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Abstract
This article deals with testing simultaneous hypotheses about the mean structure and
the covariance structure in models with blocked compound symmetric (BCS) covari-
ance structure. Considered models are used for double multivariate data, which means
that m-variate vector of observation is measured repeatedly over u levels of some fac-
tor on each of n individual. Additionally, the assumption of multivariate normality for
this type of data is made. We use framework of ratio of positive and negative parts of
best unbiased estimators to obtain simultaneous F test. The test statistic is constructed
as a ratio of test statistics for testing single hypotheses about the mean vector and
the covariance matrix. In simulation study power of obtained test is compared with
powers of three other F tests—two for testing single hypotheses and one for testing
simultaneous hypotheses, whose test statistic is convex combination of test statistics
of these two single F tests. The problem of simultaneous testing of the mean vector
and covariance matrix was also consider in paper (Hyodo and Nishiyama, Commun
Stat Theory Methods, https://doi.org/10.1080/03610926.2019.1639751, 2019).

Keywords Best unbiased estimator · Block compound symmetric covariance
structure · Double multivariate data · Positive and negative part of estimator ·
Structure of covariance matrices · Structure of mean vector · Testing hypotheses

1 Introduction

Let us consider the following multivariate model
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y
num×1

= vec

(
Y

um×n

)
∼ N (

(1n ⊗ Ium)μ, In ⊗ �
)
, (1.1)

where vec is a vectorization operator that is a linear transformation which converts the
matrix into a column vector obtained by stacking the columns of a matrix on top of one
another, In is n × n identity matrix, Y = (

y1, . . . , yn
)
stands for data matrix, y j is

um × 1-dimensional vector of all measurements corresponding to the j-th individual,
1n isn-vector of ones,⊗denotesKronecker product,μ isum×1-dimensional unknown
mean vector. Here the (um×um)-dimensional covariance matrix� has BCS structure
which is defined as

� =

⎡
⎢⎢⎢⎢⎣

�0 �1 . . . �1

�1
. . . �1

...
. . .

...

�1 �1 . . . �0

⎤
⎥⎥⎥⎥⎦

= Iu ⊗ (�0 − �1) + Ju ⊗ �1, (1.2)

where Ju denotes the u × u matrix of ones, the m × m block diagonals �0 represent
the covariance matrix of the m response variables at any given level of factor, while
the m × m block off diagonals �1 represent the covariance matrix of the m response
variables between any two levels of factor.

The matrix � is positive definite if and only if �0 + (u − 1)�1 and �0 − �1 are
positive definite matrices. For the proof see Roy and Leiva (2011) or Zmyślony et al.
(2018).
In the second section we deal with problem of testing simultaneous hypotheses both
for the expectation vector and the covariance structure in model (1.1). In the next
section we present simulation study to compare powers of considered tests. In the
fourth section we deal with real data and calculate p-value for each presented test. The
last section contains summary of all obtained results in the paper and some remarks.

2 Simultaneous ratio F test

In Zmyślony et al. (2018) test for single hypothesis about themean vector is considered
and in Fonseca et al. (2018) test for single hypothesis about the covariance matrix is
constructed. More precisely, the null hypothesis for the mean vector is

Hμ
0 : μ1 = μ2 = · · · = μu (2.1)

what means that mean vectors stay unchanged between all levels of factor. Under the
null hypothesis such structure of mean vector is called the structured mean vector. For
more details about model with the structured mean structure see Kozioł et al. (2018).
The null hypothesis for the covariance matrix �1 is

H�1
0 : �1 = 0 (2.2)
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what means that there is no correlation between any two levels of factor.
Now let us consider the following simultaneous hypothesis

Hμ,�1
0 : Hμ

0 ∧ H�1
0 . (2.3)

For hypotheses (2.1) and (2.2) test statistics have been constructed in Zmyślony et al.
(2018) and Fonseca et al. (2018), as a ratio of positive and negative parts of best unbi-
ased estimators. Details about this framework can be found inMichalski andZmyślony
(1996, 1999). These two test statistics have F distribution under null hypotheses with
different numbers of degrees of freedom in numerator and the same number of degrees
of freedom in denominator.

