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Abstract We study approximations of boundary crossing probabilities for the max-
imum of moving weighted sums of i.i.d. random variables. We consider a particular
case of weights obtained from a trapezoidal weight function which, under certain
parameter choices, can also result in an unweighted sum. We demonstrate that the
approximations based on classical results of extreme value theory provide some scope
for improvement, particularly for a range of values required in practical applications.

Keywords Movingweighted sum ·Boundary crossing probability ·Movingweighted
sum of squares · Change-point detection · Singular spectrum analysis

1 Introduction: statement of the problem

Let ε1, ε2, . . . be a sequence of independent identically distributed random variables
with finite mean μ and variance σ 2 and some c.d.f. F . Define the moving weighted
sum as

Sn;L ,Q =
n+L+Q−1∑

s=n+1

wL ,Q(s − n)εs (n = 0, 1, . . .), (1)
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1326 J. Noonan, A. Zhigljavsky

Fig. 1 The weight function
wL ,Q(·), 1 ≤ Q ≤ L

0 Q L L+Q

Q

t

where the weight function wL ,Q(·) is defined by

wL ,Q(t) =
⎧
⎨

⎩

t for 0 ≤ t ≤ Q,

Q for Q ≤ t ≤ L ,

L + Q − t for L ≤ t ≤ L + Q − 1.
(2)

where L and Q are positive integers with Q ≤ L .
The weight function wL ,Q(·) is depicted in Fig. 1. In the special case Q = 1, the

weighted moving sum (1) becomes an ordinary moving sum.
The main aim of this paper is to study precision of different approximations of

boundary crossing probabilities for the maximum of the moving weighted sum; that
is,

P

(
max

n=0,1,...,M
Sn;L ,Q > H

)
, (3)

where H is a given threshold, M is reasonably large and L , Q are fixed parameters.
This paper is structured as follows. In Sect. 2 we reformulate the problem and

provide motivation why a trapezoidal weight function is considered. In Sect. 3, a
number of approximations to (3) are introduced based on the classical extreme value
theory. Using the classical approximations, which do not perform very well, we also
derive another approximation (called ‘combined’) which appears to be more accurate.
The performance of these approximations is analyzed by a large simulation study
described in Sect. 4.

2 Boundary crossing probabilities: discrete and continuous time

2.1 Reformulation of the problem

For convenience of dealing with the probability (3), we standardise the moving
weighted sum Sn;L ,Q . Derivation of the following lemma is straightforward.

Lemma 1 The first two moments of Sn;L ,Q are

ESn;L ,Q = μLQ, var(Sn;L ,Q) = σ 2Q

3
(3LQ − Q2 + 1). (4)

123



Approximations of the boundary crossing probabilities. . . 1327

We now define the standardized random variables (r.v.)

ζn := Sn;L ,Q − ESn;L ,Q√
var(Sn;L ,Q)

=
√
3 (Sn;L ,Q − μLQ)

σ
√
Q(3LQ − Q2 + 1)

, (5)

n = 0, 1, . . . . If the r.v. ε1, ε2, . . . are normal then the r.v. ζ1, ζ2, . . . are also normal.
Otherwise, using the Central Limit Theorem, we obtain that ζn ∼ N (0, 1) holds
asymptotically, as L → ∞.

Using the notation ζn , our problem (3) is equivalent to studying approximations for
the boundary crossing probability (abbreviated BCP)

PM,h(ζn) := P

(
max

n=0,1,...,M
ζn > h

)
, (6)

where

H = μLQ + σh

√
Q(3LQ − Q2 + 1)

3
.

A number of approaches could be used to approximate (6). We could have ignored
the dependence structure of the sequence of moving weighted sums and used either
asymptotic normality alone or the limiting extreme value distribution to choose h.
Instead, in what follows we study several approximations of (6) which are based
on approximating the sequence ζn by a continuous time random process. Before we
proceed, let us consider a special case of ε j , which has important practical significance.

2.2 Motivation for the problem

If we let ε j = ξ2j , where ξ1, ξ2, . . . are i.i.d random variables with zero mean, variance

δ2 and finite fourth momentμ4 = Eξ4i , then Sn;L ,Q can be seen as a moving weighted
sum of squares. In this case, the mean μ = Eε j = δ2 and σ 2 = var(ε j ) = μ4 − δ4.
By approximating (3) we are considering a particularly interesting case linked to the
SSA change-point detection algorithm proposed inMoskvina and Zhigljavsky (2003).
A good approximation for the BCP for the maximum of the moving weighted sums
of squares is needed in the theory of sequential change-point detection because the
BCP defines the significance levels for the SSA change-point detection statistic. For
an extensive introduction to SSA, see Golyandina et al. (2001) and Golyandina and
Zhigljavsky (2013).

