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Abstract
We will analyze the importance of elements of a complex structure on the availability
of the system. The basis for the element assessment are the importance measures for
multi-state systems introduced by Birnbaum (in: Krishaiah, Econometrics, principal
components, reliability, and applications, Academic Press, New York, 1969) and Bar-
low and Proshan (Stoch Process Appl 3:153–173, 1975). The availability depends not
only on the reliability, but also on the difficulty of maintenance, the ability to diagnose
the need for service and its efficient implementation. If we assume that the need for
maintenance is the result of deregulation, then determining the key elements to detect
the moment of disorder of the system will be the basis for assessing the importance
of the element for the system maintenance process.

Keywords Reliability · Maintenance · Cooperative game · Voting model · Simple
game · Change point · Disorder problem
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Abbreviations
N The set of players (sensors);
B The states of the elements;
A A subet of players(sensors)—a coalition;
N The set of all players—the grand coalition;
N, N The set of natural numbers, the extended set of natural numbers;
� The set of real numbers;
F The family of measurable subsets of Ω;
(Ω,F,P) The probability space;
S The set of stopping times;
Si ith player ISS;
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|A|, card(A) The cardinality of the set A;
CPV Critical Path Vector;
ISS The individual stopping strategy;
SS The stopping strategy;
ASS An aggregated SS;
δ(·) The aggregation function;
τδ(σ ) ASS generated by σ ∈ S and δ;
OS The optimal stopping;

1 Introduction

The purpose of this work is to match mathematical tools and methods that allow to
analyze threats in complex systems that cause their dysfunctions. In the existing liter-
ature on the subject of the mathematical modeling of systems and their analysis, the
concept of availability appears. Functionality can also be quantified and one can talk
about the reduction of functionality. The very concept of reliability also gives the pos-
sibility of subtle treatment. Based on various observations in this area, a mathematical
model was created to measure the level of safety associated with its operation. You
can consider the internal security of the system itself, as well as examine the system’s
impact on the environment. If we talk about system availability, we mean its ability
to meet the expectations of designers. Keeping such a system ready is associated with
launching an effective diagnostic process and a maintenance plan. The presented con-
siderations are aimed at analyzing models of system reliability that will allow for the
rationalization of maintenance procedures (repair, maintenance, diagnostics). We do
not meet the needs, we only assume the limited resources as a paradigm that allows
to decide locally what subsystem is responsible for the increased chance of losing the
availability of the system functionality.

The availability and its control depends on various factors. It is not only reliability,
but also the difficulty of maintenance, the ability to diagnose components which need
service and an efficient implementation of reparation tasks. If we assume that the need
formaintenance is the result of disorder, then determining the key elements responsible
for the event is crucial work. Assessing the importance of the element for the system
disorders is very helpful in the disorder location. The proposed procedure is based on
the estimation of the disorder moment for the complex system (cf. Szajowski 2011,
2015). The location of the elements responsible for the disorder is proposed on the
basis of the responsibility measure (the Barlow and Proschan’s importance measure).

To implement the presented goal, we will use methods of detecting a change point
in the behavior of system elements. This aspect is described in Sect. 2. A significant
support in these considerations is provided by the methods of the cooperative game
theory presented in Appendix A and the selected antagonistic model with stopping
stochastic processes which is described in Appendix B. Linking the observation of
sensors with the global objectives of the analyzed system together with rational guide-
lines for the sensor center we discuss in Sect. 4. Before Sect. 4 there is a discussion of
the important analogies of the cooperative game theory to structural reliability, which
is in Sect. 3.
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Rational multiple disorder detection 1547

As a conclusion, the main objective of this article is choosing the appropriate
moment to service the system [(cf. Ramamurthy (1990)] and to locate the source of
disorder [(cf. (Ramamurthy (1990), Chap. 3, Middleton 1968].

2 Disorder of structure vs. disorder of components.

Classic reliability is life time, or rather life time distribution. This approach applied
to a complex system naturally prompts you to analyze the relationship between the
reliability of components and the entire system. Let N = {1, 2, . . . , n} be indexes of
the elements. The mathematical model assumes binary elements and systems, i.e. the
possible states are “functional” or “damaged”. It is universal in the sense that it uses
the functions defined in the state space of elements Bn and the state space B of the
system,whereB = {0, 1}, and n = |N| is the number of components of the system. The
analysis of the change in the state of reliability is the study of changes in the distribution
of life time, or rather the remaining life time. It consists of detecting events that are
not observable, but detectable on the basis of symptoms, i.e. secondary phenomena,
whose cause-effect relationship with life time is known. Establishing relationships
involves determining the deterministic relationship between the reliability of elements
and structure. Because the state space is described as binary vectors, and the state of
the system is also binary, the structure models are binary functions in the state space
[cf. Moretti and Patrone (2008)]. The state of the system and the components are
considered at a fixedmoment of time. It is assumed that the state of the system depends
on the state of components only.We shall distinguish between two states only - when a
component is disordered or not. A state of the system has also such dichotomies value.
A similar approach is proposed for the reliability analysis by Mine (1959). We will
analyze the importance of elements of a complex structure for the disorder (availability)
of the system. The basis for the structural element assessment are the importance
measures for multi-component systems introduced by Birnbaum (1969). Barlow and
Proschan (1975) extended the investigation on the reliability element assessment by
the importance measures taking into account the reliability of the elements.

