 0.58 0.42 0 0.72 0.28 0.03 0.97 0 0.15 0.67 0.18
Model I 0 0.75 0.25 0 0.83 0.17 0 1 0 0 0.97 0.03

≤ 1 2∗ ≥ 3 ≤ 1 2∗ ≥ 3 ≤ 1 2∗ ≥ 3 ≤ 1 2∗ ≥ 3

Model B 0 0.70 0.30 0.01 0.82 0.17 0 1 0 0.13 0.52 0.35
Model C 0 0.83 0.17 0 0.95 0.05 0 1 0 0 0.88 0.12
Model E 0.03 0.06 0.91 0.04 0.17 0.79 0.05 0.21 0.74 0.04 0.22 0.74
Model F 0 0.08 0.92 0 0.14 0.86 0.17 0.23 0.60 0.11 0.32 0.57

≤ 2 3∗ ≥ 4 ≤ 2 3∗ ≥ 4 ≤ 2 3∗ ≥ 4 ≤ 2 3∗ ≥ 4

Model G 0.09 0.74 0.17 0.22 0.68 0.10 0.60 0.40 0 0.61 0.38 0.01
Model H 0.08 0.74 0.18 0.12 0.81 0.07 0.45 0.55 0 0.46 0.54 0

The true number of change point(s) is 0∗, 1∗, 2∗ and 3∗ respectively

shown by % : N̂ = N in Table 1. Table 3 summarises the performance in terms of
estimated number of change-points for each model. In addition, we designed novel
plots to display the distance between the actual and estimated locations of change
points, which could help evaluate the detection accuracy on estimated locations.

In order to compare with LRSM, we used the same setting for both the LRSM
and MCP2 method: h = 2 log(T )2, mlk = 50 is set for Model A, B, C, G, and H;
h = log(T )2, mlk = 25 is set for Model I; h = log(T )2, mlk = 50 is set for Model
D, E and F.

(a) Model A: stationary AR(1) process with various β = − 0.7,− 0.1, 0.4, 0.7

xt = βxt−1 + εt , 1 ≤ t ≤ 1024 (4)

We evaluate the performance of the methods via Model A that there is no change
point. LRSM is overall perfect under model A, WBS is nearly perfect except the
poor performance when β = − 0.7. MCP2 method performs well and almost uni-
formly with various β, while tends to have over-segmentation problem, regardless
of the value of h.
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(b) Model B: piecewise stationary auto-regressive process

xt =

⎧
⎪⎨

⎪⎩

0.9xt−1 + εt 1 ≤ t ≤ 512

1.69xt−1 − 0.81xt−2 + εt , 513 ≤ t ≤ 768

1.32xt−1 − 0.81xt−2 + εt , 769 ≤ t ≤ 1024

(5)

From Table 3, it is clear that LRSM is outstanding over the others, WBS has the
lowest accuracy rate and tends to overestimate the number of change points, and
MCP2BH suffers from overestimation as well. Moreover, LRSM gives the most
accurate estimated locations which can be seen by looking at Fig. 1. Estimated
location of WBS spaced out around the true location 768, compared with the
estimates at 512, it seems to lose the power to detect the second change-point,
which may be the reason for overestimation. If we look at the setting of Model B,
at the second location, the coefficients of the adjacent AR(2) segments are very
close, which make it difficult to detect. Similarly, the estimated locations of MCP2
methods show mild variation at 512 and 768.

(c) Model C: piecewise stationary AR(1) process

xt =

⎧
⎪⎨

⎪⎩

0.4xt−1 + εt 1 ≤ t ≤ 400

−0.6xt−1 + εt , 401 ≤ t ≤ 612

0.5xt−1 + εt , 613 ≤ t ≤ 1024

(6)

Comparing with model B, the performance of all methods improved for estimates
of both the number and locations of change points. It can be seen from Fig. 2, in
the WBS method, there is a mild spread at the first location 400. MCP2 methods
perform well under this model.

(d) Model D: piecewise stationary AR(1) process with a short segment

xt =
{
0.75xt−1 + εt 1 ≤ t ≤ 50

−0.5xt−1 + εt , 51 ≤ t ≤ 1024
(7)

LRSM remains the outstanding method in estimating the number of change points
compared with the others. However, there is a large distance between estimated
locations and true location in WBS and LRSM comparing with MCP2 methods,
as shown in Fig. 3. MCP2 method is superior in estimating the location under this
model.

