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Abstract
Order patterns and permutation entropy have become useful tools for studying biomed-
ical, geophysical or climate time series. Here we study day-to-day market data, and
Brownian motion which is a good model for their order patterns. A crucial point is that
for small lags (1 up to 6 days), pattern frequencies in financial data remain essentially
constant. The two most important order parameters of a time series are turning rate
and up-down balance. For change points in EEG brain data, turning rate is excellent
while for financial data, up-down balance seems the best. The fit of Brownian motion
with respect to these parameters is tested, providing a new version of a forgotten test
by Bienaymé.
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1 Overview

Given a finite series of data, time series analysis attempts to find laws of themechanism
or process which generated the data. One tool to this end are frequencies of order
patterns, defined in Sect. 3. For a first impression, Fig. 1 shows the six order patterns
of length 3. Given a time series x1, . . . , xT , a point t represents the pattern π = 123 if
xt < xt+1 < xt+2.The frequency pπ of a pattern π is the number of time points which
represent π, divided by T − 2. Such frequencies are estimates of probabilities of an
underlying random process. They can be combined in various ways. The permutation
entropy −∑

π pπ log pπ measures the variety of patterns (Bandt and Pompe 2001).
Applications to brain and heart data concern epilepsy (Bruzzo et al. 2008; Ferlazzo
2014), Alzheimer’s disease (Morabito et al. 2012), effect of anaesthesia (Olofsen et al.
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1566 C. Bandt

Fig. 1 The six order patterns of length 3

2008), and cardiac dynamics (Parlitz et al. 2012; Chicote et al. 2016; McCullough
et al. 2017). For an overview of applications to physics, geophysics, environtmental
and climate data see Amigo et al. (2013), Amigo et al. (2015), and Zanin et al. (2012).

Moreover, probabilities of specific order patterns can give important information.
For chaotic dynamical systems, certain patterns will not appear (Amigo 2010). Differ-
ent versions of permutation entropy and the number of forbidden patterns were used
to quantify and monitor the efficiency of stock (Zunino et al. 2009) and bond markets
(Zunino et al. 2012, 2016). The probabilities of patterns can be combined to form
correlation functions (Bandt 2015, 2017). The dependence of economical time series
was studied in Schnurr (2014) by means of order patterns. Statistical theory of order
pattern estimators was developed recently by Schnurr and Dehling (2017) and Betken
et al. (2019), earlier work by Bandt and Shiha (2007) and Sinn and Keller (2011) was
restricted to Gaussian processes.

Several authors have studied change points and segmentation of time series by
means of order patterns (Sinn et al. 2013; Unakafov and Keller 2018). The interest-
ing approach in Schnurr (2014) and Schnurr and Dehling (2017) uses bivariate data
while we shall study the univariate case only. A very impressive example is sleep
stage classification using high-frequency data of a single EEG channel (Nicolaou and
Georgiou 2012; Kuo and Liang 2011; Bandt 2017, 2019). Here we have an abundance
of data and few statistical problems. In the next section we will briefly describe this
application.

Our main theme are order patterns in day-to-day financial data and their statistics.
The zigzag patterns of up and down have long been considered by stock traders. Today
they are certainly incorporated in secret algorithms for high-frequency trade. We are
interested in the statistical error of estimates of pattern probabilties, and in the change
point problem. We introduce our standard example of oil prices in Sect. 4.

A curious feature of such examples is their apparent‘self-similarity’ studied by
Mandelbrot since the 1960s (Mandelbrot 1997). This property implies equality of
frequencies of patterns for different lags, which can be compared with simulated
samples of Brownian motion and other Levy processes. One goal of the paper is to
develop tests which decide whether Brownian motion is an appropriate model. In
Sect. 5 this is done by simulation, in Sect. 7 rigorously.

It seems that for a large part, ‘order self-similarity’ is due to the uneven sampling of
market data, with missing weekends and holidays. In contrast to measurements done
in nature, the observed values are not varying in natural time. Their change is triggered
by trade. Volume and number of buying and selling orders provide alternative scales
to natural time. Under such conditions, classical tools like autocorrelation become
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Order patterns, their variation and change points... 1567

useless. It may be a necessity to postulate equality of pattern frequencies for small
lags. Our discussion in Sect. 6 shows that the assumption is justified and can be used
to improve estimates of pattern frequencies.

Our expectations should be modest: with at most a few thousand data, statistical
accuracywill not bemagic. InSect. 7we introduce the twomost stable and interpretable
order parameters, up-downbalance and turning rate. They are used to provide statistical
tests for comparing models and data series. Actually, a first test for the turning rate
was suggested already in Bienaymé (1874, 1875). The basic message is that pattern
statistics has the 1/

√
n accuracy coming from binomial distribution. In Bienaymè’s

case it is even better because of negative correlations. In Sect. 9 we use order patterns
to determine change points in financial time series. It turns out that up-down balance
is the most appropriate parameter.

2 A big data series frommedicine

We start with a brief description of segmentation of big series of brain data by means
of the order structure. This has been done by many authors, cf. Olofsen et al. (2008),
Ouyang et al. (2010), Nicolaou and Georgiou (2012), Kuo and Liang (2011), Sinn
et al. (2013), Bandt (2017), and Unakafov and Keller (2018). Our version in Bandt
(2018) is particularly simple. We considered electroencephalographic (EEG) sleep
data measured by Terzano et al. (2001), and publicly available at pysionet (Goldberger
et al. 2000). Healthy volunteers and patients were measured for one night in hospital
with a sample rate of 500 Hz. These are multivariate data, as is the standard in sleep
labs, and sleep stages (wake—REM sleep—sleep stages 1 to 4) were annotated by
trained experts for every epoch of 30 s. For our classification, we used only two EEG
channels, each with 20 million data points for one night.

We determined a score for each epoch in an extremely simple way: we just counted
the relative number of local maxima and minima in the time series. In Fig. 2 it can
be seen that the result almost coincides with the expert’s annotation. In white noise,
the turning rate—the relative amount of local extrema—is known to be 2

3 (Bienaymé
1874). In Fig. 2 we see turning rates between 0.35 and 0.45when the proband is awake,
with larger rates in the more frontal channel. In REM sleep, rates were between 0.3
and 0.35, also larger for the more frontal channel. When the patient was in non-REM
sleep, turning rates went below 0.3, with larger values in the central channel. The
smallest turning rate is below 0.2, in the first phase of deep sleep. After midnight,
turning rates of sleep stages 3 and 4 gradually increased. Such results, with individual
differences, were observed for about 20 persons measured by Terzano et al. (2001)
with 500 Hz while for lower sampling rate, and for other data contaminated by 50 Hz
noise from the power net, the results were less impressive (Bandt 2018).

