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Abstract
In this paper we introduce an efficient fat-tail measurement framework that is based
on the conditional second moments. We construct a goodness-of-fit statistic that has
a direct interpretation and can be used to assess the impact of fat-tails on central
data conditional dispersion. Next, we show how to use this framework to construct
a powerful normality test. In particular, we compare our methodology to various
popular normality tests, including the Jarque–Bera test that is based on third and fourth
moments, and show that in many cases our framework outperforms all others, both
on simulated and market stock data. Finally, we derive asymptotic distributions for
conditional mean and variance estimators, and use this to show asymptotic normality
of the proposed test statistic.

Keywords 20-60-20 rule · Normality test · Fat-tail · Heavy-tail · Non-normality ·
Stock returns

Mathematics Subject Classification 62F03 · 62F05 · 62P05 · 62P20 · 91G70

1 Introduction

It has been recently shown in Jaworski and Pitera (2016) that for a normal random
variable and a unique ratio close to 20/60/20 the conditional dispersion in the tail sets
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is the same as in the central set. In other words, if we split big normal sample into
three sets—one corresponding to the worst 20% outcomes, one corresponding to the
middle 60% outcomes, and one corresponding to the best 20% outcomes—then the
conditional variance on those subsets is approximately the same.

In this paper we show that this property could be used to construct an efficient
goodness-of-fit testing framework that has a direct (financial) interpretation. The
impact of tail dispersion on central dispersion is a natural measure of tail heaviness
and can serve as an alternative to other methods which are typically based on tail limit
analysis or higher order moments; see Alexander (2009) and Jarque and Bera (1980).
In particular, in contrast to the Jarque–Bera normality test that is based on third and
fourth moments, our test relies on the conditional second moments which are often
easier to estimate.

Testing for normality has a long history and many remarkable methods have been
developed. This includes general distribution-fit frameworks like Anderson–Darling
test based on the distance between theoretical and empirical distribution function
(Anderson andDarling 1954) or Shapiro–Wilk test relying on the regression coefficient
(Wilk and Shapiro 1965); see Madansky (2012), Henze (2002) or Thode (2002) for a
comprehensive overview of normality testing procedures.

Most empirical studies suggest that the normality tests should be chosen carefully
as their statistical power varies depending on the context; see e.g. Thadewald and
Büning (2007), Romão et al. (2010) or Brockwell and Davis (2016). This is why
the existing procedures are constantly refined and new ones are being developed; for
example, a recent revision of the Jarque–Bera testing framework based on the second-
order analogue of skewness and kurtosis could be found in Desgagné and Lafaye de
Micheaux (2018).

The approach presented in this paper draws attention to interesting and previously
not exploited aspect of normal distributions that could be used for efficient normality
testing. In particular, we show that our approach outperforms and/or complements
multiple benchmark normality testing frameworkswhen popular (financial) alternative
distributions, such as Student’s t or logistic, are considered. More explicitly, we show
that our test usually has the best power if one expects that a sample comes from a
symmetric distribution which have heavier (or lighter) tails in comparison with the
normal distribution.We illustrate that with a financial market data example; see Sect. 6
for details.

Finally, it isworthmentioning that the 20/60/20 division leads to a very accurate data
clustering when it comes to the tail assessment performed in reference to the central
set normality assumption. Consequently, our method could be embedded into data
analytics frameworks based on cluster analysis, help to refine data mining techniques,
etc; see Romesburg (2004), Kaufman and Rousseeuw (2009) and Hair et al. (2013) for
an overview. In fact, the good performance of our test statistic on market data could
be linked to a popular financial stylised fact saying that typical financial asset returns
can be seen as normal, but the extreme returns are more frequent and with greater
magnitude than the ones resulting from the normal fit; see Cont (2001) and Sheikh
and Qiao (2010) for details.

This paper is organised as follows: In Sect. 2 we briefly recall the concept of the 20-
60-20 Rule, while in Sect. 3 we outline the construction of the test statistic and discuss
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its basic properties. Section 4 provides a high-level discussion about the test power,
and Sect. 5 discusses in details mathematical background including derivation of the
asymptotic distribution of the proposed test statistic. Next, in Sect. 6, we present a
simplemarket data case-study and discuss application of our framework in the financial
context. We conclude in Sect. 7. For brevity, we moved the closed-form formula for
the normalising constant introduced in Sect. 3 to Appendix A.

2 The 20-60-20 rule for the univariate normal distribution

Let us assume that X is a normally distributed random variable.We define left, middle,
and right partitioning sets of X by

L :=
(
−∞, F−1

X (0.2)
]
, M :=

(
F−1
X (0.2), F−1

X (0.8)
)

, R :=
[
F−1
X (0.8),+∞

)
,

(1)
where F−1

X (α) is the α-quantile of X . It has been shown in Jaworski and Pitera (2016)
that

σ 2
L = σ 2

M = σ 2
R, (2)

for this unique 20/60/20 ratio, where σ 2
A denotes the conditional variance of X on set

A.1

This specific division together with the associated set of equalities in (2) create
a dispersion balance for the conditioned populations. This property might be linked
to the statistical phenomenon known as the 20-60-20 Rule: a principle that is widely
recognised by the practitioners and used e.g. for efficient management or clustering.
In fact, a similar statement is true in the multivariate case: the conditional covariance
matrices of multivariate normal vector are equal to each other, when the conditioning
is based on the values of any linear combination of the margins, and 20/60/20 ratio is
maintained. For more details, see Jaworski and Pitera (2016) and references therein.

3 Test statistic

Let us assume we have a sample from X at hand. Then, based on (2), we define a test
statistic

N := 1

ρ

(
σ̂ 2
L − σ̂ 2

M

σ̂ 2 + σ̂ 2
R − σ̂ 2

M

σ̂ 2

) √
n , (3)

where σ̂ 2 is the sample variance, σ̂ 2
A is the conditional sample variance on set A (where

the conditioning is based on empirical quantiles), n is the sample size, and ρ ≈ 1.8
is a fixed normalising constant; see Fig. 1 for the R implementation code. We refer
to Sect. 5 for more details including rigorous definitions of conditional variance σ̂ 2

A,
constant ρ, etc.

