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Abstract In this paper we present a new estimation procedure named MF-IVL for
VAR systems in the case of mixed-frequency data, where the data maybe, e.g., stock
or flow data. The main idea of this new procedure is to project the slow components on
the present and past fast ones in order to create instrumental variables. This procedure
is shown to be generically consistent. Our claim is that the procedure is fast and more
accurate when compared to the extended Yule-Walker procedure. A comparison of
these two procedures is given by simulation.

Keywords High-frequency VAR · Mixed-frequency data · Estimation procedure

1 Introduction

We propose a simple and fast algorithm for estimating the parameters in a multivariate
high-frequency VAR system from mixed-frequency data. The VAR system is of the
form

yt =
(
y f
t
yst

)
= A1yt−1 + · · · + Apyt−p + νt , t ∈ Z, (1.1)
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where Ai ∈ R
n×n and the AR order p is given. Throughout we assume the stability

condition

det (a(z)) �= 0 |z| ≤ 1, (1.2)

where a(z) = In − A1z − · · · − Apz p. Here z is used for the complex variable as
well as for the backward shift on the integers Z. We assume that (νt ) is white noise
and we only consider the stable steady state solution yt = a(z)−1νt . The innovation
covariance matrix

�ν = E

(
νtν

T
t

)
> 0 (1.3)

is assumed to be non-singular. The parameter space for the high-frequency models
considered is:

�={(A1, . . . , Ap
) | det (a(z)) �= 0, |z| ≤ 1

}×
{
vech (�ν) | �ν = �T

ν ,�ν > 0
}
,

(1.4)

where vech is the half-vectorization. Note that the conditions (1.2) and (1.3) define an
open subset in the euclidean space Rpn2+n(n+1)/2. A subset of � is called generic if it
contains an open and dense subset of �. The VAR system (1.1) can be written in state
space form as

⎛
⎜⎜⎜⎝

yt
yt−1

...

yt−p+1

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
xt+1

=

⎛
⎜⎜⎜⎝
A1 · · · Ap−1 Ap

In
. . .

In 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎜⎝
yt−1
yt−2

...

yt−p

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
xt

+

⎛
⎜⎜⎜⎝
In
0
...

0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
B

νt , (1.5)

yt = (
A1 · · · Ap

)
xt + νt . (1.6)

In this paper we consider the problem of estimating the parameters of the
n-dimensional high-frequencyVARmodel (1.1) usingmixed-frequency data.We actu-
ally observe mixed-frequency data of the form

(
y f
t

wt

)
, (1.7)

where

wt =
N∑
i=1

ci y
s
t−i+1, (1.8)

where ci ∈ R, 1 < N ∈ N and at least one ci �= 0. Here the n f -dimensional, say,

fast component y f
t is observed at the highest (sampling) frequency t ∈ Z and the
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ns-dimensional slow component wt is observed only for t ∈ NZ, i.e. for every N -th
time point. In this paper we assume that n f ≥ 1. The population second moments,
which can be directly observed, are of the form

γ f f (h) = E

(
y f
t+h

(
y f
t

)T)
, h ∈ Z,

γ w f (h) = E

(
wt+h

(
y f
t

)T)
, h ∈ Z,

γ ww(h) = E

(
wt+hw

T
t

)
, h ∈ NZ. (1.9)

Generic identifiability of the high-frequency parameters Ai , i = 1, . . . , p and �ν

has been shown in Anderson et al. (2016) (Theorems 2 and 3). Estimation procedures,
in particular, a procedure based on the extended Yule-Walker (XYW) equations [see
Chen and Zadrozny (1998)] and a procedure based on the Gaussian Likelihood as well
as an EM algorithm are discussed in Koelbl et al. (2016) and Koelbl (2015). There
it is shown that the MLE as well as the EM estimator heavily depend on the initial
estimator used. The purpose of this paper is to describe an estimation procedure which
can be used as an initial estimator, e.g. for the EM algorithm, but also as an estimator
on its own, because it is easy to calculate, consistent and outperforms the estimator
based on the XYW equations.