Here we looked for many change points, and a very simple method was sufficient.
The main thing was to express the structure by the appropriate parameter (see Sect. 7
for details). Of course, this is preliminary research, and much work has to be done to
make it an applicable method. But we are in a comfortable position with 15000 data
for each epoch. For this application, a precision of ±10 s for change points is fine,
so an error of ±1000 time points does not count. The data contain plenty of artefacts
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1568 C. Bandt

Fig. 2 Sleep stage classificationby turning rate. The step function at the top represents an expert’s annotation,
given for epochs of 30 s. At the bottom, the average turning rate is drawn for every epoch, for two EEG
channels. The surprising coincidence was found for the other patients, too

when the patient moves, rolls with the eyes in dream, gnabs with the teeth etc. A few
bad epochs can be tolerated, however. Most of them are annotated ‘wake’ in Fig. 2.
The sliding window technique works well. We just determine turning rate for epochs
of 30 s. For greater detail, we can take overlapping windows, with a shift of one second
only (Bandt 2018). There are no serious statistical problems.

In this paper on historic economical data, the situation is quite different. We have a
few thousand values altogether. We must think about which structural parameters can
be estimated with reasonable accuracy, and we have to deal with statistical errors.

3 Pattern frequencies as one facet of a random process

As we said, we try to find properties of the process which generates the data. We begin
with a brief glance at the theory. A stationary random process X1, X2, . . . in discrete
time, N = {1, 2, . . .} is essentially defined by its distribution, a probability measure
P on Borel sets B of the space Ω = R

N of all possible infinite time series y1, y2, . . . ,
which is invariant under time shifts. It is enough to know the probabilities of those
Borel sets B ⊂ R

n which depend only on the first values y1, . . . , yn, for arbitrary n.

A statistician will ask how probabilities P(B) are estimated from a finite time
series x = x1, x2, . . . , xT . Since we assume stationarity, an estimate P̂(B) is the
relative frequency of those vectors (xt+1, . . . , xt+n) which belong to the set B, for
t = 0, . . . , T − n. As a formula,

P̂(B) = 1

T + 1 − n
#{t | 0 ≤ t ≤ T − n, (xt+1, . . . , xt+n) ∈ B} . (1)
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Fig. 3 Example time series and order pattern frequencies. The dotted line indicates d = 2.

Here #A denotes the cardinality of a set A.Let us assume that the stationary process
is ergodic. Then a classical theorem of Birkhoff says that for T → ∞, the estimate
P̂(B) will converge to the true value P(B), with probability one.

Alright! But in practice, T is fixed and fairly small, say T = 1000.To get reasonable
estimates, one usually takes sets B like {x |x1 < b} for given numbers b,which leads to
the one-dimensional distribution. Instead of considering multidimensional Borel sets,
it is preferred to study autocorrelation, based on averages over t of functions xt+1xt+n

for n = 1, 2, . . .
There is, however, one class ofmultidimensional sets B for which estimationmakes

sense: the sets {x |x j < xk} and their intersections. The set {x |x1 < x3} describes a
halfplane in the x1x3-plane, and B = {x |x1 < x2 < x3} describes a ‘cone’, both in
R
3 and Ω. The latter set B is symbolized as the first order pattern in Fig. 1. There

are five other patterns or permutations π. For example, π = 231 corresponds to
B = {x |x3 < x1 < x2}.

Note that a permutation π of length n is a one-to-one mapping from {1, . . . , n}
onto itself. Figure 1 shows the graphs of the six permutations of length 3. We shall say
that n equally spaced values xt+d , xt+2d , . . . , xt+nd in our time series represent the
permutation π of length n if they are in the same order. That is, π( j) < π(k) if and
only if xt+ jd < xt+kd , for 1 ≤ j < k ≤ n. Now we can count relative frequencies of
permutations in the time series, which we shall denote pπ (d). Let

pπ (1) = 1
T+1−n #{t | 0 ≤ t ≤ T − n, (xt+1, xt+2, . . . , xt+n) realizes π} . (2)

The case d = 1 corresponds to successive values in the series, but sometimes it
is good to compare values which are 2 or d steps apart. The Formula (1) for sets B
determined by a permutation π of length n and a lag d ≥ 1 reads as follows.

pπ (d) = 1
T+d−nd #{t | − d + 1 ≤ t ≤ T − nd, (xt+d , xt+2d , . . . , xt+nd ) realizes π}. (2d)

Only formally, we allow t to be negative. Otherwise we had to consider permutations
on 0, 1, . . . , n−1 as in Amigo et al. (2015). Figure 3, taken from Bandt (2017), shows
a small example which leads to the frequencies p132(1) = 2

5 , p321(2) = 1
3 , and

p321(3) = 0.
We have to note that our method excludes equality of values x j = xk . In theory,

equality happens only with probability zero when the one-dimensional distribution
of the underlying process has a density function. In practice, equality of values will
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happen, but will be rare when the values have an accuracy of 5 or more decimals. As
explained in Bandt (2019), pairs of equal values, as well as missing values, can just be
disregarded in the calculation. A simpler practical method to eliminate equal values is
to add a tiny white noise (uniform random numbers times 10−7, say) to the series x .

There are at least three good arguments for considering frequencies of such order
patterns. First, since they describe cones in Ω, their estimates are robust with respect
to noise and outliers, and not changed by an increasing nonlinear transformation of the
data. Next, order patterns can be evaluated very easily and extremely fast by computer.
There are few possible sources of error.

The most important argument for the use of order patterns are the weak stationarity
assumptions which are required. The process X1, X2, . . . need not be stationary. It
need only have stationary increments in the sense that for all t, n ≥ 1

(Xt+1 − Xt , . . . , Xt+n − Xt ) has the same distribution as (X1, . . . , Xn) . (3)

For pairwise different numbers xt , . . . , xt+n, the vector (xt+1 − xt , . . . , xt+n − xt )
always represents the same permutation as the vector (xt+1, . . . , xt+n). The same
argument works for arbitrary d. We obtain the following conclusion.