1 In fact, this equality is true for the ratio very close to 20/60/20, i.e. for upper and lower quantiles equal to
approximately 0.198. For transparency, we have decided to use the rounded numbers here; see Sect. 5 for
details.
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1 Test .N <− f unc t i on ( x ) {
n <− l ength ( x )

3 q1 <− quant i l e (x , 0 . 2 )
q2 <− quant i l e (x , 0 . 8 )

5 low <− x [ x <= q1 ]
med <− x [ x > q1 & x < q2 ]

7 high <− x [ x >= q2 ]
N <− var ( low )+var ( high )−2∗var (med)

9 N <− N ∗ s q r t (n) / ( var ( x ) ∗ 1 . 8 )
r e turn (N) }

Fig. 1 Simplified R source code that was used to create a function that computes the test statistic N given
input sample x

It is not hard to see that under the normality assumption N is a pivotal quantity.
Furthermore, in Sect. 5 we show that the distribution of N is asymptotically normal;
see Theorem 1 therein. In Fig. 2, we illustrate this by computing the Monte Carlo
density of N under the normality assumption for samples of size 50, 100, and 250.

Test statistic N has a clear interpretation: the difference between tail and central
conditional variances could be seen as a measure of tail fatness, i.e. the bigger the
value of N , the fatter the tails.

To illustrate this we compute the values of N for bigger sample size, n = 500,
for three different fat-tail distributions and three different slim-tail distributions. For
fat-tail comparison we picked logistic, Student’s t with five degrees of freedom, and
Laplace distributions, while for slim-tail comparison we considered generalised nor-
mal distribution with shape parameter s ∈ {2.5, 3, 5}; the (standardised) generalised
normal density for s ∈ R+ is given by

f (x |s) := s

2Γ (1/s)
exp

(−|x |s) , x ∈ R; (4)

we refer to Nadarajah (2005) or Tumlinson et al. (2016) for more details. The results
presented in Fig. 3 confirm that the behaviour of N is as expected.

Based on statistic N values, one can construct a one-sided or two-sided statistical
test with normality (N = 0) as a null hypothesis. For brevity, we refer to such test as
N normality test or simply N test.

4 Power of the test

In this section we check the power of the proposed N test in a controlled environment.
We focus on symmetric distributional alternatives (used e.g. in finance) when one
wants to abandon the normality assumption due to fat-tail or slim-tail phenomena.
Namely, we consider the Cauchy distribution, the Logistic distribution, the Laplace
distribution, the Student’s t distribution with v ∈ {2, 5, 10, 20, 30} degrees of freedom
parameter, and the generalised normal distribution (GN) with the shape parameter
s ∈ {1.5, 2.5, 3, 5, 10}. Note that GNwith s = 1 and s = 2 correspond to Laplace and
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α n Φ−1(1 − α) F−1
n (1 − α)

50 2.68
1.0% 100 2.33 2.57

250 2.51

50 2.18
2.5% 100 1.96 2.12

250 2.09

50 1.77
5.0% 100 1.64 1.74

250 1.74

Fig. 2 The distribution of N under the normality assumption for n = 50, 100, 250, for strong Monte Carlo
sample of size 10,000,000. The obtained empirical density (solid curve) is very close to standard normal
density (dashed curve); the table compares selected empirical quantiles with theoretical normal quantiles

normal distribution, respectively; see (4) for the GN density definition. In all cases,
the location parameter is set to 0 and the scale parameter is set to 1.

For completeness, we compare test N results with well-established benchmark
normality tests: Jarque–Bera test, Anderson–Darling test, and Shapiro–Wilk test. It
should be noted that in contrast to these frameworks, statistic N allows one to consider
a specific heavy-tail (or slim-tail) alternative, i.e. positive (or negative) values of N
point out to heavy-tail (or slim-tail) alternative hypothesis. Consequently, we decided
to construct right-sided (or left-sided) critical region for the fat-tailed (or slim-tailed)
distributions. Nevertheless, for completeness, we include the results for two-sided
critical regions in all cases.

For all alternative distribution choices we consider four different sample sizes, i.e.
n = 20, 50, 100, 250. For each n, we simulate 2,000,000 strong Monte Carlo sample,
and check for what proportion of simulations the tests reject normality at significance
level α = 5%.
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N

Fig. 3 Boxplots of N for samples from different distributions. The results for three fat-tailed distributions
(Logistic, t-Student with v = 5, and Laplace) are presented in the left plot. The results for three slim-tailed
distributions (generalised normal with s ∈ {2.5, 3, 5}) are presented in the right plot. For transparency, we
rescaled all distributions to have zero mean and unit variance, and added the results for normal distribution.
The boxplots are based on strong Monte Carlo sample of size 10,000, where each simulation is of size
n = 500

All computations are performed inR3.5.2. For benchmark normality testingwe use
multiple add-onR packages including gnorm (for GN simulation), stats (for Shapiro–
Wilk test), nortest (Anderson–Darling test), and tseries (Jarque–Bera test). For better
comparability, we used test-wise simulated rejection thresholds instead of theoretical
p-values returned by R functions; for computations, we used big strong Monte Carlo
sample of size 10,000,000. In particular, note that while Jarque–Bera test has asymp-
totic χ2 distribution (with 2 degrees of freedom) under normality, this approximation
may be inaccurate for small samples, and lead to non-meaningful (non-adjusted) p-
values.

It should be noted that our framework specification is consistent with the one pre-
sented inDesgagné andLafaye deMicheaux (2018),where a comprehensive normality
tests comparison is made. In particular, results presented in Appendix C therein are
perfectly consistent with results presented here (for all benchmark tests).2

For transparency, we have decided to consider fat-tail and slim-tail case separately.
The results for fat-tailed distributions are presented in Table 1. The best performance
of the right-sided test N could be observed for almost all considered distributions.
The fatter the tails the bigger the absolute difference between N test power and JB
test power, which could be considered as a second best choice. To check whether test
statistic N brings somenovel results, we decided to check the proportion of simulations
on which the normality assumption was rejected uiquely by N among all considered
tests; for comparison purposes, we checked the same for all other tests. The results
for three selected distributions are presented in Table 2. It can be observed, that the
unique rejection proportion for test N is the highest among all tests and point out to
the fact that statistic N is taking into account sample properties that are not exploited

2 Please note that results presented for Asymmetric Power Distribution (APD) with symmetry parameter
α = 0.5 correspond to results presented for Generalised Normal (GN) distribution; we refer to Section 2
in Desgagné and Lafaye de Micheaux (2018) for details.
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New fat-tail normality test based on conditional second moments 2089

by other tests.3 Finally, it should be noted that the performance of two-sided N test
is also quite good: the test outperforms both AD and SW in most of the considered
cases.

The results for slim-tailed distributions are presented in Table 3. Both left-sided
and two-sided test based on N statistic substantially outperform all other tests on all
datasets. This suggest that the proposed framework is also suitable when assessing
slim-tailed distributions.

5 Mathematical framework and asymptotic results

In this section,we provide the explicit formulas for the conditional variance estimators,
study their asymptotic behaviour, and show that N is asymptotically normal.

First, we introduce the basic notation and provide more explicit formulas for sets
L , M , and R that were given in Sect. 2; see (1).