Definition 1 (Structure function) Let us consider the dichotomous elements having
states from the set B = {0, 1}. The structure function is f : Bn → B.

To indicate the state of the ith component we assign a binary indicator variable xi to
component i. There are two states of the component:F = “Failed′′ orW = “Working′′.
We have xi = IW(s)where s ∈ {W,F} is the current state of the component. The state
of the structure is the value of the structure function on the states of the components.
For any x ∈ B

n denote

x−i = (x1, . . . , xi−1, xi+1, . . . , xn);
(ai , x−i ) = (x1, . . . , xi−1, ai , xi+1, . . . , xn).
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Definition 2 (Irrelevant component) Let f be a structure onN and i ∈ N. The element
i is irrelevant to the structure f if f (1, x−i ) = f (0, x−i ) for all x−i ∈ B

n−1.

Let g and h be two structures on N. The linear composition of these two structures is
a structure f on N ∪ {n + 1} defined on B

n+1 by

f (x−(n+1), xn+1) = xn+1g(x−(n+1)) + (1 − xn+1)h(x−(n+1)).

Let f be the structure on N. Its dual f D is another structure on N defined on Bn by

f D(x) = 1 − f (1 − x) for all x ∈ B
n .

where 1 = (1, 1, . . . , 1).

Definition 3 (Monotone structure function) Let f be a structure on N and B
n the

vector space with the partial order “≤”.1 The structure function f is monotone if for
any x, y ∈ B

n

x ≥ y 	⇒ f (x) ≥ f (y).

Definition 4 (Coherent structure (function)) A monotone structure f on N is called
semi-coherent if f (0) = 0 and f (1) = 1. A semi-coherent structure (function) f is
called coherent if all component in N are relevant to f .

Let us denoteN = {J : J ⊂ N} – the family of all subsets ofN. The elements ofN are
called subsystems. The vector xJ ∈ B

|J| represents the states of components in the set
J. For A,B,C ∈ N, the disjoint decomposition of N, the vector (1A, 0B, xC) ∈ B

n ,
with elements arranged in the proper order, represents the situation where all the
components in the subsystem A(B) are in the working(failed) state and the states of
the components in C ∈ N are as specified by the binary vector xC.

Let f be a structure on N, A ⊂ N and J = N \A. The subset A of N is called path
(cut) of the structure f if f (1A, 0J) = 1 ( f (0A, 1J) = 1). Let f be the structure on
N. A path (cut) set C of f is called a minimal path (cut) set of f if A ⊂ C implies that
A is not a path (cut) set of f .

3 Structure vs. simple game

You can treat selected structure components as players in a cooperative game. Their
role in the structure is reduced to monitoring the assigned area. The smooth operation
of the monitored subsystem requires communication to the management center of the
entire message system: I have no operational problems in the supervised area or the
area observed has ceased to perform its functions. A complex system, observed in
the described way from the selected elements, can be treated as players with a com-
mon goal for our purposes. Their purpose is to detect threats and signal the observed

1 Let x, y ∈ �n . x ≤ y iff xi ≤ yi for all i = 1, 2, . . . , n.

123



Rational multiple disorder detection 1549

anomaly to the management center, so that there are not too many false alarms, and the
detection of critical anomalies is effective. One of the elements leading to the descrip-
tion of such a system is to determine how to reward observers so that the reward for the
correct and rapid detection of disturbance gives a signal that is important, but exces-
sive sensitivity and frequent signal overinterpretation are punished. These premises
create basically an antagonistic game with elements of cooperation [cf. Carpente et al.
(2005)]. In dynamic systems, which are social or technical systems, the given goals
are implemented by appropriately selected strategies (controls). The person making
the decision on signaling the risk de facto decides to launch the examination or a repair
procedure. If the goal is to determine the point of change (deregulation), then Markov
moments are natural strategies. In the next stages of model construction, methods of
system description and change point detection will be combined. The elements of
observer cooperation are modeled by cooperative games, including simple games.

Roughly speaking, a complex system, observed from selected elements, which we
can treat as playerswith a commongoal—detecting the threat of signaling the observed
anomaly so that there are no false alarms, and the detection is effective. In addition,
each observer is rewarded for the correct and quick detection. Elements of the observer
cooperation are modeled by simple game methods.

3.1 Voting decision

Suppose the selected places are closely observed in the system. At each such point we
collect information, and in the end we also want to be able to assess the significance
of this information and make decisions about sending warning signals. The decision
on the state of the entire system is made in the center, where the received signals from
equal points are synthesized into one decision or an assessment of whether the system
as a whole is operational or does not perform the assumed functions. The specificity
of the analyzed system and its importance requires that detection be misaligned, but
without false alarms. The structure of the collective decision is based on democratic
principles, i.e. the signals sent from observation centers are treated as votes from
experts, and the rules for taking these votes into account are governed by the rules of
simple games (see Appendix A).