2 The mixed-frequency IVL estimator

2.1 The stock case

For the case of stock variables (i.e. c1 = 1, ci = 0, i = 2, . . . , N ) the secondmoments,
which can be directly observed, are:

γ f f (h) = E

(
y f
t+h

(
y f
t

)T)
, h ∈ Z,

γ s f (h) = E

(
yst+h

(
y f
t

)T)
, h ∈ Z,

γ ss(h) = E

(
yst+h

(
yst
)T )

, h ∈ NZ. (2.1)

In Anderson et al. (2016) it is shown that the system parameters can be generically
reconstructed with the help of the extended Yule-Walker (XYW) equations, which can

be constructed by postmultiplying Eq. (1.1) by
(
y f
t− j

)T
, j = 1, . . . , np and forming

expectations:

E

[
yt

((
y f
t−1

)T
, . . . ,

(
y f
t−np

)T)]
︸ ︷︷ ︸

=:Z1
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= (A1, . . . , Ap)E

⎡
⎢⎣
⎛
⎜⎝
yt−1

...

yt−p

⎞
⎟⎠
((

y f
t−1

)T
, . . . ,

(
y f
t−np

)T)
⎤
⎥⎦

︸ ︷︷ ︸
=:Z0

.

Note, that the second moments on the left as well as those on the right hand side of
the above equation can be directly observed in the mixed-frequency stock case. In
Anderson et al. (2016) Theorem 2, it is shown that Z0 has generically full row rank

and therefore we generically obtain (A1, . . . , Ap) = Z1ZT
0

(
Z0ZT

0

)−1
. The XYW

estimators are obtained by replacing the population second moments by their sample
counterparts:

γ̂ f f (h) = 1

T

T−h∑
t=1

y f
t+h

(
y f
t

)T
, h ≥ 0, (2.2)

γ̂ f f (h) = γ̂ f f (−h)T , (2.3)

γ̂ s f (h) = 1

T/N

∑
t

ysNt

(
y f
Nt−h

)T
, (2.4)

where the estimator of γ s f (h) has only (approximately) 1/N-th of the summands
compared to the estimator of γ f f (h) due to the missing observations [see Koelbl et al.
(2016)].

The new estimation procedure proposed is as follows: The basic idea is to generate
instrumental variables by projecting the slow components yst on the space generated

by present and a sufficient number of lagged fast components y f
j . To be more precise,

let, for a suitable chosen 1 ≤ k ≤ t , H f
k (t) = span

{
y f
j : t − k ≤ j ≤ t

}
be the

Hilbert space spanned by the one-dimensional components of the y f
j in the underlying

space of square integrable random variables L2 over (�,A, P) and let xkt |t−1 denote

the (componentwise) projection of the state xt onto H f
k (t − 1) written as xkt |t−1 =

PH f
k (t−1)

(xt ). Projecting the state Eq. (1.5) onto H f
k (t), we obtain, using an obvious

notation,

xkt+1|t = Axkt |t−1 +
{
A
(
xkt |t − xkt |t−1

)
+ Bνkt |t

}
. (2.5)

In a first stepwe show that thematrixE

(
xkt |t−1

(
xkt |t−1

)T)
is generically non-singular

for k ≥ np − 1: For k0 = np − 1 and Y−
t,k =

((
y f
t

)T
,
(
y f
t−1

)T
, . . . ,

(
y f
t−k

)T)T

let � f f (k) = E

(
Y−
t,k

(
Y−
t,k

)T)
. It follows that � f f (k0) > 0 which is a direct conse-
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quence of �ν > 0. The projection xk0t |t−1 is obtained by using the OLS formula

xk0t |t−1 = E

(
xt
(
Y−
t−1,k0

)T)
︸ ︷︷ ︸

Z0

� f f (k0)
−1 Y−

t−1,k0

and therefore generically

E

(
xk0t |t−1

(
xk0t |t−1

)T) = Z0�
f f (k0)

−1 ZT
0 > 0 (2.6)

since Z0 has generically full row rank. This implies that generically

A =
(
Exkt+1|t

(
xkt |t−1

)T)(
Exkt |t−1

(
xkt |t−1

)T)−1

(2.7)

holds, since xkt |t−1 is uncorrelatedwith
(
xkt |t − xkt |t−1

)
and νkt |t .Note that, for k ≥ p−1,

xkt |t−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y f
t−1

PH f
k (t−1)

(
yst−1

)
...

y f
t−p

PH f
k (t−1)

(
yst−p

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

An estimator of the state xkt+1|t , denoted by x̂ kt+1|t , can be constructed as follows:

W.l.o.g. let p = 2 and N = 2. The first n components of x̂ kt+1|t can be estimated by

projecting yt onto y f
t , . . . , y f

t−k . This can be done by estimating β1 in

yt = β1Y
−
t,k + εt , t ∈ 2Z, (2.8)