2.3 Continuous time approximation

By the definition, the probability PM,h(ζn) is an (M+1)-dimensional integral which is
difficult to compute. We assume that L → ∞ and consider a transformation described
below in Sect. 3 from the time series ζn , n = 0, 1, . . . , M , to a continuous-time process
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1328 J. Noonan, A. Zhigljavsky

ζt , t ∈ [0, T ], where T = M/
√
LQ for large Q, see (10), and T = M/L in the case

of small Q, see beginning of Sect. 3.2. Like the time series ζn , the process ζt is
standardized so that Eζt = 0 and Eζ 2

t = 1 for all t . Also, the process ζt is Gaussian
and stationary with some autocorrelation function R(s) = Eζ0ζs .

By such a transformation, the probability PM,h(ζn) is approximated by P(T, h, ζt ),
which is the probability of reaching the threshold h by the process ζt on the interval
[0, T ]; that is,

PM,h(ζn) ∼= P(T, h, ζt ) = Pr

{
max
0≤t≤T

ζt ≥ h

}

= Pr
{
ζt ≥ h for at least one t ∈ [0, T ]

}
. (7)

For the continuous process ζt , two main useful characteristics are the probability
density function of reaching the threshold h for the first time

q(t, h, ζt ) = d

dt
P(t, h, ζt ), 0 < t < ∞, (8)

and the average time �(h, ζt ) until the process ζt reaches the threshold h

E(�(h, ζt )) =
∫ ∞

0
tq(t, h, ζt )dt =

∫ ∞

0
td P(t, h, ζt ) .

From the practical point of view, we are interested in finding good approximations
of (6) for small and moderate M . But the mathematical theory guarantees accurate
approximations just for large M .

To proceed further, we need to discuss results concerning the autocorrelation func-
tion of the continuous process ζt . This can be done through computing the correlations
between Sn;L ,Q and Sn+ν,L ,Q for ν > 0.

2.4 Correlation between Sn;L,Q and Sn+1;L,Q

For fixed L and Q, the moving weighted sum Sn;L ,Q is a function of n. The index
n can be treated as time and thus the sequence S0;L ,Q , S1;L ,Q, . . . defined in (1)
can be considered as a time series. In order to derive our approximations, we need
explicit expressions for the correlation Corr(Sn;L ,Q,Sn+1;L ,Q). The general case
Corr(Sn;L ,Q,Sn+ν;L ,Q), ν > 1 need not be considered for these approximations.

Without loss of generality, we can assume that n = 0 and we denote Sν := Sν;L ,Q
where ν = 0, 1.

Lemma 2 The correlation Corr(S0,S1) = Corr(Sn;L ,Q,Sn+1;L ,Q), where Sn;L ,Q is
defined in (1), is

Corr(S0,S1) = E(S0S1) − (ES0)
2

var(S0)
= 1 − 3

3LQ − Q2 + 1
.
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Proof From the definition (1), the quadratic forms S0 and S1 can be represented as

S0 =
Q−1∑

i=1

iεi + Q
L∑

i=Q

εi +
Q + L − 1∑

i=L + 1

(Q + L − i)εi

and

S1 = S0 −
Q∑

i=1

εi +
Q∑

i=1

εL +i .

Using these representations, we can easily obtain E(S0S1) = ES2
0 − Qσ 2 . Then

by substituting the explicit expressions (4) for ES0 and var(S0) = ES2
0 , we obtain

the desired result. 	

Note that the correlation does not depend on the distribution of errors ε j (unlike

the covariance which depends on the mean μ and variance σ 2 of ε j ). This also can be
seen in relation to the fact (see, for example, Priestley 1981) that the spectral density
of the moving average process depends only on the weight function, which iswL ,Q(t)
in our case.

3 Approximations of the boundary crossing probabilities

In this section we formulate four different approximations for the BCP PM,h(ζn)

defined in (7). These approximations depend on the behaviour of the autocorrelation
function R(s) = Eζ0ζs at 0 which in its turn depends on parameters Q and L of the
weight function in (2). We consider the following two cases: (i) large Q and large L ,
(ii) small Q and large L .