Let μ̃(c)
j be best unbiased estimator (BUE) of orthogonal normalized contrast vec-

tor of μ j for j = 2, . . . , u. This estimator can be obtained using Helmert matrices,

see Zmyślony et al. (2018). Then
∑u

j=2 μ̃
(c)
j μ̃

(c)′
j is positive part of estimator of∑u

j=2 μ
(c)
j μ

(c)′
j . The best unbiased estimators for �0 and �1 are

˜�0 = 1

(n − 1)u
C0,

˜�1 = 1

(n − 1)u(u − 1)
C1,

while

C0 =
u∑

s=1

n∑
r=1

(
yr ,s − y•s

) (
yr ,s − y•s

)′
,

C1 =
u∑

s=1

u∑
s∗=1

s �=s∗

n∑
r=1

(
yr ,s − y•s

) (
yr ,s∗ − y•s∗

)′
,

where y•s = 1
n

∑n
r=1 yr ,s and yr ,s is m-variate vector of measurements on the r − th

individual at the sth level of factor, r = 1, . . . , n, and s = 1, . . . , u. For details see
Roy et al. (2016). Moreover, let �̃1+ and �̃1− be positive and negative part of best
unbiased estimator �̃1 for �1 (see Fonseca et al. 2018), respectively.

Following the above mentioned idea we prove

Theorem 1 The test statistic

Fμ,�1 = (u − 1)x′�̃1+x

x′ ∑u
j=2 μ̃

(c)
j μ̃

(c)′
j x

(2.4)

with x �= 0, under null hypothesis (2.3) has F distribution with n−1 and u−1 degrees
of freedom.
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Proof Let ˜�0 and ˜�1 be BUE for �0 and �1, respectively (see Roy et al. 2016; Seely
1977; Zmyślony 1980). From Fonseca et al. (2018) we get that under null hypothesis
(2.2):

(n − 1)u˜�1+ = (n − 1)
(
˜�0 + (u − 1)˜�1

)
∼ Wm (�0, n − 1) , (2.5)

(n − 1)u(u − 1)˜�1− = (n − 1)(u − 1)
(
˜�0 − ˜�1

)
∼ Wm (�0, (n − 1)(u − 1)) ,

(2.6)

and are independent. Throughout the paperWm (�, n) stands for Wishart distribution
with covariance matrix � and number of degrees of freedom equal to n.
Moreover, under null hypothesis (2.1):

u∑
j=2

μ̃
(c)
j μ̃

(c)′
j ∼ Wm (�0, u − 1) , (2.7)

(n − 1)(u − 1)
(
˜�0 − ˜�1

)
∼ Wm (�0, (n − 1)(u − 1)) , (2.8)

and are independent. Additionally, statistics given in (2.7) and (2.9) are independent.
For the proof see Zmyślony et al. (2018)
From (2.5) and (2.6) we have that for any x �= 0 test statistics for testing hypothesis
(2.2) about the covariance matrix �1 is

F�1 = x′
˜�1+x

x′˜�1−x
=

x′
(
˜�0 + (u − 1)˜�1

)
x

x′
(
˜�0 − ˜�1

)
x

∼ Fn−1,(n−1)(u−1). (2.9)

For details see Fonseca et al. (2018). On the other hand, using (2.7) and (2.8), we get
that for any x �= 0 test statistic for testing hypothesis (2.1) about the mean vector μ is

Fμ =
1

(u−1) x
′ ∑u

j=2 μ̃
(c)
j μ̃

(c)′
j x

x′
(
˜�0 − ˜�1

)
x

∼ Fu−1,(n−1)(u−1). (2.10)

The proof is given in Zmyślony et al. (2018). One should note that in denominators
of (2.9) and (2.10) there are the same expression x′(˜�0 − ˜�1)x. Thus taking ratio of
F�1 and Fμ we get that under null hypothesis (2.3) for any x �= 0

Fμ,�1 = F�1

Fμ
=

x′
(
˜�0 + (u − 1)˜�1

)
x · x′

(
˜�0 − ˜�1

)
x

x′
(
˜�0 − ˜�1

)
x · 1

(u−1) x
′ ∑u

j=2 μ̃
(c)
j μ̃

(c)′
j x

= (u − 1)x′
˜�1+x

x′ ∑u
j=2 μ̃

(c)
j μ̃

(c)′
j x

∼ Fn−1,u−1.