(e) Model E: piecewise stationary near-unit-root process with changing variance

xt =

⎧
⎪⎨

⎪⎩

0.999xt−1 + εt εt ∼ N (0, 1), 1 ≤ t ≤ 400

0.999xt−1 + εt , εt ∼ N (0, 1.52), 401 ≤ t ≤ 750

0.999xt−1 + εt , εt ∼ N (0, 1), 751 ≤ t ≤ 1024

(8)

Since the autocorrelation coefficients of this series remain unchanged for each
segment and close to 1, all methods do not perform well.
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(f) Model F: piecewise stationary AR process with high autocorrelation

xt =

⎧
⎪⎨

⎪⎩

1.399xt−1 − 0.4xt−2 + εt εt ∼ N (0, 1), 1 ≤ t ≤ 400

0.999xt−1 + εt , εt ∼ N (0, 1.52), 401 ≤ t ≤ 750

0.699xt−1 + 0.3xt−2 + εt , εt ∼ N (0, 1), 751 ≤ t ≤ 1024

(9)

Simulations from models E and F are challenging data sets. From Table 3, the
detection rate for all methods is quite low at around 0.3. Hence, it is not useful
to plot the corresponding locations. MCP2 performs slightly better than the other
two methods when the optimal scanning window is applied.

(g) Model G: piecewise stationary AR(1) process with three change points

xt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.7xt−1 + εt 1 ≤ t ≤ 125

0.3xt−1 + εt 126 ≤ t ≤ 532

0.9xt−1 + εt 533 ≤ t ≤ 704

0.1xt−1 + εt 705 ≤ t ≤ 1024

(10)

It can be indicated from Table 3 that MCP2 outperformed the other methods under
this model in terms of estimating the number of change points. Both WBS and
LRSMmethods suffer from the underestimation. For location estimates, there is an
outlier—(k̂1 = 518, k̂2 = 704, k̂3 = 909) in Fig. 4 of MCP2BH. WBS and LRSM
had similar performance. Overall, MCP2WRI is recommended for this model.

(h) Model H: piecewise stationary ARMA(1,1) process with three change points

xt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.7xt−1 + εt + 0.6εt−1 1 ≤ t ≤ 125

0.3xt−1 + εt + 0.3εt−1 126 ≤ t ≤ 532

0.9xt−1 + εt 533 ≤ t ≤ 704

0.1xt−1 + εt − 0.5εt−1 705 ≤ t ≤ 1024

(11)

Similar to the previousmodel,MCP2has the best performancewhen estimating the
number of change points, while the LRSM and WBS method has the tendency to
underestimate the number of change points, as shown in Table 3. Furthermore, it is
interesting to see that WBS andMCP2 have a mild variation at the second change-
point from Fig. 5. A location estimate vector—(k̂1 = 429, k̂2 = 646, k̂3 = 705)
is an outlier in WBS plot. Comparing WBS with LRSM, LRSM remains robust
when estimating the locations.

(i) Model I: piecewise stationary moving average process

xt =
{

εt + 0.8εt−1 1 ≤ t ≤ 128

εt + 1.68εt−1 − 0.81εt−2 129 ≤ t ≤ 256
(12)

Tables 1 and 3 show that all methods performed well when estimating the number
of change points. In terms of estimating the locations, all methods performed

123



1520 L. Ma et al.

●●●●
●
●

●

●
●
●●●●

●●

●

●
●
●●●●●●●●

●
●●●●

●●●●●●●
●●●●●

●
●●●●●●●●●

●
●●

●
●●●●●

●●

●●
●
●

●

●
●

●
●●●

●
●
●
●●

●

●●

●
●

●
●●●●

●

●●

●●

●
●●

●

●

●

●

●

●●

●

●●

●

●
●●●●

●

●

●
●

●

●

●●
●●●●

●●

●●●

●●

●

●
●
●●

●
●

●●

●
●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●

●●

●

●
●●●

●
●

●

●

●●
●●●

●●

●●

●●

●

●
●
●●

●
●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●
●●●

●●●●●●●●●
●
●●●

●

●
●●●●

●
●
●

●●●●●●●●●●
●●

●
●●

●

●

●

●

●●
●
●●

Model B − MCP2WRI Model B − WBS

Model B − LRSM Model B − MCP2BH

0 25 50 75 0 25 50 75

400

600

800

400

600

800

Number of sequences (out of 100) with 2 estimated change points

E
st

im
at

ed
 lo

ca
tio

ns
 o

f c
ha

ng
e 

po
in

ts

Fig. 1 Plots of estimated locations of change points from different methods under model B. Horizontal line
stands for the sequence of estimated changes only when the estimated number of change points equals to
2. The dashed black lines represent the true locations of change points, 512 and 768

poorly. Fig. 5 indicates that the estimates of LRSM and WBS method have large
spread around the true change-point, while the estimates of MCP2 method tend to
cluster below 128.