3.1 Case of large Q and large L

Consider the sequence of random variables ζ0, ζ1, . . . , ζM defined in (5). In view of
Lemma 2, the correlation between ζn and ζn + 1 is

Corr(ζn, ζn + 1) = 1 − 3

3LQ − Q2 + 1
. (9)

Assume that both L and Q are large. Moreover, assume that L and Q tend to infinity
in such a way that the limit λ = lim Q/L exists and 0 < λ ≤ 1. Set Δ = 1/

√
LQ

and

tn = nΔ, n = 0, 1, . . . , M, so that tn ∈ [0, T ] with T = MΔ . (10)
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1330 J. Noonan, A. Zhigljavsky

Define a piece-wise linear continuous-time process ζ
(L)
t , t ∈ [0, T ], as follows

ζ
(L)
t = 1

Δ

[
(tn − t)ζn−1 + (t − tn−1)ζn

]
for t ∈ [tn−1, tn], n = 1, . . . , M. (11)

By construction, the process ζ
(L)
t is such that ζ

(L)
tn = ζn for n = 0, . . . , M . Also we

have that ζ (L)
t is a second-order stationary process in the sense that Eζ

(L)
t , var(ζ (L)

t )

and the autocorrelation function R(L)
ζ (t, t + kΔ) = Corr(ζ (L)

t , ζ
(L)
t+kΔ) do not depend

on t .

Lemma 3 Letλ = limL ,Q→∞ Q/L andassume that0 < λ ≤ 1. Consider the process

ζ
(L)
t defined in (11). The limiting process ζt = limL ,Q→∞ ζ

(L)
t is stationary Gaussian

with some autocorrelation function Rζ (t, t + s) = R(s). Moreover, R′(0) = 0 and
R′′(0) = −6/(3 − λ).

Proof For the autocorrelation function R(·) we have R′(0) = 0 since

R′(0−) = R′(0+) = lim
L ,Q→∞

R(Δ) − 1

Δ
= lim

L ,Q→∞
−3

√
LQ

3LQ − Q2 + 1
= 0,

where we used the relations Δ = 1/
√
LQ, R(Δ) = 1 − 3 / (3LQ − Q2 + 1) and

R(0) = 1. We similarly obtain

R′′(0) = lim
L ,Q→∞

R(Δ) + R(−Δ) − 2R(0)

Δ2 = lim
L ,Q→∞

−6LQ

3LQ − Q2 + 1

= − 6

3 − λ
< 0. 	


For a Gaussian stationary process ζt with Eζt = 0 and Eζ 2
t = 1 and autocorrelation

function R(·) such that R′(0) = 0 and R′′(0) < 0 we can use the following two
well-known approximations.

Approximation 1 (App 1) From Theorem 8.2.7 in Leadbetter et al. (1983) we have

lim
T→∞ P

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
max
0≤t≤T

ζt ≤ u + log
√−R′′(0)

2π√
2 log T

+ √
2 log T

︸ ︷︷ ︸
h

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
= exp(−e−u) .

Expressing u in terms of h, we obtain the Approximation 1

P(T, h, ζt ) ∼= 1 − exp(−e−u) (12)
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with u = γ (h − γ ) + c, where

γ = √
2 log T and c = − log

√−R′′(0)
2π = − log 1

2π

√
6

3−λ
. (13)

Approximation 2 (App 2) From Cramér (1965), we have

lim
T→∞ P

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
max
0≤t≤T

ζt ≤ √
2 logμ + v√

2 logμ︸ ︷︷ ︸
h

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
= exp(−e−v),

where

μ = T
√−R′′(0)

2π
= T

2π

√
6

3 − λ
.

Expressing v in terms of h, we obtain Approximation 2

P(T, h, ζt ) ∼= 1 − exp(−e−v) (14)

with

v = √
2 logμ (h − √

2 logμ).

Note that 2 logμ = γ 2 − 2c and

√
2 logμ =

√
γ 2 − 2c = γ − c

γ
+ O

(
1

γ 3

)
,

as γ → ∞, where γ and c are defined in (13). Therefore, for large T (and, therefore,
large γ ) we have

v ∼=
(

γ − c

γ

)(
h − γ + c

γ

)
= (h − γ )γ + c︸ ︷︷ ︸

u

− (h − γ )c

γ
− c2

γ 2 .

Let us construct another approximation by combining the Approximations 1 and 2.

Approximation 3 (Combined) Consider the approximation

P(T, h, ζt ) ∼= 1 − exp(−e−z) (15)

where

z =
{
u − (h−γ )c

γ
− c2

γ 2 for h ≤ γ − c
γ
,

u for h ≥ γ − c
γ
.
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1332 J. Noonan, A. Zhigljavsky

Formally, λ = limL ,Q→∞ Q/L = 0 still satisfies Lemma 3 in the sense that R′(0) = 0
and R′′(0) = −2 < 0; however, the above approximations are poor when Q is small;
this shall be demonstrated in Sect. 4. The case of small Q should be treated differently
and is considered in the following subsection.