�	
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Remark 1 Note that test statistic for ratio F test can be also obtained as a ratio of Fμ

and F�1 . In this case, under null hypothesis (2.3) for any fixed x �= 0 such test statistic
has F distribution with u − 1 and n − 1 degrees of freedom.

3 Simulation study

In this section we compare powers of simultaneous ratio F test obtained in the pre-
vious section with two tests for single hypotheses i.e. (2.1) and (2.2) and also with
simultaneous F test for (2.3) constructed in Zmyślony and Kozioł (2019), whose test
statistic is convex combination of test statistics of single F tests. For simulation study
we assume that vector x = 1, which means that in (2.4) in nominator and denominator
we take a sum of elements of estimators. Regarding parameters, we choose n = 15,
u = 2, m = 3 and in case when all elements in vector of contrasts and in �1 have the
same sign, we take vector of contrast in the following form

μ
(c)
2 =

⎡
⎣ 1.23744
1.76777
2.09304

⎤
⎦

and the following matrices �0 and �1

�0 =
[ 0.01234 0.02204 0.00907
0.02204 0.07559 0.01694
0.00907 0.01694 0.01105

]
and �1 =

[ 0.01025 0.01899 0.00819
0.01899 0.06610 0.01517
0.00819 0.01517 0.00810

]
.

For these matrices �0, �1 and value of u, we determined interval for positive values
of multiplier λ, so that the following two conditions are satisfied:

1. �0 + (u − 1)λ�1 is positive definite matrix,
2. �0 − λ�1 is positive definite matrix.

These conditions ensure positive definite of matrix �. Moreover, in each step of sim-
ulation in test for expectation vector we add randomly chosen vectors to the vector of
contrasts multiplied by the same λ to obtain power function of the test. Note that for
λ = 0 we have null hypotheses. The simulation study is given in the same manner as
in Zmyślony and Kozioł (2019).

As can be seen from Fig. 1 in case when all elements in covariance matrix �1 and
vector of contrastsμ

(c)
2 have the same sign, simultaneous ratio F test has bigger power

than three other tests, both for single hypotheses and simultaneous convex combination
F test.

Now we consider case when elements in μ
(c)
2 have different signs. We take the

following vector of contrasts

μ
(c)
2 =

⎡
⎣ 1.23744

−1.76777
3.13955

⎤
⎦ .
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Fig. 1 Powers of tests in case when all elements in �1 and μ
(c)
2 are positive

Fig. 2 Powers of tests in case when all elements in �1 are positive and elements inμ
(c)
2 have different signs

Matrices �0 and �1 have the same elements as in the previous case.
Figure 2 shows that this time simultaneous convex combination F test has the

biggest power. Ratio F test close to null hypothesis has relatively small power but the
farther away from the null hypothesis, the bigger increase power of this test, especially
compared with power of F test for testing single hypothesis about covariance matrix.
Power of test for testing single hypothesis about mean vector is poor which was
predictable because in test statistic for this test is taken ratio of sum of elements of
positive and sum of elements of negative part of BUE. For elements with different
signs sum could be close to zero even if elements are far from 0.