We assume that X ∼ N (μ, σ ) formean parameterμ and standard deviation param-
eter σ . We use FX to denote the distribution of X , Φ to denote the standard normal
distribution, and φ to denote the standard normal density. Following the usual con-
vention, for any n ∈ N, we use (X1, . . . , Xn) to denote the random sample from X
and for i = 1, . . . , n, we use X(i) to denote the sample i th order statistic.

For fixed partition parameters α, β ∈ R, where 0 ≤ α < β ≤ 1, we define the
conditioning set

A[α, β] := {x ∈ R : F−1
X (α) < x ≤ F−1

X (β)}.

For brevity and with slight abuse of notation, we often write A instead of A[α, β].
Then, the explicit formulas for sets L , M , and R given in (1) are

L := A[0, q̃], M := A[q̃, 1 − q̃], R := A[1 − q̃, 1], (5)

where q̃ := Φ(x), and x is the unique negative solution of the equation

− xΦ(x) − φ(x)(1 − 2Φ(x)) = 0. (6)

The approximate value of q̃ is 0.19809; we refer to (Jaworski and Pitera 2016, Lemma
3.3) for details. Note that (6) could be seen as a specific form of differential equation
−xy − y′(1− 2y) = 0, where y(x) := Φ(x); this could be used to determine similar
ratios for other distributions.

Next, we give the exact definition of the conditional sample variance. For a fixed
set A, where A = A[α, β], the conditional variance estimator on the set A is given by

σ̂ 2
A := 1

[nβ] − [nα]
[nβ]∑

i=[nα]+1

(
X(i) − X A

)2
, (7)

3 The results for other distributions are consistent with those presented in Table 2 and could be obtained
from authors upon request.
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Table 1 The table contains test power for various fat-tailed alternatives at significance level α = 5%

Distr n JB (%) AD (%) SW (%) N (two-sided) (%) N (right-sided) (%)

Cauchy 20 86.2 88.0 86.6 85.5 89.0

50 99.5 99.7 99.6 99.7 99.8

100 100.0 100.0 100.0 100.0 100.0

250 100.0 100.0 100.0 100.0 100.0

Logistic 20 14.9 10.6 11.7 11.1 15.6

50 25.9 15.9 19.6 21.2 28.9

100 39.4 23.9 30.5 35.8 45.6

250 66.7 46.7 57.0 67.8 76.4

Student’s t (2) 20 56.7 52.9 52.9 52.9 60.1

50 88.2 85.8 86.3 89.2 92.3

100 98.8 98.4 98.6 99.2 99.6

250 100.0 100.0 100.0 100.0 100.0

Student’s t (5) 20 22.9 17.1 18.6 18.1 23.9

50 43.0 30.2 35.5 38.4 46.8

100 64.6 48.1 56.4 62.5 70.5

250 92.0 81.8 88.2 92.8 95.4

Student’s t (10) 20 12.3 8.8 9.8 9.2 12.5

50 20.6 12.0 15.5 15.7 21.6

100 30.7 16.2 23.0 24.9 33.1

250 52.3 28.5 41.7 47.8 57.9

Student’s t (20) 20 8.1 6.4 6.8 6.5 8.2

50 11.4 7.2 8.7 8.4 11.5

100 15.1 8.0 11.0 10.7 15.5

250 22.9 10.3 16.2 17.2 24.8

Student’s t (30) 20 6.9 5.8 6.1 5.9 7.0

50 8.9 6.2 7.1 6.8 8.9

100 10.9 6.5 8.3 7.9 11.1

250 15.0 7.4 10.7 10.7 16.0

Laplace/GN (1) 20 30.2 27.2 26.1 26.4 35.4

50 55.6 54.5 52.1 59.3 69.1

100 79.9 82.7 79.7 87.3 92.0

250 98.7 99.6 99.2 99.8 99.9

GN (1.5) 20 12.1 9.1 9.5 9.1 13.4

50 19.0 13.2 14.4 16.1 23.7

100 27.9 19.8 21.5 27.3 37.5

250 48.6 40.2 41.4 55.8 66.9

Distr refers to the distribution used for the alternative hypothesis and n indicates sample size. The acronyms
JB, AD, SW, and N refer to Jarque–Bera, Anderson–Darling, Shapiro–Wilk, and N test, respectively
Best performance is marked in bold
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Table 2 The table contains the unique rejections ratios for three selected fat-tailed alternative distribution

Distr n JB (%) AD (%) SW (%) N (right-sided) (%)

Logistic 20 2.2 1.0 0.4 4.3

50 2.7 1.2 0.4 6.9

100 2.7 1.0 0.3 9.3

250 1.6 0.5 0.1 9.7

Student’s t (20) 20 1.6 0.9 0.4 2.8

50 2.1 1.3 0.5 3.6

100 2.5 1.4 0.5 4.7

250 3.0 1.3 0.5 7.0

Laplace/GN (1) 20 2.1 1.6 0.2 7.6

50 1.2 1.6 0.1 9.2

100 0.3 0.7 0.0 5.1

250 0.0 0.0 0.0 0.2

For each test, a proportion of simulated samples on which normality hypothesis was uniquely rejected by
the test (among all four considered tests) is computed. The remaining notation is aligned with Table 1
Best performance is marked in bold

Table 3 The table contains test power for various slim-tailed alternatives at significance level α = 5%

Distr n JB (%) AD (%) SW (%) N (two-sided) (%) N (left-sided) (%)

GN (2.5) 20 2.4 4.5 4.1 5.4 8.6

50 1.3 5.5 4.6 8.0 13.6

100 0.9 7.4 6.2 13.0 21.1

250 4.3 14.5 12.9 29.1 41.3

GN (3) 20 1.3 4.9 4.4 7.3 12.4

50 0.4 8.1 7.0 15.6 24.9

100 0.8 15.0 13.7 31.2 44.1

250 22.8 40.9 41.7 70.6 81.2

GN (5) 20 0.5 8.2 7.8 15.9 25.4

50 0.1 23.0 24.3 47.2 61.2

100 12.3 53.4 60.8 83.3 90.8

250 97.0 96.7 99.1 99.9 100.0

GN (10) 20 0.3 13.1 13.8 26.4 38.5

50 0.3 43.4 53.4 73.0 83.3

100 50.0 84.9 94.6 97.7 99.1

250 100.0 100.0 100.0 100.0 100.0

The remaining notation is aligned with Table 1
Best performance is marked in bold
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where [x] := max{k ∈ Z : k ≤ x} denotes the floor of x ∈ R and

X A := 1

[nβ] − [nα]
[nβ]∑

i=[nα]+1

X(i) (8)

is the conditional sample mean. In particular, we set σ̂ 2 := σ̂ 2
A[0,1]. Recall that the test

statistic N is given by

N = 1

ρ

(
σ̂ 2
L − σ̂ 2

M

σ̂ 2 + σ̂ 2
R − σ̂ 2

M

σ̂ 2

)√
n , (9)

where the normalising constant ρ in (9) is approximately equal to 1.7885; we refer to
Appendix A for the closed form formula for ρ. Now, we are ready to state the main
result of this section, i.e. Theorem 1.