3.2 Case of small Q and large L

Consider again the sequence of random variables ζn defined by (5). Unlike in Sect. 3.1,
now we look at the asymptotic transformation when L → ∞ but Q is fixed. Set
Δ = 1/L and T = MΔ. Define tn , n = 0, 1, . . . , M, as in (10) and consider the
piece-wise linear continuous-time process ζ

(L)
t defined by (11).

Lemma 4 Let Q be fixed. The limiting process ζt as L → ∞ is a Gaussian second-
order stationary process with autocorrelation function Rζ (t, t+s) = R(s). Moreover,
R′(0+) = − 1

Q �= 0.

Proof We first note that

∂Rζ (t, s)

∂s

∣∣∣∣
s=t+

= R(0+).

Using (9) and the fact that Δ = 1/L , we have

R′(0+) = lim
L→∞

R(Δ) − R(0)

Δ
= − lim

L→∞
3L

3LQ − Q2 + 1
= − 1

Q
.

	

Let us now formulate the tangent approximation suggested in Durbin (1985); it

is one of the most known approximations for the density function q(t, h, ζt ) of the
first passage time defined in (8). Using this, we can approximate the first passage
probability P(T, h, ζt ) defined in (7) in the case of a Gaussian process ζ(t) on [0, T ]
with Eζ(t) = 0, some autocorrelation function Rζ (t, s) and the possibly non-constant
threshold h = h(t).

The Durbin approximation for q(t, h, ζt ) can be written as

q(t, h, ζt ) ∼= b0(t, h) f (t, h),

where

f (t, h) = 1√
2πRζ (t, t)

e
− h2(t)

2Rζ (t,t) b0(t, h) = − h(t)

Rζ (t, t)

∂Rζ (s, t)

∂s

∣∣∣∣
s=t+

− dh(t)

dt
.

In view of (8) the related approximation for the first passage probability P(T, h, ζt )

is

P(T, h, ζt ) ∼=
∫ T

0
b0(t, h) f (t, h)dt .
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In the case when the threshold h(t) = h is constant, using Lemma 4 we obtain

b0(t, h) = −hR′(0+) = h

Q
, q(t, h, ζt ) ∼= h√

2πQ
e−h2/2

and therefore we obtain the following approximation.

Approximation 4 (App 4) The Durbin approximation for the BCP (7) is

P(T, h, ζt ) ∼= hT√
2πQ

e−h2/2. (16)

4 Simulation study

In this section we study quality of approximations for the BCP PM,h(ζn) defined in
(6), where εt are normal r.v.’s with mean 0 and variance 1. Asymptotically (for large
L and M), the approximations we study can also be used for the BCP connected to the
weighted sum of squares discussed in Sect. 2.2 and therefore for setting significance
levels for the SSA change-point statistic defined in Moskvina and Zhigljavsky (2003).

In Figs. 2, 3, 4, 5, and 6, the ’Sum of normal’ line corresponds to the empirical value
of (6) computed from 100,000 simulations with different values of L , Q and M . In
simulations leading to Figs. 2, 3, and 4 the value of Q can be considered as large and
hence we compare Approximations 1–3. In Fig. 5 we present analysis demonstrating
the lack of accuracy of Approximations 1–3 when Q is small. We then analyse the
performance of the Durbin approximation in Fig. 6, which is constructed specifically
under the assumption that Q is small; in this case we set Q = 1. We observe that for
large L and Q Approximation 3 is typically superior to the Approximations 1 and 2
for all h (note that Approximations 1 and 3 coincide for large values of h). Listed in
Tables 1, 2, 3, and 4 are the approximated threshold values h (for Approximations 1
and 2 only) for a specified true BCP, when this BCP is small enough. In these tables,
R.E. denotes the relative error.

Fig. 2 TheBCP for theweighted sum of normal r.v. and its approximations: L = 150, Q = 50, M = 1000.
(Color figure online)

123



1334 J. Noonan, A. Zhigljavsky

Fig. 3 The BCP for the weighted sum of normal r.v. and approximations: L = 100, Q = 50, M = 1000.
(Color figure online)

Fig. 4 The BCP for the weighted sum of normal r.v. and its approximations: L = 100, Q = 100, M =
2000. (Color figure online)

Fig. 5 The BCP for the weighted sum of normal r.v. and its approximations: L = 100, Q = 5, M = 2000.
(Color figure online)
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Fig. 6 The BCP for the weighted sum of normal random variables and the Durbin approximation:
L = 300, Q = 1, T = 10 (top) and L = 300, Q = 1, T = 1 (bottom). (Color figure online)