Let us describe the complex systemmonitored by sensors. There are various signals
in the system which model the state or information about the state of the nodes. Let us
describe them by a process {−→X n, n ∈ N},N = {0}∪N, defined on (Ω,F,P). The pro-
cess is observed sequentially and it delivers knowledge about the state of each sensor,
e.g. r th (gets some of its coordinates from the vector

−→
X n at moment n). For further

analysis it is assumed that the processes observed at nodes have the Markov struc-
ture given the random moment θr—the moments of transition probabilities change.
Different transition probabilities correspond to different states of the analyzed area.
When constructing a mathematical model of a complex system, we determine what is
the desired dynamics of the observation and what is anomalous. We assume that the
change in the system dynamics from expected to undesirable occurs in an instant that
is unknown.We only know its typical probabilistic properties. The goal is to determine
when the system as a whole is disordered. The system state describes the structure
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function on the basis of the state of individual subsystems. However, the true state of
the subsystem is not known directly, but only the values of the observable components
of the vector

−→
X n are read(observed) by the sensors. Each sensor is responsible for

measuring certain components. The sensor’s secondary, integral function is to evaluate
the observation and send a signal—the decision on the requested state of the subsystem
being in the area of direct sensor supervision. An important subject of the findings of
the system analysis is the rational way of transformation the observation available on
the sensor for its dichotomous decision.

The principles of the construction of models with a change (disorder) of signals
indicating changes in the studied area, which we use in this approach are known in
works by Shiryaev (1961).2 Various modifications and generalizations of the problem
formulated in this way are the subject of the work by Brodsky andDarkhovsky (1993),
Bojdecki (1979), Yoshida (1983), Szajowski (1992). The detection of disorders with
given precision [cf. Sarnowski and Szajowski (2011)] is most appropriate approach to
adopt for the problem under consideration.

The formulation of the model needs filtration (aggregated knowledge about the
system history) and a priori distribution of disorders. {−→X n}n∈N are consistent with
the filtration Fn and the vectors

−→
X n : Ω → E, where E ⊂ �m . On (Ω,F,P) there

are random variables {θr }m
r=1 which have the zero-inflated geometric distributions

(further π := (π1, . . . , πm) and p = (p1, . . . , pm) mean the parameters of the prior
distribution for the disorder moments):

P(θr = 0) = πr and P(θr = j) = (1 − πr )p j−1
r (1 − pr ), (1)

πr , pr ∈ (0, 1), j = 1, 2, . . .. Further, we refer to this distribution by πr . The
disorder moments at various places of the system are modeled by a multidimensional
distribution. It will be subject of discussion in the Sect. 3.4.

Sensor r follows the process which is based on switching between two, time homo-
geneous and independent, Markov processes {Xi

r n}n∈N, i = 0, 1, r ∈ N, with the
state space (E,B), both independent of {θr }m

r=1. The number of sensors and disorder
moments are usually smaller than dimension of the observed signals. To simplify the
description, suppose further m = |N|.
Assumption 1 It is assumed that the processes {Xi

r n}n∈N have transition densitieswith
respect to the σ -finite measure μ, i.e., for any B ∈ B we have

Pi
x (Xi

r 1 ∈ B) = P(Xi
r 1 ∈ B|Xi

r 0 = x) =
∫

B
f r i
x (y)μ(dy). (2)

The randomprocesses {Xr n}, {X0
r n}, {X1

r n} and the randomvariables θr are connected
via the rule: conditionally on θr = k

Xr n = X0
r nI{k:k>n}(k) + X1

r n+1−kI{k:k≤n}(k)

where {X1
r n} is started from X0

r k−1 (but is otherwise independent of X0
r ·).

2 The circumstances of formulating the problem in this form were described by Shiryaev (2006) [cf.
Shiryaev (2019)].
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3.2 Detection of disorder at node r

The formulation of the problem of the disorder detection (the sequential, on-line
detection of the distribution change) which is the subject of analysis in this article,
assumes that the a prior distribution of the moment of change is known. In Shiryaev
classification [see Shiryaev (2019), Chap. 1] it is the G -model. Let scr SX denotes
the set of all stopping times with respect to the filtration {Fn}n∈N. For any x ∈ E,
πr , pr ∈ [0, 1], c ∈ �+ and τr ∈ SX the associated risk is defined as follows

ρr (xr , πr , τr ) = Pπr (τr < θr + d) + crEπr max{τr − θr , 0}, (3)

wherePπr (τr < θr +d) is the probability of false alarmwith delay d andEπr max{τr −
θr , 0} is the average delay of detecting the occurrence of disruption, respectively.
In Sarnowski and Szajowski (2011) the construction of τ ∗

r is shown. It is done by
transformation of the problem of disorder detection in the process to the optimal
stopping problem for a Markov process which combine observation of the state and
the posterior distribution process (cf. the Sect. 3.3). Following Ochman-Gozdek et al.
(2017), the sufficient statistics for estimation of the disorder at each sensor separately
is presented. When the delay for the false alarm is d the inference at moment n is
based on last d + 2 observation of the state and the posterior process Πr n .