Let β̂1,T denote the OLS estimator of β1. Then we obtain (In, 0) x̂ kt+1|t = β̂1,T Y
−
t,k ,

t ∈ Z. The second n components of xkt+1|t must be, due to the mixed-frequency
structure and N = 2, estimated in a different way: Analogously to (2.8) we can
construct

yt−1 = β2Y
−
t,k + ζt , (2.9)

but now we cannot directly observe the left hand side of (2.9). Therefore, we must
shift (2.9) to

yt = β2Y
−
t+1,k + ζt+1, t ∈ 2Z (2.10)

123



1208 L. Koelbl, M. Deistler

which directly leads us to the OLS estimator β̂2,T of β2, since the left as well as the
right hand side of (2.10) can be directly observed. In a last step we can construct the
remaining part of the state with the help of (0, In) x̂ kt+1|t = β̂2,T Y

−
t,k , t ∈ Z, which

leads us to

x̂ kt+1|t =
(

β̂1,T

β̂2,T

)
Y−
t,k, t ∈ Z. (2.11)

Using these instrumental variables, we can estimate A according to (2.7):

ÂT =
⎛
⎝ T−1∑

t=p+1

x̂ kt+1|t
(
x̂ kt |t−1

)T⎞⎠
⎛
⎝ T∑

t=p+1

x̂ kt |t−1

(
x̂ kt |t−1

)T⎞⎠
−1

. (2.12)

Theorem 1 Under the additional assumptions, that lim
T→∞

1
T

∑T
t=1 νtν

T
t = �ν a.s.,

we have lim
T→∞ÂT = A a.s.

Proof Againweassume that p = 2 and N = 2.The above condition lim
T→∞

1
T

∑T
t=1 νtν

T
t

= �ν implies, see Hannan and Deistler (2012) Theorem 4.1.1, that

lim
T→∞

1

T

T−h∑
t=1

yt+h y
T
t = γ (h) , (2.13)

where γ ( j) = E

(
yt yTt− j

)
. In a next step, let us write (2.6) as

E

(
xk0t |t−1

(
xk0t |t−1

)T) = Z0�
f f (k0)

−1 � f f (k0) � f f (k0)
−1 ZT

0 (2.14)

=
(

β1
β2

)
� f f (k0)

(
β1
β2

)T

Equation (2.13) implies that β̂1,T and β̂2,T are consistent estimators for β1 and β2,
respectively. Thus, we obtain that

lim
T→∞

1

T

T+1∑
t=k+2

x̂ k0t |t−1

(
x̂ k0t |t−1

)T = lim
T→∞

1

T

T+1∑
t=k+2

(
β̂1,T

β̂2,T

)
Y−
t−1,k

(
Y−
t−1,k

)T (β̂1,T

β̂2,T

)T

= lim
T→∞

(
β̂1,T

β̂2,T

)
�̂ f f (k0)

(
β̂1,T

β̂2,T

)T

= E

(
xk0t |t−1

(
xk0t |t−1

)T)
.
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An analogous result can be shown forE

(
xkt+1|t

(
xkt |t−1

)T)
. This concludes the proof.

�	
Of course the choice of k is important for estimating the system parameters. Our

approach is to regress yst on y f
t , . . . , y f

t−k and to determine the maximum lag k by
using AIC. Note that the structure of the matrixA, as far as the a priori zeros and ones
are concerned, is not preserved by the estimation procedure (2.12). For this reason,
we define a new estimator for the system parameters as

ˆ̂AT =
(

(In, 0, . . . , 0) Â(
In(p−1), 0

)
)

. (2.15)

Clearly, ˆ̂AT is also consistent. As shown in Anderson et al. (2016), the innovation
covariance matrix �ν can be generically consistently estimated according to the fol-
lowing formula

vec (�ν) =
(
(G ⊗ G)

(
I(np)2 − (A ⊗ A)

)−1
(GT ⊗ GT )

)−1
vec (γ (0)) (2.16)

where G = (In, 0, . . . , 0) and where ⊗ denotes the Kronecker symbol. Let �̂ν denote
the corresponding estimator.

Note that the estimator ˆ̂AT (denoted by MF-IVL estimator) neither necessarily
gives a stable AR system, nor is �̂ν necessarily positive definite. Projecting a sym-
metric matrix on the space of positive definite symmetric matrices is in a certain sense
a standard procedure (see Higham 1989; Koelbl 2015). Projecting unstable system
parameters on the space of stable ones is described in Koelbl (2015) and, for the uni-
variate case, in Orbandexivry et al. (2013). Projecting slow variables on fast lagged
variables is also mentioned in Ghysels et al. (2007).