Proposition 1 For an ergodic process X1, X2, . . . with stationary increments, pπ (d)

in (2) and (2d) is a consistent and unbiased estimator of the probability that the vector
(Xt+d , . . . , Xt+nd) represent the permutation π, for any fixed t .

This is a special case of the estimator (1) which is known to be unbiased. The
proposition says that our naive formula (2d) makes sense. In the sequel, we consider
only patterns of length n ≤ 4.

Financial data have a random walk structure and are typical examples of processes
with stationary increments. Brownian motion is their classical model. It is not station-
ary, and its autocorrelation function depends on two arguments. Its pattern frequencies
as functions of the lag d can be analytically determined, however Bandt and Shiha
(2007).

4 Patterns of length four in a series of oil prices

Permutations of length 2 and 3 lead to two important parameters β and τ, as discussed
in Sect. 7 below. To differentiate between various time series, we can use all 24 permu-
tations of length 4. They provide detail information, and can be reasonably estimated
when more than 1000 values are available. For a study of the 120 permutations of
length 5 we would need much longer series.

For convenience, we shall assign to each permutation a number between 1 and 24,
according to lexicographic order, as indicated in Table 1.

Figure 4 presents order four frequencies (our abbreviation of ‘frequencies of order
patterns of length 4’) for daily closing oil prices of the brand West Texas Intermediate
(WTI), a standard reference for American crude oil. The series, given in Fig. 5 below,
contains 8497 values ranging from January 1986 up to September 2019. The pπ (d)
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Table 1 Numbering of permutations of length 4

1 2 3 4 5 6 7 8 9 10 11 12

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431

13 14 15 16 17 18 19 20 21 22 23 24

3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

Fig. 4 Order four frequencies for the oil price series WTI, 1986–2019. Order patterns are numbered from 1
to 24. Their frequencies are shown on linear scale at the left, and on logarithmic scale at the right. Different
curves correspond to the lags d = 1, . . . , 10. Apparently, the frequencies do not depend on the lag

are shown for the lags d = 1, . . . , 10. The most apparent fact is that frequencies for
different lags are very similar at each pattern. This will be discussed in the sequel.

On the left, frequencies are shown on linear scale. The largest frequencies appear
for patterns 1234 and 4321, with pπ (d) around 1/8. This happens for all daily price
data. Here, p1234 is clearly larger 1/8 and p4321 is smaller, which can be explained by
the increasing trend of the series. The largely increasing patterns 1243 and 2341 and
their decreasing counterparts 4312, 3214 have probabilities near to 1/16 = 0.0625.
All other patterns have smaller probabilities.

On the right, pattern frequencies are shown on logarithmic scale, in order to dis-
tinguish better the rare patterns. Differences here actually represent quotients, and
deviations from the mean have to be interpreted as relative errors. The pattern with
the smallest frequency, less than 1.5 percent, is 3142, followed by 2413 with almost 2
percent. Note that the average frequency is 1/24 ≈ 4.2%. The patterns in the middle,
with numbers 8 to 17, as well as 5,6 and 19,20, are below average.

The figure shows an obvious symmetry between patterns with number k and 25−k.
Actually, pattern number 25− k is obtained by reversing all order relations in pattern
number k. Rank 4 is interchanged with 1, rank 2 with 3, and < with > . The graph of
pattern 25 − k, drawn as in Fig. 1, is the graph of the pattern with number k turned
upside down. It seems plausible that these two patterns have the same frequency, but
in our series it is not quite true. The permutations with higher number have somewhat
smaller frequency than their counterparts, with exception of number 12 and 13: 3124
is more frequent than 2431. Can this break in symmetry be explained by a trend?
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Fig. 5 The time series of WTI oil prices on logarithmic scale. To find out how pattern frequencies are
determined by a trend, an ad hoc segmentation is defined. It contains two periods of increasing prices and
two intervals without clear trend. Periods of decrease were too short to provide reliable pattern estimates

Fig. 6 The pattern frequencies of WTI in different time periods. Influence of trend is small

The time series of T = 8497 oil prices, drawn in Fig. 5 on logarithmic scale, shows
a general upwards trend, as most price series do. It is interrupted by two rather sudden
drops of prices: one in 2008 when the world economy was hit by the financial crisis,
and one in 2014 when some producers, notably Saudi Arabia, increased their supply
to compete with the upcoming fracking industry in the USA.

So the series is not stationary and needs segmentation, which will be discussed in
Sects. 9 and 10 . To study the effect of the trend on pattern frequencies, we define a
preliminary segmentation into four pieces by eyesight. The first subseries with 4000
values covers the time from 2 January 1986 to 16 October 2001 where no trend can be
seen (the first price is 25.56$, the last one only 22.01$). The second series with 1680
values describes the time of strong price increase from 17 October 2001 up to 7 July
2008 with the maximum value. Another series with increasing trend and 1400 values
covers the time from 26 December 2008 to 22 July 2014. The last series consists of
the remaining 1147 values from 23 July 2014 to 3 September 2019, with almost no
trend. The times of rapidly decreasing prices, with 120 business days in 2008 and 150
in 2014, were too short to provide a reliable statistics of pattern frequencies.
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Order four pattern frequencies for the four subseries are shown in Fig. 6. They
do not look as different as expected. It is true that for the strongly increasing series
2009–2014, the increasing patterns on the left side of the figure have larger frequencies
and the decreasing patterns on the right side, with number 20 to 24, say, have smaller
frequencies. And for the time 2014–2019 without trend, pattern 4321 appears more
often than 1234. But some of the frequencies, notably number 11 to 14 in the middle,
are almost constant through time. On the whole, frequencies do not differ much.

How can we decide about differences of such frequencies with statistical rigor?
This will be a theme of the next sections. First we introduce a standard model.

5 Brownianmotion as model for patterns in financial data

Since the work of Bachelier in 1900, Brownian motion (abbreviated BM) is a basic
model for financial time series. It is usually taken to describe the logarithm of prices.
For day-to-day data it postulates that the difference Rt = log xt+1 − log xt , the so-
called log return of day t, has a Gaussian distribution with mean zero and some
variance σ 2. Moreover, log returns of different days should be independent.