3.3 Relevant reformulated issues at sensors

The process
−→
ξ rn = (

−→
X r n−1−d,n,Πn) has components

−→
X r n−1−d,n = (

−→
X r n−1−d , . . . ,

−→
X r n)

and {Πrn}n∈N- the posterior process:

Πr0 = 0, (4)

Πrn = Px (θr ≤ n | Fn) , n = 1, 2, . . . (5)

The posterior process is designed as information about the distribution of the disorder
instant θr . This bayesian estimation of the disorder moment θr which is related to
minimization of the risk (3), is equivalent of the OS problem for process {−→ξ rn}n∈N
and the posterior process {Πr n}n∈N with an expected payoff function ρr (x, πr , τr ) =
Ex,πr hr (

−→
ξ r τr ,�r τr ) for sensor r . The details of the transformations are shown in

(Shiryaev 2019, Sec. 2.2) and the appendices of Sarnowski and Szajowski (2011),
Ochman-Gozdek et al. (2017). In further considerations we assume no delay, which
means with d = 0.

Every sensor along is looking for the stopping time τ ∗
r ∈ SX such that for every

(x πr ) ∈ E × [0, 1]

ρ�(x, πr ) = ρr (x, πr , τ
�
r ) = inf

τr ∈SX
ρr (x, πr , τr ). (6)
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3.4 Optimal detection problem as voting stopping game

The construction of τ ∗ is made by the transformation of the multilateral disorder
detection problem to the voting stopping problem for the Markov process

−→
ξ rn (cf.

Appendix B), where the sensor’s payoffs are the following:

ρr (x,π , τr ) = Ex,π

{
(1 − �rτr ) + cr

τr −1∑
k=0

�r k

}
. (7)

The sequence
(
{(−→ξ n,�n),Fn}n∈N,Px,π

)
is a Markov process. The risk function (7)

is the function hr (xn−1, xn,αn) such that

Ex,π
[
1 − �rτr |Fn

] = Ex,π

[
hr (

−→
ξ r n+1,�r n+1)|Fn

]
. (8)

The system disorder is determined by the equilibrium for the multilateral stopping
problem as presented in Appendix B. It is rational solution because non of the sensors
are interested to deviate from the strategy given by ISS determined by the construction
given in Theorems 3 and 4 of Appendix B with individual payoff (7).

Remark 1 Let us recall that for one dimensional problem (one sensor) the Wald-
Bellman equation takes the form [see Peskir and Shiryaev (2006), pp. 22–33]:

ρ�(xr , πr ) = min{1 − πr , crπr + Exr ,πr ρ
�(

−→
ξ r 1,πr 1)}. (9)

Its solution determines the disorder detection for one sensor problem.

4 Reliability function vs. structure disorder

Let the states of the elements be random. Assuming a random state of structure ele-
ments, we have a random value of the structure function. The expected value of the
structure function is a multi-linear function from the probabilities that individual ele-
ments are in working state. Similar structure one can find in the multi-linear extension
of the cooperative games proposed by Owen (1971/72) (see Appendix A, Remark 6).

Definition 5 (Ramamurthy (1990) in Chap. 3) The reliability function of a structure f
on N with independent components, having states X = (X1, . . . , Xn), is the function
f̂ : [0, 1]n → [0, 1] defined by

f̂ (ρ) = P
(
ω : f (X) = 1

) = E f (X),

where ρ are components reliability.

Proposition 1 (Decomposition of f build on the independent components:)

f̂ (ρ) = ρi f̂ (1, ρ−i ) + (1 − ρi ) f̂ (0, ρ−i ).
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Remark 2 (Notation-a loss of availability (reliability)) For the given vector ρ:

f̂(i)(ρ) = f̂ (1, ρ−i ) − f̂ (0, ρ−i ).

4.1 Critical path vs. disorder

Definition 6 (Hamming’s weight(norm)) A vector x ∈ B
n is of size r when exactly r

of its components are equal to unity, i.e.
∑n

i=1 xi = r .

Definition 7 (Critical Path Vector (CPV)) x ∈ B
n is a critical path of structure f for

component i if

1. x = (1i , x−i );
2. f (x) = 1 and f (0i , x−i ) = 0.

Remark 3 (Notation: the total number of CPV of f for i .) ηi (r , f ) is the number of
critical path vectors of f of size r for component i and ηi ( f ) is the total number of
critical path vectors of f for component i .

4.2 Critical paths and importance of i (structural)

Remark 4 (Relations to the game theory) The coalition S ⊂ N is called a swing for
player i if i ∈ S andS is a path set (i.e. winning coalition) butS \ {i} is not a path set
(losing coalition). This way, ηi(r , f ) is the number of swings of f of size r for player
i.