Theorem 1 Let X ∼ N (μ, σ ). Then,

N
d−→ N (0, 1) , n → ∞,

where N is given in (9), and ρ is a fixed normalising constant independent of μ, σ ,
and n.

Before we present the proof of Theorem 1 let us introduce a series of Lemmas and
additional notation; proof techniques are partially based on those introduced in Stigler
(1973). To ease the notation, for a fixed set A, where A = A[α, β], we define

μA := E[X |X ∈ A], a := F−1
X (α) = μ + σΦ−1(α),

σ 2
A := E[(X − μA)2|X ∈ A], b := F−1

X (β) = μ + σΦ−1(β),

κA := 1
(σ 2

A)2
E[(X − μA)4|X ∈ A], mn := [nβ] − [nα].

Additionally, we set

An := #{i : Xi ≤ a} =
n∑

i=1

1{Xi≤a}, Bn := #{i : Xi ≤ b} =
n∑

i=1

1{Xi≤b},

where 1C is the indicator function of set C . It is useful to note that An and Bn follow
the binomial distributions B(n, α) and B(n, β), respectively; note that for α = 0 and
β = 1 the distributions are degenerate with An ≡ 0 and Bn ≡ n.

Finally, for any sequence (ai ) we introduce the notation of the directed sum that is
given by

E l
i=kai :=

⎧⎪⎨
⎪⎩

∑l
i=k+1 ai , if k < l,

0, if k=l,

−∑k
i=l+1 ai , if k > l.
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In Lemma 1, we show the consistency of the conditional sample expectation. Note
that the statement of Lemma 1 does not explicitly rely on normality assumption. In
fact, the proof is true under very weak conditions imposed on X (e.g. continuity of
the distribution function of X ); similar statement is true for other lemmas presented
in this section. Also, it should be noted that Lemma 1 and 2 show consistency and
asymptotic distribution of the standard non-parametric Expected Shortfall estimator;
see e.g. McNeil et al. (2010) for details.

Lemma 1 For any A = A[α, β], it follows that X A
P−→ μA, n → ∞.

Proof Let A = A[α, β]. For any n ∈ N, we get

X A = 1

mn

Bn∑
i=An+1

X(i) + 1
mn

E An
i=[nα]X(i) + 1

mn
E [nβ]
i=Bn

X(i).

Now, we show that
1
mn

E An
i=[nα]X(i)

P−→ 0. (10)

Due to the consistency of the empirical quantiles, we get X([nα])
P−→ a and X(An)

P−→ a,
as n → ∞. Thus, using inequality

0 ≤
∣∣∣ 1
mn

E An
i=[nα]X(i)

∣∣∣ ≤
∣∣∣∣
An − [nα]

mn

∣∣∣∣max{∣∣X([nα])
∣∣ , ∣∣X(An)

∣∣},

to prove (10), it is sufficient to show that
∣∣∣ An−[nα]

mn

∣∣∣ P−→ 0. Noting that

An − [nα]
mn

= n

mn

(
1

n
An − α

)
+ nα − [nα]

mn
,

where

lim
n→∞

nα − [nα]
mn

= 0, lim
n→∞

n

mn
= 1

β − α
, (11)

and, by the Law of Large Numbers,
( 1
n An − α

) P−→ 0, we conclude the proof of (10).
The proof of

1
mn

E [nβ]
i=Bn

X(i)
P−→ 0 (12)

is similar to the proof of (10) and is omitted for brevity.
Next, observe that

1

mn

Bn∑
i=An+1

X(i) = n

mn

(
1

n

n∑
i=1

Xi1{Xi∈A}

)
.
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Consequently, noting that μA = E[X1{X∈A}]
β−α

, and using the Law of Large Numbers,
we get

1

mn

Bn∑
i=An+1

X(i)
P−→ μA. (13)

Combining (10), (12), and (13), we conclude the proof. ��
Next, we focus on the asymptotic distribution of the conditional sample mean; note

that Lemma 2 is a slight modification of the result of Stigler (1973) for trimmedmeans.
For completeness, we present the full proof.

Lemma 2 For any A = A[α, β], it follows that
√
n

(
X A − μA

) d−→ N (0, ηA), n → ∞,

for some constant 0 < ηA < ∞.

Proof For brevity, we assume that α > 0 and β < 1. The remaining degenerate cases
could be treated in the similar manner. Let A = A[α, β]. Define

Sn := √
n

(
X A − μA

)
.

As in the proof of Lemma 1, observe that

Sn =
√
n

mn

( Bn∑
i=An+1

X(i) − mnμA + E An
i=[nα]X(i) + E [nβ]

i=Bn
X(i)

)

=
√
n

mn

( Bn∑
i=An+1

(
X(i) − μA

) + (An − [nα])(a − μA) + ([nβ] − Bn)(b − μA)

+ E An
i=[nα](X(i) − a) + E [nβ]

i=Bn
(X(i) − b)

)
. (14)

Now, we show that √
n

mn
E An
i=[nα](X(i) − a)

P−→ 0. (15)

Due to the consistency of the empirical quantiles, we get

(
X([nα]) − a

) P−→ 0 and
(
X(An) − a

) P−→ 0,

as n → ∞. Thus, using inequality

0 ≤
∣∣∣
√
n

mn
E An
i=[nα](X(i) − a)

∣∣∣ ≤
∣∣∣∣
An − [nα]
mn/

√
n

∣∣∣∣max{∣∣(X([nα]) − a
∣∣ , ∣∣X(An) − a

∣∣},
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it is sufficient to show that An−[nα]
mn/

√
n

converges in distribution to some non-degenerate
distribution. Note that

An − [nα]
mn/

√
n

=
√
n

( 1
n An − α

)

mn/n
+ nα − [nα]

mn/
√
n

,

where

lim
n→∞

mn

n
= β − α, lim

n→∞
nα − [nα]
mn/

√
n

= 0, (16)

and, by the Central Limit Theorem applied to An ∼ B(n, α), we get

√
n

( 1
n An − α

) d−→ N
(
0,

√
α(1 − α)

)
.