The independence assumption is plausible. When there would be a specific depen-
dence between returns of today and tomorrow, some speculants would immediately
bet against it to earn money, which would cause the dependence to disappear. The
Gaussian distribution is not realistic, however, since big returns, both negative and
positive, are more frequent in practice than the normal distribution allows (Mandel-
brot 1997).Moreover, the important phenomenon of varying volatility is not contained
in the Brownian motion model.

For order patterns, Brownian motion is a good model. It makes no difference
whether we model logarithms or original values, because log x is an increasing func-
tion. The value of σ is also irrelevant, so we take σ = 1. Thus we let xt , t = 1, . . . , T
be a realization of standard Brownian motion—the cumulative sum of a series of
standard normal random numbers. It can be simulated by the Matlab command
x=cumsum( randn(1,T) ).

Pattern frequencies for lags d = 1, . . . , 10 of a typical simulation of Brownian
motion with length T = 8500 are shown in Fig. 7. Theoretically, patterns k and 25−k
appear with the same probability, but this need not be true in a simulation. Moreover,
the process of Brownian motion in discrete time is known to be self-similar. More
precisely, B1, B2, B3, . . . and (Bs, Bs+d , Bs+2d , . . .)/

√
d have the same distribution

for any lag d ≥ 1 and any initial time s. As a consequence, the probabilities pπ (d)

do not depend on the lag d. Of course, this need not be so in a simulation. For large
length T = 106 we checked that the coincidence is convincing for virtually every
simulation. Here we want to see what happens for T = 8500, the same length as our
oil price data. Comparing Figs. 7 and 4, we see that the coincidence of frequencies for
different lags in the data is not worse than in the model, where it should be perfect by
definition. We try to clarify this point in the next section.

For Brownian motion, probabilities of order 4 patterns can be determined analyt-
ically (Bandt and Shiha 2007): since the multivariate standard normal distribution is
spherically symmetric, octant probabilities can be determined as surfaces of spherical
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Fig. 7 A simulation of Brownian motion pattern frequencies for lags d = 1, . . . , 10. We took T = 8500
as for the WTI series above. Theoretical pattern probabilities are marked by circles

Table 2 Exact probabilities of permutations of length 4 for Brownian motion

Pattern number 1 2,7 3 4,12 5,9 6,8,10 11

Probability 1/8 1/16 1/24 0.035 1/48 0.027 0.015

Patterns k and 25 − k have the same probability
Numbers with decimal point indicate irrationals involving arcsin 1/

√
3

triangles. The angles of these triangles are related to certain correlation coefficients.
Table 2 lists the results of Bandt and Shiha (2007). It is curious that there are seven
different probabilities of which only four are rational.

Comparing the distributions of pattern frequencies of WTI prices in Fig. 4 and
BM in Fig. 7, we see little difference. Is BM a good model in our case? We consider
distributions of order 4 patterns as vectors in R

24 and study their Euclidean distances.
Let q = (q1, . . . , q24) denote an empirical distribution of WTI for one of the four

time periods in Fig. 6. We determine the distance ‖q − q‖ to the distribution q of the
WTI over the whole time, and the distance ‖q − b‖ to the theoretical distribution b
of Brownian motion given in Table 2. Moreover, N = 105 simulations of BM with
the sample size of the respective WTI series for q are performed and their pattern
distributions bk calculated. For k = 1, .., N we determine dk = ‖bk − b‖.

The distribution of all dk serves as test distribution for the null hypothesis that q
is obtained from the Brownian motion model. It resembles a chi-distribution for 23
degrees of freedom, with more heavy tail on the right, but not far from normal. Our
simulation provides the median of the dk, and an estimate of the p-value of the data:

p = 1

N
#{k | 1 ≤ k ≤ N , dk > ‖q − b‖ }.

For different lags d, the distances ‖q − b‖ can differ by 20 or 50 %, but they were
always within a factor of 2. The resulting p-value, however, can differ by a factor
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Table 3 Distances of pattern distribution q of WTI prices in different periods to their mean q and to the
exact distribution b of BM

WTI time series 1986–2019 1986–2001 2001–2008 2009–2014 2015–2019

Number of values 8497 4000 1680 1400 1150

Distance ‖q − q‖ to whole WTI 0 .013 .047 .014 .014

Distance ‖q − b‖ to BM .025 .024 .070 .034 .022

Median of distances ‖bk − b‖ .011 .016 .024 .026 .029

p -value in % 0.04 3.8 <0.01 13.6 88.9

This was compared with the distance of 105 simulated sample distributions bk of BM to b. During the last
two periods, Brownian motion fits well

10 and more. Thus for a distribution with 24 frequencies, the dependence on the lag
can be a problem. This experience leads us to simpler parameters of the time series,
introduced in Sect. 7.

Here we decided to take the mean of the frequencies for lags 1,2, and 3 as our
empirical distribution q. This method is justified in the next section. The results are
shown in Table 3. It turns out that for the last period 2015–2019, BM is a perfect
model with p = 88.9%. The patterns of the third period 2009–2014 could also well
be generated from BM. For the whole series as well as for the first two periods, there
are significant differences, however.

What is the reason for the differences? In the second period, it is the strongly
increasing trend of the prices, which results in large frequencies p1234 and small
frequencies p4321. This is not surprising and could be mended by taking a biased BM
with linear trend fitted to the increase of prices in that time. For the whole series, the
patterns would also fit better to a BMwith linear trend. However, in that case the trend
has to be chosen in such a way that today’s prices would range above 300 instead of
60 $. Thus there may be another structural difference between WTI and BM for the
whole series and for the first rather stationary period, although the p-value of 3.8 %
in Table 3 is not convincing. We return to this question later.

6 Order-self-similarity of financial data

Before we go on, we make a few general remarks. Instead of studying the prices xt , it
is common to consider the increments Zt = xt+1 − xt or log returns Rt = log xt+1 −
log xt of every day. Their distribution is determined, and usually has heavier tails
than normal distribution. Here we study order patterns in the original data, however.
Returns come in automatically when we compare values: xt+1 > xt means that the
increment and log return of day t are positive. Our order patterns can be considered
as combinations of signs of returns for different days, and different time lags.