Remark 5 (Absolute Banzhaf’s index ψi( f )) of component i is by definition

ψi( f ) = ηi( f )

2n−1

where n = |N|.
An importance of i-th is based on the change point analysis The posterior life time

distributions are based on signals from sensors. Let xr k be the history of r sensor
signals after kth signal. The disorder moment θr has the posterior distribution given
by (4) and (5). Let us assume that the kth signals of sensors are related to the real
time Tk and the distribution functions of working time of each element G jr(t |xr k),
j = 0, 1, (and element r too) before ( j = 0) and after ( j = 1) disorders are given.
The distribution of the working time after Tr is

Gr(t) = Πr k(xk)G0r(t |xr k) + (1 − Πr k(xk))G1r(t |xr k). (10)

Let Tk = τ ∗ and G = (G1, G2, . . . , Gn). The next signal at t ≥ τ ∗ is the system
break down. The probability density function of the life of the system is given by

n∑
j=1

f̂ j (1 − G(t))g j (t).
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The ith’s element liability for the failure is a crucial element of the maintenance
strategy construction. The proposed determination of the responsible element is based
on the proposition concerning the importance measure for ith element based on the
reliability function.

Proposition 2 (Barlow and Proschan (1975)) Let f be a semi-coherent structure on
N and let f̂ be its reliability function. Assuming the absolutely continuity of the time
of leaving all components, the probability failure of component i caused by the system
failure, given that the system failed at the instant of time t, is given by

f̂i(1 − G(t))gi(t)∑n
j=1 f̂ j (1 − G(t))gi(t)

. (11)

5 Conclusion

In the case of the system break down at τ ∗ under the above assumption, the probability
that the system failure is caused by the failure of the component i is given by

∫ ∞

τ∗
f̂i(1 − G(t))gi(t)dt . (12)

The proposed rationalization capture in a mathematical model of important practical
aspects, namely the formalization of the disorder moment for a complex system, uses
in its essence a description of the associated observation (diagnostics) points in the
language of cooperative games. However, the method in which the meaning of an
individual system’s elements is determined in connection with their actual importance
may be the preliminary stage of analyzing the reliability or readiness of the system.
The initial stage would be to propose the right simple game for the method analyzed
in this work.This phase of the construction of the model is not the subject of a detailed
analysis in this work. The author believes that this step can be eliminated if we apply
methods used in quitting games.

An important application of such an analysis is for the appropriate addition of
honeypots [see Píbil et al. (2012)]. Planning structures with effective traps is easier
when the mathematical model allows you to designate locations that lead to critical
resources of a system from a security point of view. Particularly promising is the prob-
lem of determining important locations by determining the cost function of individual
resources and their values for observers deployed in the system. Thanks to this for-
mulation, the arbitrary structure of a simple game will be replaced by an analysis of
the antagonistic game with possible cooperation [see Carpente et al. (2005), Herings
and Predtetchinski (2014)].
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Appendices

A Games in coalitional form3

Let us recall that a coalition is a subset of the players. Let N be the set of players,
p = |N|, and C = {C : C ⊂ N} denote the class of all coalitions. The set of all player
form the grand coalition: N = N.

Definition 8 [see Szajowski and Yasuda (1996), Owen (2013)] A simple game is a
coalition game having the characteristic function, φ(·) : C → B = {0, 1}.
Let us denote W = {C ⊂ N : φ(C) = 1} and L = {C ⊂ N : φ(C) = 0}. The
coalitions in W are called the winning coalitions, and those from L are called the
losing coalitions.

Assumptions 1 By assumption the characteristic function satisfies the properties:

1. N ∈ W;
2. ∅ ∈ L;
3. (the monotonicity): T ⊂ S ∈ L implies T ∈ L.
There are various methods to describe the aggregated decision rule of the players. Like
a single player, as well as all players, the final decision they can make is to accept the
offer or reject it. The aggregation of decisions can be described by the logical function

δ(x1, x2, . . . , x p) =
∑
C∈W

∏
i/∈C

(1 − xi)
∏
i∈C

xi. (13)

The logical function δ (cf. Yasuda et al. (1982)) can be decomposed as follows (xi =
1 − xi )

δ(x1, . . . , x p) = xi · δ(x1, . . . ,
i

1̆, . . . , x p) + xi · δ(x1, . . . ,
i

0̆, . . . , x p).

Definition 9 A cooperative n-person game in a coalitional form is an ordered pair
(N, v), where N = {1, 2, . . . , n} (the set of players) and v : 2N → � is a map,
assigning to each coalition S ∈ 2N a real number, such that v(∅) = 0.

3 This appendix is based on Tijs (2003) and Owen (2013).
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The function v is called the characteristic function of the game, v(S) is called theworth
(or value) of the coalitionS. Let us denote with Gn the collection of all characteristic
functions v, corresponding to an n-person coalitional game (N, v)4 (An the collection
of all additive characteristic functions a corresponding to a game (N, a)). One basis
for the vector space Gn is {δS : S ∈ 2N \ {∅}}, where δS : 2N → � is defined by
δS(T) = 1 if T = S and δS(T) = 0, otherwise.