Thus, using the Slutsky’s Theorem (see e.g. (Ferguson 1996, Theorem 6’)), we get

An − [nα]
mn/

√
n

d−→ N
(
0,

√
α(1 − α)

β − α

)
,

which concludes the proof of (15). Similarly, one can show that

√
n

mn
E [nβ]
i=Bn

(X(i) − b)
P−→ 0. (17)

Combining (15) with (17), and noting that

nα − [nα]
mn/

√
n

→ 0 and
[nβ] − nβ

mn/
√
n

→ 0, (18)

we can rewrite (14) as

Sn =
√
n

mn

( Bn∑
i=An+1

(X(i) − μA) + (An − nα)(a − μA)+ v(nβ − Bn)(b − μA)

)
+rn,

where rn
P−→ 0. Next, we have

Sn = n(β − α)

mn

( √
n

n(β − α)

n∑
i=1

Z A
i

)
+ rn,

where for i = 1, . . . , n, we set

Z A
i := (Xi − μA)1{Xi∈A} + (1{Xi≤a} − α)(a − μA) + (β − 1{Xi≤b})(b − μA).
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Finally, noting that for n → ∞we get n(β−α)
mn

P−→ 1, and combining the Central Limit

Theorem applied to (Z A
i )with the Slutsky’s Theoremwe conclude the proof; note that

(Z A
i ) are i.i.d. with zero mean and finite variance. ��
Next, we show that for the conditional variance estimator one can substitute the

sample mean with the true mean without impacting the asymptotics. For any A, where
A = A[α, β], the conditional variance estimator with known mean is given by

ŝ2A := 1

mn

[nβ]∑
i=[nα]+1

(
X(i) − μA

)2
.

Lemma 3 For any A = A[α, β], it follows that √n
(
σ̂ 2
A − ŝ2A

) P−→ 0, n → ∞.

Proof As in the proof of Lemma 2, we focus on the case 0 < α < β < 1. Let
A = A[α, β] and note that

ŝ2A = 1

mn

[nβ]∑
i=[nα]+1

(
X(i) − X A + X A − μA

)2

= 1

mn

[nβ]∑
i=[nα]+1

(
X(i) − X A

)2 + (
X A − μA

)2

+ 2

mn

(
X A − μA

) [nβ]∑
i=[nα]+1

(
X(i) − X A

)
,

where the last summand equals 0 since

[nβ]∑
i=[nα]+1

X(i) = mnX A =
[nβ]∑

i=[nα]+1

X A.

Consequently, we get
√
n

(
ŝ2A − σ̂ 2

A

) = √
n

(
X A − μA

)2
. Thus, using Lemma 1 com-

bined with Lemma 2, we conclude the proof. ��
Now, we study the asymptotic behaviour of the conditional variance estimator; this

is a key lemma that will be used in the proof of Theorem 1. Moreover, this result may
be of independent interest since it allows one to construct the asymptotic confidence
interval for the conditional variance.

Lemma 4 For any A = A[α, β] it follows that
√
n

(
σ̂ 2
A − σ 2

A

)
d−→ N (0, τA),
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where

τ 2A := 1

(β − α)2

(
(β − α)(σ 2

A)2(κA − 1)

+ α(1 − α)
(
(a − μA)2 − σ 2

A

)2 + β(1 − β)
(
(b − μA)2 − σ 2

A

)2

− 2α(1 − β)
(
(a − μA)2 − σ 2

A

) (
(b − μA)2 − σ 2

A

) )
.4 (19)

Proof Due to Lemma 3, it is enough to consider ŝ2A instead of σ̂ 2
A. For

SA
n := √

n
(
ŝ2A − σ 2

A

)
,

we get

SA
n =

√
n

mn

( Bn∑
i=An+1

((
X(i) − μA

)2 − σ 2
A

)

+ (An − [nα])
(
(a − μA)2 − σ 2

A

)
+ ([nβ] − Bn)

(
(b − μA)2 − σ 2

A

)

+ E An
i=[nα]

((
X(i) − μA

)2 − (a − μA)2
)

+ E [nβ]
i=Bn

((
X(i) − μA

)2 − (b − μA)2
) )

. (20)

By the arguments similar to the ones presented in the proof of Lemma 2, we get

√
n

mn
E An
i=[nα]

((
X(i) − μA

)2 − (a − μA)2
)

P−→ 0,

and

√
n

mn
E [nβ]
i=Bn

((
X(i) − μA

)2 − (b − μA)2
)

P−→ 0.

Thus, recalling (18), we can rewrite (20) as

SA
n =

√
n

mn

( Bn∑
i=An+1

((
X(i) − μA

)2 − σ 2
A

)

+ (An − nα)
(
(a − μA)2 − σ 2

A

)
+ (nβ − Bn)

(
(b − μA)2 − σ 2

A

))
+ rn,

4Note that for degenerate cases α = 0 and β = 1, we get a = −∞ and b = ∞, respectively. In those
cases, the convention 0 · ∞ = 0 should be used.
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where rn
P−→ 0. Next, for i = 1, . . . , n, we set

Y A
i :=

(
(Xi − μA)2 − σ 2

A

)
1{Xi∈A}

+ (
1{Xi≤a} − α

) (
(a − μA)2 − σ 2

A

)

+ (
β − 1{Xi≤b}

) (
(b − μA)2 − σ 2

A

)
, (21)

and by straightforward computations get E[Y A
i ] = 0 and D2[Y A

i ] = (β − α)2τ 2A.
Consequently, noting that

SA
n =

√
n

mn

n∑
i=1

Y A
i + rn, (22)

and using the Central Limit Theorem combined with the Slutsky’s Theorem, we con-
clude the proof. ��
Finally, we are ready to show the proof of Theorem 1.

Proof (of Theorem 1) For conditioning sets L , M , and R given in (5), we define the
associated sequences of randomvariables (Y L

i ), (Y M
i ), (Y R

i ) using (21). For any n ∈ N,
we set

Zn := √
n

⎡
⎢⎢⎣

1
n

∑n
i=1

1
q̃ Y

L
i

1
n

∑n
i=1

1
1−2q̃ Y

M
i

1
n

∑n
i=1

1
q̃ Y

R
i

⎤
⎥⎥⎦ ,

where q̃ is defined via (6). By the multivariate Central Limit Theorem (cf. (Ferguson

1996, Theorem 5)), we get Zn
d−→ N3(0,Σ), where

Σ :=

⎡
⎢⎢⎢⎢⎣

Cov(Y L
1 ,Y L

1 )

q̃2
Cov(Y M

1 ,Y L
1 )

q̃(1−2q̃)

Cov(Y R
1 ,Y L

1 )

q̃2

Cov(Y L
1 ,Y M

1 )

q̃(1−2q̃)

Cov(Y M
1 ,Y M

1 )

(1−2q̃)2
Cov(Y R

1 ,Y M
1 )

q̃(1−2q̃)

Cov(Y L
1 ,Y R

1 )

q̃2
Cov(Y M

1 ,Y R
1 )

q̃(1−2q̃)

Cov(Y R
1 ,Y R

1 )

q̃2

⎤
⎥⎥⎥⎥⎦

.