In contrast to time series which are measured with a fixed sampling rate, daily
financial data come with an irregular time scale.At weekends as well as on holidays,
the stock market is closed. We pretend that Monday is the day following Friday,
although we know that much business is going on throughout the weekend. Moreover,
there are dayswhere no trade takes place, and other days are very busy. It was suggested
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that the time scale should be modulated by the trading volume, but this is not done.
As a consequence, studies of daily market data by classical methods of time series
analysis, as autocorrelation and frequency spectrum, do not reveal clear structure.

On the positive side, it has often been observed that financial series have a nice
symmetry property. They are statistically self-similar in the sense that a magnification
of the function at one place looks very similar to the original function at another place
(Mandelbrot 1997). A random process in continuous time, Yt , t > 0 is said to be
self-similar if there is an exponent H > 0 such that

Yrt = r HYt in distribution, for each positive number r . (4)

For details, see Embrechts and Maejima (2002) or Embrechts et al. (1997), section
8.9. Brownian motion with H = 1

2 is the standard example. Certain Levy Processes
and fractional Brownian motion are also self-similar, and have been used as models
of financial data. Usually, equation (4) is only considered for the one-dimensional
distribution of the Yt , and there are methods to determine the Hurst exponent H from
data, see Mandelbrot (1997) and Sinn and Keller (2011). The mathematical definition
applies to the whole process, however. Thus for every n, d ≥ 1

(Xd , . . . , Xnd) has the same distribution as dH · (X1, . . . , Xn) . (5)

This multidimensional setting is practically impossible to check with statistical meth-
ods. Using order patterns, we now define a simpler concept. Note that (X1, . . . , Xn)

and c · (X1, . . . , Xn) represent the same order pattern for each positive constant c.
So let us say that a process Y1,Y2, . . . is order self-similar if for every n, d ≥ 1

(Xd , . . . , Xnd) has the same pattern distribution as (X1, . . . , Xn) . (6)

Proposition 2 Each self-similar process is order self-similar. If the process is also

ergodic and has stationary increments, then pπ = 1
m · ∑m

d=1 pπ (d) is a consistent
and unbiased estimator of the pattern probability of π, for any fixed m ≥ 1.

The proof follows from Proposition 1 and the remark above. Thus we can use order
self-similarity to improve our estimators, as already done in the previous section.
Moreover, order self-similarity is a parameter-free concept—we do not need a Hurst
exponent. And it seems rather easy to check this concept with sufficiently many data.

Problem Self-similar processes are not stationary but their standard examples have
stationary increments. Are there stationary order self-similar processes?

Why should a daily financial series be self-similar? There are small and big orders
on the market. Some shareholders keep their items for a long time, others will sell
them immediately. Briefly, there are actions of all sizes which produce structure of
all sizes in the time series. This may be true, but in our opinion the irregular time
sampling of daily financial series contributes a lot to their self-similarity.

Our time series xt mixes timedifferences over oneday, likeMonday toTuesday,with
three-day differences from Friday toMonday.Whenwe consider lag 3, likeMonday to
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Thursday, then most differences cover five days, like Thursday to Tuesday. With such
an irregular scale, our only chance seems to postulate that order pattern probabilities do
not depend on the lag, at least for small lags. This postulate is supported by empirical
data like Fig. 4.

Henceforth, we shall assume that financial data fulfil order self-similarity in the
sense of (6), for d ≤ 6. We use this assumption to improve estimates by applying
Proposition 2 withm = 3 orm = 6. It makes no sense to go to much largerm.On one
hand, the data will not fulfil (6) for large d, on the other hand the variance of estimates
pπ (d) increases with d, as we shall see below.

7 Turning rate and up-down balance

Pattern frequencies are not so easy to interpret. Certain combinations of pattern fre-
quencies are moremeaningful. Let us fix the lag d = 1 for simplicity. The permutation
entropy of order n is a sum over all patterns of length n.

H = −
∑

π

pπ log pπ , (7)

This was introduced as a measure of complexity of the data (Bandt and Pompe 2001).
See Amigo (2010), Zanin et al. (2012), Amigo et al. (2013), and Amigo et al. (2015)
for details, applications and related concepts. Here we shall focus on two simpler
quantities. For patterns of length 2, we consider the

up-down balance β = p12 − p21 = 2p12 − 1 . (8)

This parameter measures asymmetry, non-Gaussianity or irreversibility of the process
(Bandt and Shiha 2007; Bandt 2015, 2019). If there is an increasing or decreasing
trend in the series, then β will be positive or negative, respectively. In the extreme case
of an increasing or decreasing time series β assumes its maximum 1 and minimum
−1, respectively. However, β can also be positive in a stationary process. For instance,
a stock price could increase always from Monday to Friday, and then fall to the level
of last Monday over the weekend. In that case, β = 4

5 − 1
5 = 3

5 . Many time series in
nature, for example the daily number of sunspots (Bandt and Shiha 2007), show similar
behaviour. A random walk, that is, a process with independent stationary increments,
will have no trend if the increment Z = Xt+1 − Xt has zero mean. The median
need not be zero, and in that case β = 2P(Z > 0) − 1 will be positive or negative.
There are also asymmetric Levy processes where the mean of Z does not exist. An
autoregressive process with exponential noise is stationary and has nonzero β for small
d. An example is discussed at the end of this paper. For financial data, β often differs
from zero, but not too much, as Table 4 indicates for our oil data.

Our other important parameter is based on patterns of length 3. It is the

turning rate α = p132 + p231 + p213 + p312 = 1 − p123 − p321 , (9)

the relative amount of local maxima and minima (turning points) in the series. This
is an intensity parameter which varies between 0 and 1. The extreme case zero is
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Table 4 Comparison of two estimators of turning rate and up-down balance for different segments of the
oil price series

WTI time series 1986–2019 1986–2001 2001–2008 2009–2014 2015–2019

Number of values 8497 4000 1680 1400 1150

Turning rate α1 0.510 0.506 0.528 0.509 0.507

Turning rate α3 0.502 0.512 0.488 0.500 0.499

z-value of α1 1.84 0.76 2.29 0.67 0.47

Up–down balance β1 0.032 0.025 0.072 0.044 0.050

Up–down balance β3 0.044 0.038 0.112 0.063 0.035

z-value of β1 2.95 1.58 2.95 1.65 1.69

z-values were calculated from Proposition 3 below

approached by a smooth time series which has very few turning points. The other
extreme is an alternating series, like xt = (−1)t , for which each point is a turning
point. For a series of independent random numbers (white noise) we have α = 2

3 , and
for Brownian motion α = 1

2 .