The unanimity game for S ∈ 2N is defined by the description of the characteristic
function uS(T) = 1 ifS ⊂ T and 0 otherwise. The set {uS : S ∈ 2N \{∅}} is another
basis for Gn .

Let us call amap f : Gn → � a solution of the games. Some desirable properties for
the solutions are formulated: individual rationality (IR), efficiency (EFF), annonymity
property (AN), dummy player property (DUM), additivity (ADD).

Let σ : N → N be permutation and the related marginal vectormσ (v) for the game
(N, v). The payoff vectormσ (v) corresponds to a situation, where the players enter a
play one by one in the order σ(1), . . . , σ (n).

Definition 10 (Shapley value) The Shapley value�(v) of a game (N, v) is the average
of the marginal vectors of the game.

The formula defined by the Shapley value has the form:

�(v) = 1

n!
∑

σ∈π(N)

mσ (v), (14)

where π(N) is the set of permutations of N.

Theorem 1 (cf. Shapley (1953)) There is a unique solution f : Gn → �n satisfying
EFF, AN, DUM and ADD. This solution is the Shapley value.

Remark 6 (cf. Owen(1971/1972)) The multilinear extension f of n-person game v is
a function defined on n-cube f : [0, 1]n → �n which is linear in each variable and
which coincides with v at the corners of the cube. We have (v. Tijs 2003):

f(x) =
∑
S∈2N

( ∏
i∈S

xi
∏

i∈N\S
(1 − xi)

)
v(S).

The set of extreme points of [0, 1]n is equal to {eS : S ∈ 2N}, where eS =
(IS(1), IS(2), . . . , IS(n)). As a consequence f(eS) = v(S), i.e. it has the form
given by (13).

4 G|N| is the subset of �N, the set of all mappings f : N → �, such that f (∅) = 0. N = 2|N| – the set
theory denotation of the family of all coalitions.
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B A non-cooperative stopping game

B.1 Multilateral stopping problem

Following the results of the author and Yasuda Szajowski and Yasuda (1996) the
multilateral stopping of a Markov chain problem can be described in the terms of the
notation used in the non-cooperative game theory [see Nash (1951), Dresher (1981),
Moulin (1982), Owen (2013)]. To this end the process and utilities of its states should
be specified.

Definition 11 (ISS-Individual Stopping Strategies) Let (
−→
X n,Fn,Px ), n = 0, 1, 2,

. . . , N , be a homogeneous Markov chain with the state space (E,B).

– The players are able to observe the Markov chain sequentially. The horizon can
be finite or infinite: N ∈ N ∪ {∞}.

– Each player has their utility function fi : E → �, i = 1, 2, . . . , p, such that
Ex | fi (

−→
X 1)| < ∞ and the cost function ci : E → �, i = 1, 2, . . . , p.

– If the process is not stopped at moment n, then each player, based on Fn, can
declare independently their willingness to stop the observation of the process.

Definition 12 (see Yasuda et al. (1982) ) An individual stopping strategy of the player
i (ISS) is the sequence of random variables {σ i

n}N
n=1, where σ i

n : Ω → {0, 1}, such
that σ i

n is Fn-measurable.

The interpretation of the strategy is following. If σ i
n = 1, then player i declares that

they would like to stop the process and accept the realization of Xn .

Definition 13 (SS–Stopping Strategy (the aggregate function)) Denote

σ i = (σ i
1, σ

i
2, . . . , σ

i
N )

and let Si be the set of ISSs of player i , i = 1, 2, . . . , p. Define S = S1×S2× . . .×Sp.
The element σ = (σ 1, σ 2, . . . , σ p)T ∈ S will be called the stopping strategy (SS).

The stopping strategy σ ∈ S is a random matrix. The rows of the matrix are the
ISSs. The columns are the decisions of the players at successive moments. The factual
stopping of the observation process, and the players realization of the payoffs is defined
by the stopping strategy exploiting p-variate logical function.

Let δ : {0, 1}p → {0, 1} be the aggregation function. In this stopping game model
the stopping strategy is the list of declarations of the individual players. The aggregate
function δ converts the declarations to an effective stopping time.

Definition 14 (An aggregated SS) A stopping time τδ(σ ) generated by the SS σ ∈ S

and the aggregate function δ is defined by

τδ(σ ) = inf{1 ≤ n ≤ N : δ(σ 1
n , σ 2

n , . . . , σ
p

n ) = 1}

(inf(∅) = ∞). Since δ is fixed during the analysis we skip index δ and write τ(σ ) =
τδ(σ ).
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Definition 15 (Process and utilities of its states)

– {ω ∈ Ω : τδ(σ ) = n} = ⋂n−1
k=1{ω ∈ Ω : δ(σ 1

k , σ 2
k , . . . , σ

p
k ) = 0} ∩ {ω ∈ Ω :

δ(σ 1
n , σ 2

n , . . . , σ
p

n ) = 1} ∈ Fn ;
– τδ(σ ) is a stopping time with respect to {Fn}N

n=1.
– For any stopping time τδ(σ ) and i ∈ {1, 2, . . . , p} the payoff of player i is defined
as follows (cf. Shiryayev (1978)):

fi (Xτδ(σ )) = fi (Xn)I{τδ(σ )=n} + lim sup
n→∞

fi (Xn)I{τδ(σ )=∞}.