Now, let Sn := √
n

(
σ̂ 2
L + σ̂ 2

R − 2σ̂ 2
M

)
. Using (2), it is easy to see that

Sn = √
n

(
σ̂ 2
L − σ 2

L + σ̂ 2
R − σ 2

R − 2σ̂ 2
M + 2σ 2

M

)
. (23)

Consequently, by the arguments similar to the ones presented in the proof of Lemma 4

(see (22)), we can rewrite (23) as Sn = MnZn + rn, where rn
P−→ 0 and

Mn :=
[

nq̃
[nq̃] , −2 n(1−2q̃)

[n(1−q̃)]−[nq̃] ,
nq̃

n−[n(1−q̃)]
]
.
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Next, observing that Mn
P−→ [1,−2, 1] and using the multivariate Slutsky’s Theorem

(cf. (Ferguson 1996, Theorem 6)), we get Sn
d−→ N (0, τ ), where

τ :=
√

[1,−2, 1] Σ [1,−2, 1]T . (24)

Let ρ := τ
σ 2 and Nn := 1

ρ
Sn
σ̂ 2 . Observing that σ 2/σ̂ 2

n
P−→ 1, and again using the

Slutsky’s Theorem, we get Nn
d−→ N (0, 1). To conclude the proof of Theorem 1, we

need to show that ρ is independent of μ and σ .
To do so, let us first show that for any A, where A = A[α, β], and the corresponding

random variable Y A
1 given in (21), we get

Y A
1 = σ 2ψ(X̃1, α, β) , (25)

where X̃1 := (X1 − μ)/σ and ψ : R× [0, 1] × [0, 1] → R is some fixed measurable
function. From (Johnson et al. 1994, Sect. 13.10.1), we know that

μA = σ
φ(Φ−1(α)) − φ(Φ−1(β))

β − α
+ μ, (26)

σ 2
A = σ 2

(
Φ−1(α)φ(Φ−1(α)) − Φ−1(β)φ(Φ−1(β))

β − α

−
(
φ(Φ−1(α)) − φ(Φ−1(β))

)2
(β − α)2

+ 1

)
.5 (27)

Consequently, the standardised mean μ̃A := μA−μ
σ

and variance σ̃ 2
A := σ 2

A
σ 2 depend

only on α and β. Recalling (21), we get

Y A
1

σ 2 =
((

X1 − μA

σ

)2

− σ̃ 2
A

)
1{X1∈A} + (

1{X1≤a} − α
) ((

a − μA

σ

)2

− σ̃ 2
A

)

+ (
β − 1{X1≤b}

) ((
b − μA

σ

)2

− σ̃ 2
A

)

=
((

X̃1 − μ̃A

)2 − σ̃ 2
A

)
1{Xi∈A} + (

1{X1≤a} − α
) ((

Φ−1(α) − μ̃A

)2 − σ̃ 2
A

)

+ (
β − 1{X1≤b}

) ((
Φ−1(β) − μ̃A

)2 − σ̃ 2
A

)
. (28)

5For α = 0 or β = 1 the convention 0 · ±∞ = 0 is used.
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Combining this with equalities

{X1 ∈ A} = {X̃1 ∈ [Φ−1(α),Φ−1(β))},
{X1 ≤ a} = {X̃1 ≤ Φ−1(α)},
{X1 ≤ b} = {X̃1 ≤ Φ−1(β)},

we conclude the proof of (25).
Now, using (25) for L , M , and R, and expressing Σ/σ 4 as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cov

(
Y L
1

σ2
,
Y L
1

σ2

)

q̃2

Cov

(
YM
1
σ2

,
Y L
1

σ2

)

q̃(1−2q̃)

Cov

(
Y R
1

σ2
,
Y L
1

σ2

)

q̃2

Cov

(
Y L
1

σ2
,
YM
1
σ2

)

q̃(1−2q̃)

Cov

(
YM
1
σ2

,
YM
1
σ2

)

(1−2q̃)2

Cov

(
Y R
1

σ2
,
YM
1
σ2

)

q̃(1−2q̃)

Cov

(
Y L
1

σ2
,
Y R
1

σ2

)

q̃2

Cov

(
YM
1
σ2

,
Y R
1

σ2

)

q̃(1−2q̃)

Cov

(
Y R
1

σ2
,
Y R
1

σ2

)

q̃2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we see that Σ/σ 4 does not depend on μ and σ .
Finally, recalling (24) and the definition of ρ we conclude the proof of Theorem (1);

we refer to Appendix A for the closed-form formula for ρ. ��
The results presented in this section could be directly applied to various other

non-parametric quantile estimators and to the unbiased variance estimators.6 This is
summarised in the next two remarks.

Remark 1 The standard formula for the whole sample (unbiased) variance uses n − 1
instead of n in the denominator. In the conditional case, this would be reflected in the
different formula for (7), where mn is replaced by mn − 1. Note that the statement of
Theorem 1 remains valid for the modified conditional variance estimator due to the
combination of the Slutsky’s Theorem and the fact that (mn − 1)/mn → 1.

Remark 2 When defining the conditional sample variance (7), we used [nα] + 1 and
[nβ] as the limits of the summation in (7) and (8). This choice corresponds to the
non-parametric α-quantile estimator given by X([nα]).

In the literature there exist many different formulas for non-parametric quantile
estimators, most of which are bounded by the nearest order statistics; see Hyndman
and Fan (1996) for details. It is relatively easy to show that all results presented in
this section hold true if we replace [nα] and [nβ] by suitably chosen sequences that
correspond to different empirical quantile choices. For completeness, we provide a
more detailed description of this statement.

Consider sequences (αn) and (βn) such that nα − αn and βn − nβ are bounded,
and define m̃n := βn − αn . The corresponding conditional sample mean and variance
are given by

6 In particular, this refers to the estimator implemented via quantile function in R that was used in Fig. 1.
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X̄∗
A := 1

m̃n

βn∑
i=αn+1

X(i) and σ̂
2,∗
A := 1

m̃n

βn∑
i=αn+1

(
X(i) − X̄∗

A

)2
.

Then, we can replace X A and σ̂ 2
A by X̄∗

A and σ̂
2,∗
A in Theorem 1 as well as in all lemmas

presented in the section.
Instead of showing a full proof, we briefly comment how to show consistency of

quantile estimators as well as comment on counterparts of (11) and (16). All proofs
could be translated using a very similar logic.