In previous work (Bandt and Shiha 2007; Bandt 2015, 2019), the author considered
the persistence τ = p123 + p321 − 1

3 = 2
3 − α instead of α as a function of d. This

function shares many properties with autocorrelation. It is zero for white noise, for
instance. However, turning rate was essentially introduced in Bienaymé (1874) and is
a very intuitive concept while the word ‘persistence’ is used with various meanings
even in mathematics. So τ is not used here.

H , β, and α can be considered for arbitrary lag d ≥ 1. So they become functions
of d which can be used as correlation functions. This is very useful in the case of big
data series from weather or medicine where certain periodicities appear on various
scales (Bandt 2019). The result shown in Fig. 2 was obtained with the turning rate
for d = 4. For financial data, which are approximately order self-similar, we have
essentially only one value α for small d. But Proposition 2 provides different ways of
calculation, in particular

α1 = α(1) , α3 = 1

3

3∑

d=1

α(d) , and α6 = 1

6

6∑

d=1

α(d) .

The same holds for β. In Table 4 we compare α1, β1. with α3, β3. We see that the
turning rate of our oil data is 1

2 in all periods, with very small fluctuation. The differ-
ences of β from zero are a bit larger. The z-values are obtained from Proposition 3
below.

8 The variance of˛ andˇ

Defined in terms of the estimators pπ , the quantities H , α, and β are in fact themselves
estimators of respective parameters of the underlying process. For instance,β estimates
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b = P(X1 < X2)− P(X1 > X2). For an ergodic process with stationary increments,
Proposition 1 implies that α and β are consistent and unbiased estimators. The entropy
H , given by a continuous but nonlinear function of the pπ , is consistent but not
unbiased.

Nowwe determine the quadratic error of these estimators.We calculate the variance
of the functions α and β, taken over all possible realizations of Brownian motion. The
following fact holds for all processes with independent and symmetrically distributed
increments.

Proposition 3 For samples of length T from Brownian motion and lag d = 1, the
number of turning points and the number of up-steps both follow the statistics of
tossing a fair coin. The distribution of the number of turning points is binomial with
n = T − 2 and p = 1

2 . The number of t between 1 and T − 1 with xt < xt+1 has
binomial distribution with n = T − 1 and p = 1

2 . As a consequence, we have

E(α) = 1

2
, Var(α) = 1

4(T − 2)
, E(β) = 0 , Var(β) = 1

T − 1
.

Proof The increments Zt = Xt+1 − Xt of BM are independent and have positive sign
with probability 1

2 . Thus counting the number n12 of up-steps t with Zt > 0 is really
the same as tossing T − 1 fair coins and counting heads. Then p12 = n12/(T − 1) has
mean 1

2 and variance 1
4(T−1) , and the assertion for β = 2p12 − 1 follows.

A point t between 2 and T−1 is a turning point (localmaximumorminimum) of the
time series x1, . . . , xT if the increments zt−1 = xt − xt−1 and zt = xt+1 − xt have the
same sign. The events to be counted are now At = {Zt−1Zt > 0} for t = 2, . . . , T −1.
Since the signs of the Zt are independent and are + with probability 1

2 , we have
P(At ) = 1

2 for each t . When we show that the At are independent, we do again have
a series of fair coin tosses. From the definition of At , it is clear that At is independent
on all As with s ≤ t − 2. It remains to show that At−1 and At are independent:

P(At−1 ∩ At ) = P(Zt−2, Zt−1 and Zt have the same sign) = 1
4 = P(At−1)P(At ) .

The rest of the proof is similar as for β. �
We apply the result to α1 and β1 in Table 4, to test the fit of Brownian motion to

our oil price data. The z-value of α1 is obtained as

z = (α − αBM )/σ (αBM ) = (α − 1
2 ) · 2√T − 2,

for β1 we calculate z = β
√
T − 1.We compare with the standard normal distribution.

For turning rates, only the period 2001–2008 showed significant differences. The z-
values of β are larger, but the significance for 2001–2008 and for the whole time series
can be attributed to trend. On the whole, BM is a good model for order patterns of the
oil prices.

Proposition 3 is paradigmatic because it shows that for all estimators pπ (d) we
can expect standard deviation and confidence bound of the form C/

√
T where C is
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Fig. 8 Dependence of the variance of α and β on the lag d for BM, obtained by simulating 105 trajectories
of BM with length T = 2500. The variance of α increases slowly, and an average over lags 1 to 3 will
diminuish the variance of the estimator. For β the variance increases even in the average

a constant. However, beware of correlations! The proposition is not true for lags d
greater than 1. The reason is that Zt (d) = Xt+d − Xt and Zt+1(d) = Xt+1+d − Xt+1
are not independent since contain the common part Xt+d − Xt+1, and this term is
likely to become the main term when d is large. So there is positive correlation among
the sets At , which increases the variance. For BM this can be studied rigorously but
it is easier to perform a simulation.

The result, shown in Fig. 8, is surprising. The variance of both α and β increases
almost linearly with d. For α the slope of the line is about 1

3 , and the average α3 has
much smaller variance than α(1). For β, however, the slope is about 4

5 . The increase
is so strong that averaging over different lags does not improve the accuracy of the
estimator.

We have no space to extend this discussion, but for historical reasons we should
mention the groundbreaking result of Bienaymé (1874). He considered turning points
for white noise as model for series of astronomical measurements (Bienaymé 1875).
His 1874 paper was one page without proof. On the last page of his second paper, it
is noted that J. Bertrand presented a proof on the next session of the French society
for mathematics and astronomy. We slightly modify the result and add the statistics
of up-steps.

Bienaymé’s theorem Consider a sequence of T independent and identically dis-
tributed random variables. The number V of turning points is asymptotically normal
with

M(V ) = 2

3
(T − 2) and Var(V ) = 8

45
(T − 2) + 1

30
.

The number U of up-steps is asymptotically normal with

M(U ) = 1

2
(T − 1) and Var(U ) = 1

12
(T − 1) + 1

6
.
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Proof In an i.i.d. sequence of length m, all permutations of length m are represented
with the same probability. This will be the main argument.