Definition 16 (An equilibrium strategy (cf. Szajowski and Yasuda (1996))) Let the
aggregate rule δ be fixed. The strategy ∗σ = (∗σ 1, ∗σ 2, . . . , ∗σ p)T ∈ S is an equi-
librium strategy with respect to δ if for each i ∈ {1, 2, . . . , p} and any σ i ∈ Si we
have

Ex [ fi (
−→
X τδ(∗σ)) +

τδ(
∗σ)∑

k=1

ci (
−→
X k−1)] ≤ Ex

⎡
⎣ fi (

−→
X τδ(∗σ(i))) +

τδ(
∗σ(i))∑

k=1

ci (
−→
X k−1)

⎤
⎦ .

B.2 Equilibria in voting stopping game

Definition 17 (G = (S,
−→
f , δ)) The set of SS S, the vector of the utility functions−→

f = ( f1, f2, . . . , f p) and the monotone rule δ define the non-cooperative game G
= (S, f ,δ). The construction of the equilibrium strategy ∗σ ∈ S in G is provided in
Szajowski and Yasuda (1996).

Definition 18 (An individual stopping set) on the state space describes the ISS of
the player. Each ISS of player i gives the sequence of stopping events Di

n = {ω :
σ i

n = 1}. For each aggregate rule δ there exists the corresponding set value function
Δ : F → F such that δ(σ 1

n , σ 2
n , . . . , σ

p
n ) = δ{ID1

n
, ID2

n
, . . . , ID p

n
} = IΔ(D1

n ,D2
n ,...,D p

n ).

The important class of ISS and the stopping events can be defined by subsets Ci ∈ B
of the state space E. A given set Ci ∈ B will be called the stopping set for player i at
moment n if Di

n = {ω : Xn ∈ Ci } is the stopping event.

By properties of the logical function δ(x1, . . . , x p) can be represented as

xi · δ(x1, . . . ,
i

1̆, . . . , x p) + xi · δ(x1, . . . ,
i

0̆, . . . , x p).

It implies that for Di ∈ F set Δ(D1, . . . , D p) is equal

{Di ∩ Δ(D1, . . . ,

i

Ω̆, . . . , D p)} ∪ {D
i ∩ Δ(D1, . . . ,

i

∅̆, . . . , D p)}.
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The form of stopping sets Let fi , gi be the real valued, integrable defined on E. For
fixed D j

n , j = 1, 2, . . . , p, j �= i , and Ci ∈ B define

ψ(Ci ) = Ex

[
fi (X1)IiD1(Di

1)
+ gi (X1)IiD1(Di

1)

]

where iD1(A) = Δ(D1
1, . . . , Di−1

1 , A, Di+1
1 , . . . , D p

1 ) and Di
1 = {ω : Xn ∈ Ci }.

Lemma 1 (Technical) Let fi , gi , be integrable and let C j ∈ B, j = 1, 2, . . . , p,
j �= i , be fixed. Then, set ∗Ci = {x ∈ E : fi (x) − gi (x) ≥ 0} ∈ B is such that

ψ(∗Ci ) = sup
Ci ∈B

ψ(Ci )

and

ψ(∗Ci ) = Ex ( fi (X1) − gi (X1))
+
IiD1(Ω)

−Ex ( fi (X1) − gi (X1))
−
IiD1(Ω) + Ex gi (X1).

Based on Lemma 1 we derive the recursive formulae defining the equilibrium point
and the equilibrium value for the finite horizon game.

B.3 The finite horizon game

In the finite horizon game the construction of equilibria is based on the backward
induction. Let us denote the equilibrium strategy ∗σ .

– Let horizon N be finite. If the equilibrium strategy ∗σ exists, then we denote
vi,N (x) = Ex fi (Xt(∗σ)) the equilibrium payoff of i-th player when X0 = x .

– Let Si
n = {{σ i

k }, k = n, . . . , N } be the set of ISS for moments n ≤ k ≤ N and
Sn = S1n × S2n × . . . × S

p
n .

– SS for moments not earlier than n is nσ = (nσ 1, nσ 2, . . . , nσ p) ∈ Sn , where
nσ i = (σ i

n, σ i
n+1, . . . , σ

i
N ).

– tn = tn(σ ) = t(nσ) = inf{n ≤ k ≤ N : δ(σ 1
k , σ 2

k , . . . , σ
p

k ) = 1} (a stopping time
not earlier than n).

Definition 19 (Equilibrium in Sn) The stopping strategy n∗σ = (n∗σ 1, n∗σ 2, . . . , n∗σ p)

is an equilibrium in Sn if Px − a.e.