Table 1 Threshold for a given BCP for the weighted sum of normal r.v. and approximations: L = 150,
Q = 50, M = 1000

BCP Sum of normal App 1 App 2 R.E. for App 1 (%) R.E. for App 2 (%)

0.05 2.833 2.907 3.510 2.612 23.897

0.10 2.572 2.582 3.004 0.389 16.796

0.15 2.401 2.386 2.700 0.625 12.453

0.20 2.264 2.243 2.477 0.928 9.408

As seen in Fig. 2 and Table 1, for the chosen parameters Approximation 2 is gen-
erally poor; for small BCP we see particularly high relative errors in Table 1. On the
other hand, Approximation 1 performswell for small BCP and, although discrepancies
can be seen for small h, we see that Approximation 3 performs quite well across all
values of h.

As shown in Fig. 3 and Table 2, Approximation 2, whilst still being considerably
worse than Approximations 1 and 3, shows signs of improvement with this choice of
L and Q. At the BCP of 0.05, Approximation 1 produces the lowest relative error with
the parameter choices considered so far.
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Table 2 Threshold for a given BCP for the weighted sum of normal r.v. and its approximations: L = 100,
Q = 50, M = 1000

BCP Sum of normal App 1 App 2 R.E. for App 1 (%) R.E. for App 2 (%)

0.05 2.911 2.984 3.460 2.508 18.859

0.10 2.654 2.671 3.004 0.641 13.188

0.15 2.491 2.483 2.730 0.321 9.595

0.20 2.362 2.345 2.530 0.720 7.113

Table 3 Threshold for a given BCP for the weighted sum of normal r.v. and approximations: L = 100,
Q = 100, M = 2000

BCP Sum of normal App 1 App 2 R.E. for App 1 (%) R.E. for App 2 (%)

0.05 3.063 3.135 3.455 2.351 12.798

0.10 2.816 2.841 3.066 0.888 8.878

0.15 2.659 2.664 2.831 0.188 6.469

0.20 2.541 2.534 2.660 0.275 4.683

Table 4 Threshold for a given BCP for the weighted sum of normal r.v. and approximations: L = 100,
Q = 5, M = 2000

BCP Sum of normal App 1 App 2 R.E. for App 1 (%) R.E. for App 2 (%)

0.05 3.380 3.494 3.664 3.373 8.402

0.10 3.150 3.254 3.371 3.302 7.016

0.15 3.007 3.109 3.194 3.392 6.219

0.20 2.896 3.004 3.065 3.729 5.836

As shown in Fig. 4 and Table 3, we see a considerable improvement in Approxi-
mation 2 with the increase in M from 1000 to 2000, however Approximation 3 still
remains far superior. For this larger M , Approximation 1 shows the smallest relative
error at a BCP of 0.05 which is arguably the most important case.

We shall now consider the performance of Approximations 1–3 for small Q. We
conclude that all three approximations perform poorly when Q is not large enough (of
order L).

As can be seen fromFig. 5 and Table 4, all three approximations are poor for Q = 5.
Relative errors are high and thus the use of these approximations for the case of small
Q and large L cannot be justified.

For checking the quality of the Durbin approximation we used the same settings
as for the Approximations 1, 2 and 3. In Fig. 6, we show results for the Durbin
approximation for a few particular values of L and Q.

We can conclude that the quality of the Durbin approximation (16) is poor unless
the threshold h is very large. This is seen graphically in Fig. 6 as well as numerically
in Table 5, where there is a sharp increase in the relative error as the BCP increases.
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Table 5 Threshold for a given BCP for the weighted sum of normal r.v. and Durbin approximation:
L = 300, Q = 1, T = 1

BCP Sum of normal Durbin approx. R.E. for Durbin approx. (%)

0.05 2.520 2.436 3.333

0.10 2.190 2.049 6.438

0.15 1.970 1.756 10.863

0.20 1.794 1.464 18.395

For the BCP of 0.05 the relative error for the Durbin approximation is higher than all
relative errors of Approximation 1 considered in this paper.

Conclusion

A number of approximations of boundary crossing probabilities for the maximum of
moving weighted sums of i.i.d. random variables have been considered. The particular
weights are obtained from a trapezoidal weight function that has important links to
the SSA change-point detection algorithm described in Moskvina and Zhigljavsky
(2003). We have seen that Approximations 1–3 perform rather well for large Q and
L , and Approximation 3 consistently outperforming Approximations 1 and 2 across
all values of the threshold h. The case of small Q must be considered separately since
Approximations 1–3 perform poorly. The Durbin approximation, developed for small
Q, is not satisfactory, unless threshold h is very large.
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