We start with up-steps. Note that U = ∑T−1
t=1 Ut where Ut = 1{Xt<Xt+1} denotes

the indicator function of up-step t . Since M(Ut ) = p12 = 1
2 for each t, we get

M(U ) = 1
2 (T − 1). The variance Var(U ) = M(U 2) − M(U )2 is expressed as the

sum

T−1∑

t=1

T−1∑

s=1

(
M(UsUt ) − 1

4

) =
T−1∑

t=1

(
M(U 2

t ) − 1
4

)
+ 2

T−2∑

t=1

(
M(UtUt+1) − 1

4

)
.

Weused thatM(UsUt ) = 1
4 for |s−t | > 1 because of independence.NowM(U 2

t ) = 1
2

and M(UtUt+1) = p123 = 1
6 implies

Var(U ) = T − 1

4
− 2 · T − 2

12
= T + 1

12
.

For turning points, let Vt = 1{t is turning point} for t = 2, . . . , T − 1. Then M(Vt ) =
p132 + p213 + p231 + p312 = 4

6 implies that V = ∑T−1
t=2 Vt fulfils M(V ) = 2

3 (T −2).

To expand Var(V ) = M(V 2)−M(V )2 as a sum,we now have to subtract 49 instead
of 1

4 , and we can neglect terms with |s − t | > 2 for which Vs and Vt are independent.
We obtain M(VtVt+1) = 10/24 by looking at Table 1 and realising that 10 of the 24
permutations have two turning points in the middle. In terms of the covariance we get
Cov(Vt , Vt+1) = M(VtVt+1) − 4

9 = −1/36.
It takes a little longer to see that exactly 54 of 120 permutations of length 5

have turning points at their second and second-to-last position. This implies that
Cov(Vt , Vt+2) = M(VtVt+2) − 4

9 = 1/180. Then

Var(V ) = (T − 1)Var(Vt ) + 2(T − 2)Cov(Vt , Vt+1) + 2(T − 3)Cov(Vt , Vt+2)

gives the result after a brief calculation. Asymptotic normality for T → ∞ should be
rigorously formulated in terms of standardized random variables. In Bienaymé’s time
it was taken for granted. Today it follows from central limit theorems for k-dependent
or strongly mixing sequences of random variables. �

Note that the variances here are even smaller than for the binomial distribution in
Proposition 3, because of negative correlations. This often happens for the variance of
pattern frequencies pπ since many patterns, for instance 132, are not compatible with
their shifted pattern. Moreover, Bienaymé’s theorem holds for any lag d, in contrast
to Proposition 3. But now let us turn to change points.

9 Change points with respect tomean and order structure

Certainly there is no unique way to determine change points in a financial time series.
We start by looking for changes in mean, even though from a conceptual viewpoint,
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Fig. 9 First and second change point, and local change points in the mean for the oil prices

Fig. 10 The oil price series from 2004 to 2019. Calculated change points in mean are indicated at the
bottom, local change points by dotted line. Change points in order are indicated at the top

the underlying process is integrated rather than stationary. A classical method takes
the time point k where the difference of the means mk = 1

k

∑k
t=1 xt and m̃k =

1
T−k

∑T
t=k+1 xt assumes a maximum or minimum. Thus we maximize the function

f (k) = ck |mk − m̃k | with ck = 2
√
k(T − k)/T . (10)

The factor ck normalizes the standard deviation of the difference of means, as in a
two-sample t-test. (We did not estimate the standard deviation since that would require
information on autocorrelation.) We put the constant 2 into ck so that the factor is 1
for all k in the middle of the interval, and f (k) can be interpreted as a difference.

As seen in Fig. 9, the function f for the WTI series is rather smooth and has a
unique maximum point k1 in the strictly increasing part in the middle of the series in
Fig. 5, in late 2004. All xt with t < k1 are smaller, and almost all xt with t > k1 are
greater than the price at k1. The average difference is 50 $. This is a clear solution to
the optimization problem. However, it is not a point where change happens.

When the method is applied to the time period between k1 and T , we again obtain
a clear maximum at the end of 2014. It separates the time of very high prices before
2015 from medium prices we have had since then. Situated on the middle of a rapidly
decreasing branch, this is again not a point where change happens.

We can also detect change in the mean locally, by comparing the last 100 points
before xk with the mean of the next 100 points. As shown in Fig. 10, this results in
two clear maximum points. One is in the middle of the 2008 period of rapid decrease.
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The other one at the beginning of decrease in 2014 seems a real change point. A lot
of smaller maxima indicate smaller periods of increase and decrease.

Now we turn to order structure. Let qk = (q1, . . . , q24) denote the vector of order
4 pattern frequencies for the time interval [1, k], and q̃k the respective vector for the
time period [k + 1, T ]. Let ‖v‖ denote the Euclidean norm of a vector v. Similar as
in Sinn et al. (2013), we consider the function

g(k) = ck ‖qk − q̃k‖ (11)

where the constant ck is the same as in (10). It serves to diminuish the bad estimates
of frequencies for k near the marginal values 1 and T , and can be justified by the
1/

√
T magnitude of the standard deviation of the pattern frequencies discussed above.

Maxima of g are taken as change points for order.
The function g(k) is shown in three versions in the upper panel of Fig. 11. For lag

d = 1, no clear change points are found. The maximum is near the right margin and
turns out to be a random effect too large to be eliminated by ck . When we take q from
a mean of lags, 1 to 3, or 1 to 6, we see clear maxima at the end of 1998, in 2008
and 2013/14. The maximum at the left margin is again a random effect due to high
variance of g for small k.On the right, the maximum found for d = 1 has disappeared.

When we compare with the time series in Fig. 5, we see that the peaks in July
2008 and July 2014 were included in our ad hoc segmentation. The peak in December
1998 is also a convincing change point. Probably it is a better choice than our first
segmentation point in October 2001. And the peak in August 2013 is also reasonable.
It could be taken as an alternative to July 2014, as can be seen in Fig. 10. Moreover,
the two means of lags give almost identical results, with few days difference in their
maximum points. Distances of means over 1 to 6 are on a larger level than those from
means over 1 to 3, because of larger variance discussed at Fig. 8.

In the lower panel of Fig. 11, the same results are shown for patterns of length 3.
Again, d = 1 is not a good option. It was surprising that for means over lags 1 to 3 and
1 to 6 we get the same structure of maxima as for length 4. This indicates that with
respect to change points the six patterns of length 3 contain all relevant information.