Ex

⎡
⎣ fi (Xtn(∗σ)) +

tn(∗σ)∑
k=1

ci (
−→
X k−1)

⎤
⎦ ≤ Ex

⎡
⎣ fi (Xtn(∗σ(i)))

+
tn(∗σ(i))∑

k=1

ci (
−→
X k−1)

⎤
⎦
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for every i ∈ {1, 2, . . . , p}, where
n∗σ(i) = (n∗σ 1, . . . , n∗σ i−1, nσ i , n∗σ i+1, . . . , n∗σ p).

Denote

vi,N−n+1(Xn−1) = Ex

⎡
⎣ fi (Xtn(∗σ)) +

tn(∗σ)∑
k=n

ci (
−→
X k−1)|Fn−1

⎤
⎦

= EXn−1

⎡
⎣ fi (Xtn(∗σ)) +

tn(∗σ)∑
k=n

ci (
−→
X k−1)

⎤
⎦ .

At moment n = N the players have to declare to stop and vi,0(x) = fi (x). Let us
assume that the process is not stopped up to moment n, the players are using the
equilibrium strategies ∗σ i

k , i = 1, 2, . . . , p, at moments k = n + 1, . . . , N . Choose

player i and assume that other players are using the equilibrium strategies ∗σ j
n , j �= i ,

and player i is using strategy σ i
n defined by a stopping set Ci .

The expected payoff ϕN−n(Xn−1, Ci ) of player i in the game starting at moment
n, when the state of the Markov chain at moment n − 1 is Xn−1, is equal to

ϕN−n(Xn−1, Ci ) = EXn−1

[
fi (Xn)Ii∗Dn(Di

n) + vi,N−n(Xn)Ii∗Dn(Di
n)

]
,

where i∗Dn(A) = Δ(∗D1
n, . . . , ∗Di−1

n , A, ∗Di+1
n , . . . , ∗D p

n ).
By Lemma 1 the conditional expected gain ϕN−n(X N−n, Ci ) attains the maximum

on the stopping set ∗Ci
n = {x ∈ E : fi (x) − vi,N−n(x) ≤ 0} and

(vi,N−n+1 − ci )(Xn−1) = Ex [( fi − vi,N−n)+(Xn)Ii∗Dn(Ω)|Fn−1]
−Ex [( fi − vi,N−n)−(Xn)Ii∗Dn(∅)|Fn−1]
+Ex [vi,N−n(Xn)|Fn−1]

Px−a.e.. It allows to formulate the following construction of the equilibrium strategy
and the equilibrium value for the game G.

Theorem 2 (Solution of the finite horizon stopping game based on voting) In the game
G with finite horizon N we have the following solution.

(i) The equilibrium value vi (x), i = 1, 2, . . . , p, of the game G can be calculated
recursively as follows:

1. vi,0(x) = fi (x);
2. For n = 1, 2, . . . , N we have Px−a.e.

(vi,n − ci )(X N−n) = Ex [( fi − vi,n−1)(X N−n+1))
+
Ii∗DN−n+1(Ω)|FN−n]

−Ex [( fi − vi,n−1)(X N−n+1))
−
Ii∗DN−n+1(∅)|FN−n]

+Ex [vi,n−1(X N−n+1)|FN−n],
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for i = 1, 2, . . . , p.

(ii) The equilibrium strategy ∗σ ∈ S is defined by the SS of the players ∗σ i
n , where

∗σ i
n = 1 if Xn ∈ ∗Ci

n, and ∗Ci
n = {x ∈ E : fi (x) − vi,N−n(x) ≤ 0}, n =

0, 1, . . . , N.

We have vi (x) = vi,N (x), and Ex fi (Xt(∗σ)) = vi,N (x), i = 1, 2, . . . , p.

B.4 The infinite horizon game

Let us assume that there exists a solution (w1(x), w2(x), . . . , wp(x)) of the equations

wi (x) − ci (x) = Ex ( fi (X1) − wi (X1))
+
Ii∗D1(∅)

−Ex ( fi (X1) − wi (X1))
−
Ii∗D1(Ω) + Exwi (X1),

i = 1, 2, . . . , p. Consider the stopping game with the following payoff function for
i = 1, 2, . . . , p.

φi,N (x) =
{

fi (x) if n < N ,

vi (x) if n ≥ N .

Lemma 2 Let ∗σ ∈ S∗
f be an equilibrium strategy in the infinite horizon game G. For

every N we have

Exφi,N (Xt∗) = vi (x).

Let us assume that for i = 1, 2, . . . , p and every x ∈ E we have

Ex [supn∈N f +
i (Xn)] < ∞,

Ex [supn∈N c+
i (Xn)] < ∞. (1)

Theorem 3 Let (Xn,Fn,Px )
∞
n=0 be a homogeneous Markov chain and the payoff

functions of the players fulfill (1). If t∗ = t(∗σ), ∗σ ∈ S∗
f , then Ex fi (Xt∗) = vi (x).

Theorem 4 Let the stopping strategy ∗σ ∈ S∗
f be defined by the stopping sets ∗Ci

n =
{x ∈ E : fi (x) ≤ vi (x)}, i = 1, 2, . . . , p, then ∗σ is the equilibrium strategy in the
infinite stopping game G.
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