In third case we take the same μ
(c)
2 as in the first case and matrices �0 and �1 of

the following forms
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Fig. 3 Powers of tests in case when elements in �1 have different signs and all elements inμ
(c)
2 are positive

�0 =
⎡
⎣ 7.98767 −1.44727 1.22910

−2.44727 12.25195 −4.18750
1.22950 −4.18750 7.56094

⎤
⎦ and

�1 =
⎡
⎣ 5.27860 −1.87846 1.26189

−1.87846 −3.19609 1.11567
1.26189 1.11567 −2.15724

⎤
⎦.

Thus now we consider case when elements in �1 have different signs and all elements
in μ

(c)
2 have the same sign.

In Fig. 3 one can see different situation from two previous cases. Powers of simul-
taneous tests, both based on ratio and convex combination, are very low compared
with the power of test for testing single hypothesis about μ. Nevertheless, ratio F test
is better than convex combination F test in this comparison. Test for testing single
hypothesis about �1 has the lowest power. The reason for this is the same as the one
described in second case for test for μ. Poor power of simultaneous tests reveals fact
that different signs of elements in the covariance matrix has big impact on power of
these tests.

For the last considered case we take matrices �0 and �1 as in the previous case and
vector of contrasts as in the second case. Thus elements in �1 and elements in μ

(c)
2

have different signs.
In Fig. 4 one can see that all four considered tests have low powers and this is

clear from two previous cases. Thus in case when in the covariance matrix and in
vector of contrasts there are both positive and negative elements, none of these tests
are recommended for testing hypotheses about the mean vector μ and the covariance
matrix �1.
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Fig. 4 Powers of tests in case when elements in �1 and elements in μ
(c)
2 have different signs

4 Data example

We consider clinical study data on mineral contents in bones of the upper arm and the
forearm (radius, humerus and ulna) in 25 women. Measurements were taken on the
dominant and non-dominant side of each woman. This data is taken from Johnson and
Wichern (2007) on page 43 to give example of the use of the proposed test. For this
data m = 3, u = 2 and n = 25. According to results given in Roy et al. (2016) the
best unbiased estimators of �0 and �1 for model with unstructured mean vector are

�̃0=
⎡
⎣ 0.01221 0.02172 0.00901
0.02172 0.07492 0.01682
0.00901 0.01682 0.01108

⎤
⎦ and �̃1=

⎡
⎣ 0.01038 0.01931 0.00824
0.01931 0.06678 0.01529
0.00824 0.01529 0.00807

⎤
⎦,

and the unbiased estimator of mean vector μ is the following:

μ̃ = [
0.84380 1.79268 0.70440 0.81832 1.73484 0.69384

]
.

We calculated p-values for F tests and LRTs for testing single hypotheses about matrix
�1 and mean vectorμ and p-values for simultaneous F tests, both convex combination
and ratio F test. Regarding mean structure p-value for F test is equal to 0.0363 and for
LRT is equal to 0.1725, so that we make different conclusions on standard 5% level
of significance (for details see Zmyślony et al. 2018). P-value for F test for testing
hypothesis about covariance matrix is equal to 1.0607× 10−9 and for LRT is equal to
1.8074 × 10−13, so in this case for both tests we make the same conclusions on any
reasonable significance level. Finally p-values for simultaneous convex combination
F test is equal to 1.2832 × 10−9, while for ratio F test p-value is equal to 0.4126.
The reason of difference between conclusions of those two simultaneous tests is that
for single F test about mean structure p-value is relatively big comparing to p-value
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for F tests about covariance matrix �1. Thus ratio of these two single test statistics is
relatively small what implies that p-value for ratio F test is quite high.

5 Conclusions

The test presented in this paper, whose statistic has explicit F distribution, provides a
valid alternative to tests for single hypotheses about covariance components and mean
vector in multivariate models with BCS covariance structure and convex combination
F test for testing simultaneous hypotheses. Test statistic of proposed test is ratio of test
statistics for single hypotheses mentioned in this paper. Simulation study shows good
and bad sides of obtained ratio F test. In case when all elements in contrast vector
and covariance matrix have the same sign proposed test is more powerful than all
three other compared F tests. In the other cases it is recommended to use simultaneous
convex combination F test or single F tests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
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