Can we simplify even further? There are three objectives: the function g should
become less erratic, more like the function f for the mean. The criterion should be
transparent, interpretable, as it is for the mean. And the estimates of structure before
and after should be fairly accurate even for small k or T − k. This was not the case for
(11) where 1000 values would be minimal for a reasonable estimate of all 24 pattern
frequencies. Even with ck there are marginal effects in Fig. 11.

In the upper panel of Fig. 12. we tested the function h(k) = cK (Hk − H̃k) where
H , H̃ denote permutation entropy of order 3 before and after k, respectively. The
maximum in July 1998 is a realistic change point, but it is not convincing. In the
middle panel we used conditional permutation entropies recommended by Unakafov
andKeller (2018). Theyworkwell for time series from certain dynamical systemswith
a Markov structure. We have the same function h(k) with H = ∑4

i=1 −pi log pi +
p log p + (1 − p) log 1 − p where p = p12, p1 = p123, p2 = p132 + p231, p3 =
p213 + p312 and p4 = p321. The function is rather smooth but there is no clear
maximum. Our data do not include a Markov structure. In the lower panel we used
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Fig. 11 Distance of pattern distributions before and after time k. Means of lags give better results, while
patterns of length 3 or 4 lead to the same change points

turning rates, h(k) = ck(αk − α̃k). As noted in Sect. 2 they worked so well for
classifying sleep brain data. Here they give almost the same result as permutation
entropy. All three functions seem not appropriate for segmenting our financial data.

10 Change points with respect to up-down balance

Our last trial is the function β. It will give the best results. We look for maxima and
minima of h(k) = ck(βk − β̃k) where βk and β̃k are the values of β on [1, k] and
[k + 1, T ], respectively. Note that by Proposition 3, ck is exactly the normalizing
constant for β and α, at least for lag 1. Figure 13 shows that lag 1 alone is sufficient
only from 1992 to 2002. The other two estimators of β give very similar functions.
Their main maximum and minimum points are very near to the maxima for the order
structure in Fig. 11. The first change point k1 has to be taken in August 2013. Our ad
hoc point in July 2014 would be a possible alternative choice.

As in the approach with means, we can now look for a second change point k2 in
the longer subinterval, in this case [1, k1]. Figure 14 shows that the second change
point is unique when we exclude margins. It is a minimum, which means that prices
start to rise there, and can already be seen in Fig. 13. Here it is comes one month later
than in Fig. 11, in early February 1999. When we look for a third change point in the
interval [k1, k2] we again get a unique solution which is already seen as maximum in
Fig. 14. This point in July 2008 differs only by one day from our ad hoc point with
the highest oil price. Thus β produces a meaningful segmentation which is similar to,
and better than, our ad hoc segmentation.

One can also search for local change points, comparing β on the intervals [k −
m + 1, k] and [k + 1, k + m]. The situation is similar as for means: the local search
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Fig. 12 Difference before and after k of order 3 permutation entropies, conditional entropies recommended
by Unakafov and Keller (2018), and turning rates. These methods seem not appropriate for segmentation
of financial data

Fig. 13 Difference of β-values before and after k. Up-down balance seems the most simple and most
relevant parameter for change points in financial time series

gives a lot of maxima and minima, which depend very much on the scale parameterm.

Figure 14 shows the result for m = 150. Two large maxima in 2008 and 2014 are
similar to those in Fig. 9. Nevertheless, local search offers too many choices.

For financial data, global search with β seems the best order method for finding
change points. It provides more meaningful results than the approach with means.
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Fig. 14 Second change point for β, and local change points for β the oil prices

What about significance of h(k1)? In view of Proposition 3, we can think about
random walk statistics to provide p-values. Calculation of β on intervals [1, k] can
be seen as a simple symmetric random walk b1, . . . , bT with T − 1 time steps. The
initial value is b1 = 0, and the terminal value bT is the observed total number of
up-steps. The probability pc that the walk will hit the lines y = ±c can be expressed
by binomial coefficients.

This exciting idea has several shortcomings. First, we need the difference between
relative frequencies, normalized by ck, while random walk concerns absolute values.
Next, it would work only for lag 1, which from a practical viewpoint is not the best
option for change point detection.in financial time series. The most serious problem,
however, is that the question is wrong. It is easy to define changes in the mean or
dynamics of model series. But do we really expect similar dynamical changes in a
given real-world time series?

Forβ asmeanover lags 1 to 3,wehave themaximumvalueh(k1) = 0.548 inFig. 13.
We checked the significance of this change point by simulation, with Brownianmotion
as null model. The maximum value of |h(k)| = ck · |βk − β̃k |was determined for 1000
trajectories of BM. It turned out that for 422 simulations, the maximum was larger
than 0.548. Almost every second realization of BM had a change point with larger
value |h(k1)| than our data.

This is alright! BM is not stationary. A time series taken from BM needs segmen-
tation, like the data. Any reasonable method should detect change points in BM. As
a null model, we better take a stationary series which by definition has no change
points. We first took an AR(1) model xt = 0.99xt−1 + zt with i.i.d. Gaussian random
numbers zt . We found that only 2 from 1000 realizations have larger |h(k1)| than our
data. So for stationary series, we get significantly smaller values in the search for
change points.

We checked this with the same AR(1) process with exponential noise, zt = 1− et ,
where et has an exponential distribution with mean 1. These random numbers have
their heavy tail on the left, so the process will make downwards excursions and only
slowly climb up. As a result, β(1) ≈ 0.25, and all β(d)with d ≤ 6 are still greater 0.1.
Nevertheless, only two from 1000 simulations gave a maximum larger 0.548. Then
we realized that the excursions are still too short, and increased the AR(1) factor to
0.998. A typical realization with maximum h-value 0.32 is shown in Fig. 15. For this
process, 92 from 1000 simulations had maxima greater 0.548.
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Fig. 15 Sample from an AR(1)
with exponential noise, with
positive β(d) for small d.

Although the process is
stationary by definition, this
cannot be seen in our figure, and
segmentation may be necessary

These experiments gave the impression that β is a useful parameter for change point
detection. It will provide large values of h whenwe expect them. But this is exploratory
research, there is still much work to do. We hope that readers feel encouraged to
perform their own studies with order patterns.
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