First, noting that for some k ∈ N we get X([nα]−k) ≤ X(αn) ≤ X([nα]+k) and
X([nβ]−k) ≤ X(βn) ≤ X([nβ]+k), it is straightforward to check that X(αn) and X(βn) are
consistent α-quantile and β-quantile estimators; see e.g. (Serfling 1980, Sect. 2.3).
Second, to show the analogue of (11), it is enough to use the boundedness of nα −αn

and βn − nβ, and note that nα−αn
n → 0 and βn−nβ

n → 0. Third, to show (16), it
is enough to use boundedness of nα − αn and note that for some k ∈ N we get
|nα−αn |
m̃n/

√
n

≤ k
m̃n

√
n = m̃n

n
k√
n
.

6 Empirical example: case study of market stock returns

In this section we apply the proposed framework to stock market returns performing a
basic sanity-check verification. Before we do that, let us comment on the connection
between the 20-60-20 Rule and financial time series.

Assuming that X describes financial asset return rates we can split the population
using 20/60/20 ratio and check the behaviour of returns within each subset. If non-
normal perturbations are observed only for extreme events, the 20/60/20 break might
identify the regime switch and provide a good spatial clustering; this could be linked
to a popular financial stylised fact saying that average financial asset returns tend to be
normal, but the extreme returns are not—see Cont (2001) and Sheikh and Qiao (2010)
for details. It should be emphasized that according to authors’ best knowledge, the
link between this property and data non-normality was not discussed in the literature
before.

The easiest way to verify this hypothesis is to take stock return samples for dif-
ferent periods, make the quantile–quantile plots (with standard normal as a reference
distribution) and check if the clustering is accurate. In Fig. 4, we present exemplary
results for two major US stocks, namely GOOGL and AAPL, and two major stock
indices, namely S&P500 and DAX; we took time-series of length 250 for different
time intervals ranging the period from 10/2015 to 01/2018.7

From Fig. 4 we see that this division is surprisingly accurate: a very good normal
fit is observed in the M set (middle 60% of observations), while the fit in the tail sets
L and R (bottom and top 20% of observations) is bad. By taking different sample
sizes, different time-horizons, and different stocks we can confirm that this property
is systematic, i.e. the results are almost always similar to the ones presented in Fig. 4.

7 Data is downloaded from Yahoo Finance via R tidyquant package.
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Fig. 4 Quantile–Quantile plots for various financial returns of size n = 250. The dashed lines correspond
to 20% and 80% quantiles. One can see different data behaviour in each cluster: while the central region is
aligned with normal distribution the tail regions are not

While the presence of fat-tails in asset return distributions is a well-known observa-
tion in the financial world, it is quite surprising to note that the non-normal behaviour
could be seen for approximately 40% of data. Also, test statistic N can be used to
formally quantify this phenomenon and to measure tail heaviness: the bigger the con-
ditional standard deviation in the tails (in reference to the central part), the fatter the
tails.

In the following, we focus on assessing the performance of the test statistic N on
market data.We perform a simple empirical study and take returns of all stocks listed in
S&P500 index on 16.06.2018 that have full historical data in the period from 01.2000
to 05.2018. This way we get full data (4610 daily adjusted close price returns) for 381
stocks.Next, for a given sample sizen ∈ {50, 100, 250}wesplit the returns into disjoint
sets of length n, and for each subset we compare the value of N with the corresponding
empirical quantiles presented in Fig. 2. More precisely, using N we perform a right-

123



New fat-tail normality test based on conditional second moments 2103

Table 4 The table contains results of performance tests on the market data

Desc nr runs α(%) n Rejects (%) JB (%) AD (%) SW (%) N (%)

T 35052 1.0 50 31.5 25.9 17.3 23.2 25.9

U 1.9 0.6 0.3 3.1

T 35052 2.5 50 39.6 32.4 22.9 28.3 32.5

U 2.4 0.9 0.3 3.9

T 35052 5.0 50 47.9 38.6 29.1 33.7 39.6

U 2.4 1.3 0.4 5.1

T 17526 1.0 100 52.8 45.2 31.8 41.3 46.1

U 2.2 0.6 0.3 4.4

T 17526 2.5 100 61.3 52.9 38.8 47.6 54.3

U 2.2 0.7 0.2 5.1

T 17526 5.0 100 68.4 59.7 45.7 53.4 61.3

U 2.2 0.8 0.2 5.3

T 6858 1.0 250 88.5 82.1 71.2 79.3 85.4

U 1.0 0.4 0.1 3.8

T 6858 2.5 250 91.8 86.8 77.7 83.7 89.4

U 0.7 0.2 0.1 3.0

T 6858 5.0 250 93.9 89.7 82.4 86.9 92.0

U 0.5 0.2 0.0 2.5

ColumnDesc gives the name of performancemeasure, nr runs indicates howmany subsamples were created
for a given n, the value α gives the confidence level, and column rejects gives ratio of subsample for which
at least one test rejected the normality assumption. The acronyms JB, AD, SW, and N refer to Jarque–Bera
Test, Anderson–Darling Test, Shapiro–Wilk Test, and N test, respectively
Best performance is marked in bold

sided statistical test and reject normality (null) hypothesis if the computed value is
greater than the empirical value F−1

n (1 − α), for α ∈ {1%, 2.5%, 5%}.
To assess test performance, we compare the results with other benchmark normality

tests: Jarque–Bera test, Anderson–Darling test, and Shapiro–Wilk test. While the non-
normality of returns is awell-known fact, and all testing frameworks should show good
performance, we want to check if our framework leads to some new interesting results.
We check the normality hypothesis and compute two supplementary metrics that are
used for performance assessment:

– Statistic T gives the total rejection ratio of a given test. It corresponds to the
proportion of data on which the normality assumption was rejected at a given
significance level; it is the ratio of rejected data subsamples to all data subsamples.

– Statistic U gives the unique rejection ratio of a given test. It corresponds to
the proportion of data on which normality assumption was rejected at a given
significance level only by the considered test (among all four tests); it is the ratio
of uniquely rejected data subsamples to all data subsamples.

The combined results for all values of n and α are presented in Table 4.
One can see that the statistic N performs very well and gives the best results for

all choices of n. Surprisingly, our testing framework allows one to detect non-normal
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Fig. 5 Exemplary time series for which only test N rejected normality at level 1%. KDE fit corresponds
to empirical density obtained with Kernel Density Estimation, while normal fit correspond to a standard
normal fit. Empirical quantiles corresponding to 20/60/20 ratio are marked with dashed line

behaviour in cases when other tests fail: the outcomes of measureU are material in all
cases. For example, for n = 50 and α = 5%, the value of U was equal to 5.1%—this
corresponds to almost 11% of all rejected samples. The results are especially striking
for n = 250, where the normality assumption was rejected in almost all cases (ca.
90%). While one might think that for such a big sample size the three classical tests
should detect all abnormalities, our test still uniquely rejected normality in multiple
cases. For α = 1%, the normality was rejected for additional 262 samples (3.8% of
the population). For transparency, in Fig. 5 we show exemplary data subset for which
this happened.