3.3 Discussion of simulation results

In the simulation study, we have used nine settings to evaluate the performance of
the MCP2, LRSM and WBS methods. We firstly had a discussion on the choice of
scanningwindow. Comparing with LRSM, the implementation ofMCP2 is not limited
to the value of h. The optimal value of h has been provided in Table 2. Then, we
evaluated the methods from two perspectives: the accuracy in detecting the number of
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Fig. 2 Plots of estimated locations of change points from different methods under model C. Horizontal line
stands for the sequence of estimated changes only when the estimated number of change points equals to
2. The dashed black line represents the true locations of change points, 400 and 612

change points and the accuracy in detecting the locations. Searching for the number of
change points is the first challenge since it may be overestimated or underestimated,
as shown in Table 3. We produce Figs. 1, 2, 3, 4, 5 and 6 to show that fitting between
estimated change points and true change points conditioned on that the estimated
number of change points is correct. Overall, the MCP2 performs well and shows its
superiority under Model G. Model H and I demonstrate that detecting change-points
in a piecewise stationary moving average process remains a challenge. As shown in
Fig. 6, the estimates from all methods display a large spread.
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Fig. 3 Plots of estimated locations of change points from different methods under model D. Horizontal line
stands for the sequence of estimated changes only when the estimated number of change points equals to
1. The dashed black line represents the true location of change points at 50

4 Real data analysis

4.1 Example 1: physiological data time series

In this section, we use two linked medical time series, BabyECG and BabySS, which
are available in the R packagewavethresh, containing 2048 observations of an infant’s
heart rate and sleep state sampled every 16 s recorded from 21:17:59 to 06:27:18. Both
of them were recorded from the same 66 day old infant. The dashed line represents
a change in sleep state. Korkas and Fryzlewicz (2017) has analysed the BabyECG
time series as a real data example of a piecewise stationary time series by using the
WBS method. Here we compare MCP2 with WBS, since LRSM is not applicable for
this situation. From Fig. 7, it can be seen that all methods tend to be in agreement
at most estimated change points. MCP2 is able to identify the short segment if we
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Fig. 4 Plots of estimated locations of change points from different methods under model G. Horizontal line
stands for the sequence of estimated changes only when the estimated number of change points equals to
3. The dashed black line represents the true locations of change points, 125, 532 and 704

use the smallest scanning window whereas WBS may ignore the shorter segments. In
addition, the BH procedure is more conservative than Wright’s. We remark that the
selection of a scanning window exerts a control on the final estimates. In this situation,
the scanning window we use is h = max

{
50, log(2048)2

}
.

4.2 Example 2: monthly IBM stock returns

The experiment we perform here is used for comparingMCP2with the LRSMmethod
by analysingmonthly stock returns of IBM from January 1962 to October 2014, which
is an example tested byYau and Zhao (2016) using LRSM. The scanning window used
in MCP2 is the same as LRSM, which is h = 41. LRSM gives two changes at 307
(July 1987) and 491 (November 2002), whereas MCP2-BH gives two estimations at
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Fig. 5 Plots of estimated locations of change points from different methods under model H. Horizontal line
stands for the sequence of estimated changes only when the estimated number of change points equals to
3. The dashed black line represents the true locations of change points, 125, 532 and 704

390 (June 1994) and 492 (December 2002). MCP2-Wright gives only one detection
at 492. It seems that there is a clear agreement on the second change point (Fig. 8).

5 Conclusion

In this paper, we proposed the MCP2 method which shows the flexibility and superior
performance over the LRSMandWBSmethods in piecewise stationary autoregressive
process with more than two change points. In terms of measuring the locations of
change points, we used novel statistical plots instead of the Hausdorff distance, one
advantage being that we can get insights from the plots as to what caused the over-
segmentation. In addition, the plots clearly demonstrated the performance of each
method when estimating the locations of change points.
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Fig. 6 Plots of estimated locations of change points from different methods under model I. Horizontal line
stands for the sequence of estimated changes only when the estimated number of change points equals to
1. The dashed black line represents the true location of change point at 128

Although the MCP2 method worked particularly well in simulations in identifying
change points when there were some, the Type I error rates were above the significance
level under the null models (Model A). This may be due to the fact that, although the
method accounts for multiple testing in the second (validation) stage, there is still
uncertainty not accounted for from the first (detection) stage. A way of accounting
for this would be to use the Bonferroni procedure with a p-value correction which
reflects the number of scan statistics examined. A conservative approach is to set the
p-value threshold to α/T , which will reduce the Type I error rate with the trade-off
that the power to detect true change points is also reduced. Future work will refine
this approach, but preliminary simulation results suggest that good power is retained
compared with the other methods.
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Fig. 7 Performance of MCP2 with WBS, the top and bottom dotted line represents MCP2-BH and MCP2-
Wright, the middle dotted line represents WBS method with default setting. The right hand axis represents
1 = quiet sleep, 2 = between quiet and active sleep, 3 = active sleep, 4 = awake

Fig. 8 Performance of MCP2 with LRSM, the blue line represents LRSM, the orange dotted line represents
MCP2-BH method

Other future research will involve a theoretical investigation of our method as well
as work to further improve the estimation accuracy.
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