7 Concluding remarks and other applications

In this paper we have shown that the test statistic N introduced in (3) could be used
to measure the heaviness of the tails in reference to the central part of distribution and
could serve as an efficient goodness-of-fit normality test statistic. Test statistic N is
based on the conditional second moments, performs quite well on market financial
data, and allows one to detect non-normal behaviour where other benchmark tests fail.

As mentioned in the introduction, most empirical studies suggest that the normality
tests should be chosen carefully as their statistical power varies depending on the
context. Our proposal proves to have the best test power in the cases when the true
distribution is assumed to be symmetric and have tails that are fatter or slimmer than the
normal one. It should be noted that our test is in fact based on the implicit distribution
symmetry assumption. Indeed, in (3), the impact of left and right tail is taken with the
same weight. Nevertheless, this could be easily generalised e.g. by considering only
one of the tail variances; we comment on that later.

In Theorem 1 we proved that the asymptotic distribution of N is normal under the
normality null hypothesis. This allows us to study the shape of rejection intervals for
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sufficiently large samples. To obtain this result, in Lemma 4we derived the asymptotic
distribution of the conditional sample variance.

Also, we showed that the 20-60-20 Rule explains the financial stylised fact related
to tail non-normal behaviour and provides surprisingly accurate clustering of asset
return time series. Quite surprisingly, non-normality is visible for almost 40% of the
observations.

In summary, we believe that tail-impact tests based on the conditional second
moments are very promising and provide a nice alternative to the classical frame-
work based e.g. on the third and fourth moments.

For example, themultivariate extension of the test statistic N could be defined using
the results presented in Jaworski and Pitera (2016), e.g. to assess the adequacy of using
the correlation structure for dependence modeling. Also, this could be extended to any
multivariate elliptic distribution using the results from Jaworski and Pitera (2017).

The construction of N shows how to use conditional second moments for statistical
purposes. In fact, one might introduce various other statistics that test underlying
distributional assumptions. Let us present a couple of examples:

– We can test only the (left) low-tail impact on the central part by considering one
of test statistics

N1 :=
(

σ̂ 2
L − σ̂ 2

M

σ̂ 2

) √
n, N2 :=

(
σ̂ 2
L − σ̂ 2

M

σ̂ 2
M

)√
n.

– For any quantile-based conditioning sets A and B, and any elliptical distribution,
one can introduce the statistic

N3 :=
(

σ̂ 2
A

σ̂ 2
B

− λ

)√
n,

where λ ∈ R is a constant depending on the quantiles that define conditioning sets
and the underlying distribution. Assuming that A = L and B = R (whole space),
we get the proportion between the tail dispersion and overall dispersion. In this
specific case, in the normal framework, we get

λ = 1 − Φ−1(0.2)φ(Φ−1(0.2))
0.2 − (φ(Φ−1(0.2))2

0.22
;

see (Jaworski and Pitera 2016, Sect. 3) for details.

Note that under the normality assumption all proposed statistics are pivotal quantities
which facilitates an easy and efficient hypothesis testing; the asymptotic distribution
for all statistics could be derived using similar reasoning as the one presented in
Theorem 1.
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A Closed-form formula for the normalising constant

In this section, we present the closed-form formula for the normalising constant ρ from
Theorem 1. For brevity, we omit detailed calculations and only present the outcome.

To ease the notation, for any γ ∈ [0, 1], we set xγ := Φ−1(γ ). Then, for any
A = A[α, β], the standardised second, third, and fourth conditional central moments
are given by8

m(2)
A :=1 + xαφ(xα) − xβφ(xβ)

β − α
,

m(3)
A := (xα)2φ(xα) − (xβ)2φ(xβ)

β − α
+ 2

φ(xα) − φ(xβ)

β − α
,

m(4)
A :=3 + (xα)3φ(xα) − (xβ)3φ(xβ)

β − α
+ 3

xαφ(xα) − xβφ(xβ)

β − α
.

Moreover, the standardised conditional mean, conditional variance, and conditional
kurtosis are equal to

μ̃A = φ(xα) − φ(xβ)

β − α
,

σ̃ 2
A = m(2)

A − (μ̃A)2,

κ̃A = m(4)
A − 3(μ̃A)4 + 6(μ̃A)2m(2)

A − 4μ̃Am
(3)
A

(σ̃ 2
A)2

.

Also, recall that q̃ = Φ(x), where x is the unique negative solution of the equation

−xΦ(x) − φ(x)(1 − 2Φ(x)) = 0.

Now, we are ready to present the closed-form formula for ρ; see Corollary 1.

Corollary 1 The normalising constant ρ from Theorem 1 is given by

ρ :=
√

τ 2L

σ 4 + 4
τ 2M

σ 4 + τ 2R

σ 4 − 4(C1 + C2)

q̃(1 − 2q̃)
+ 2C3

q̃2
,

8 Recall that for α = 0 or β = 1 we follow the convention 0 · ±∞ = 0.
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where for A ∈ {L, M, R} we have

τ 2A

σ 4 = 1

(β − α)2

(
(β − α)(σ̃ 2

A)2(κ̃A − 1) + α(1 − α)
(
(xα − μ̃A)2 − σ̃ 2

A

)2

+ β(1 − β)
(
(xβ − μ̃A)2 − σ̃ 2

A

)2

− 2α(1 − β)
(
(xα − μ̃A)2 − σ̃ 2

A

) (
(xβ − μ̃A)2 − σ̃ 2

A

) )
,

and constants C1, C2, and C3 are given by

C1 = q̃2
(
(xq̃ − μ̃L)2 − σ̃ 2

L

) (
(xq̃ + μ̃M )2 − σ̃ 2

M

)

− q̃(1 − q̃)
(
(xq̃ − μ̃M )2 − σ̃ 2

M

) (
(xq̃ − μ̃L)2 − σ̃ 2

L

)
,

C2 = q̃2
(
(xq̃ + μ̃R)2 − σ̃ 2

R

) (
(xq̃ − μ̃M )2 − σ̃ 2

M

)

− q̃(1 − q̃)
(
(xq̃ + μ̃M )2 − σ̃ 2

M

) (
(xq̃ + μ̃R)2 − σ̃ 2

R

)
,

C3 = −q̃2
(
(xq̃ + μ̃R)2 − σ̃ 2

R

) (
(xq̃ − μ̃L)2 − σ̃ 2

L

)
.

Approximately, the value of ρ is equal to 1.7885.
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