2.2 The flow case

For the case of the more general observation scheme (1.8), we proceed as follows: Let

zt =
N∑
i=1

ci yt−i+1 =
(∑N

i=1 ci y
f
t−i+1

wt

)
. (2.17)

From (1.5) we obtain

⎛
⎜⎜⎜⎝

zt
zt−1

...

zt−p+1

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
ft+1

= A

⎛
⎜⎜⎜⎝
zt−1
zt−2

...

zt−p

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
ft

+B
(

N∑
i=1

ciνt−i+1

)
. (2.18)
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Let f kt+1|t denote the projection of ft+1 on the spaceH f
k (t). Projecting both sides of

(2.18) on the space H f
k (t) we get in an obvious notation

f kt+1|t = A f kt |t−N +
{
A
(
f kt |t − f kt |t−N

)
+ B

(
N∑
i=1

ciνt−i+1|t

)}
. (2.19)

Post-multiplying (2.19) by
(
f kt |t−N

)T
and taking the expectations we obtain

E

(
f kt+1|t

(
f kt |t−N

)T) = AE

(
f kt |t−N

(
f kt |t−N

)T)
. (2.20)

Again, identifiability of the system parameters can been shown if we show that the

matrix E

(
f kt |t−N

(
f kt |t−N

)T)
is non-singular. This is proved as follows: For k0 =

np − 1 it follows that

f k0t |t−N = E

(
ft
(
Y−
t−N ,k0

)T)
︸ ︷︷ ︸

Zg
0

� f f (k0)
−1 Y−

t−N ,k0

since� f f (k0) is again positive definite. Therefore it follows thatE

(
f kt |t−N

(
f kt |t−N

)T)

= Zg
0�

f f (k0)−1 (Zg
0

)T
is generically non-singular since Zg

0 has generically full row
rank (see Koelbl 2015). Using (2.20), a consistent estimation procedure is obtained
analogously to the stock case described above. The innovation covariance matrix �ν

can be estimated as in Koelbl et al. (2016).

3 Simulations

In this section we present a simulation study comparing the accuracy of IVL with
the accuracy of the XYW estimator and comparing these procedures as initial esti-
mators for the EM algorithm. We consider the following data generating processes
corresponding to the following two models:

Example 1 Model 1 (which was also presented in Koelbl et al. (2016)) is of the form:

yt =
(−1.2141 1.1514

−0.9419 0.8101

)
yt−1 + νt , (3.1)

and Model 2 is of the form:

yt =
⎛
⎝ 1.5284 0.2727 1.0181

1.6881 −1.5235 −1.1424
−0.6785 1.0936 1.2108

⎞
⎠ yt−1 +

⎛
⎝−0.8089 0.4224 0.1477

−0.4461 −0.9209 −0.3154
−0.0496 0.6999 −0.0982

⎞
⎠ yt−2 + νt . (3.2)
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Table 1 Absolute and relative mean squared errors of the system parameters

Estimators Model 1 Model 2

Absolute Relative Absolute Relative

HF YW 0.002 1 0.017 1

MF XYW 0.315 133.67 0.721 43.52

IVL 0.056 23.53 0.075 4.55

EM-XYW 0.006 2.38 0.066 3.99

EM-IVL 0.004 1.74 0.027 1.64

In both cases the innovations are standard normally distributed, i.e. νt ∼ N (0, Ii ),
i = 2, 3.

The simulation study reports the mean squared errors

MSE
(
θ̂
)

= 1

m

m∑
j=1

n2 p∑
i=1

(
θi − θ̂

j
i

)2

for the parameters θ = vec (A1) and θ = vec (A1, A2), respectively. The sample
size is T = 500 and we performed m = 103 simulation runs. Only the case of stock
variables has been considered. We put N = 2 and ns = 1. The following estimation
procedures are compared in this study: TheYule-Walker estimator obtained from high-
frequency data, denoted by HF-YW. This estimator serves as an overall benchmark
and therefore also the mean squared errors relative to the mean squared errors of
the HF-YW estimators are presented. By MF-XYW we denote the mixed-frequency
XYW estimator, by MF-IVL the mixed-frequency estimator introduced in the paper.
By MF-EM-XYW we denote the mixed-frequency EM algorithm initialized with the
XYW estimator and MF-EM-IVL the mixed-frequency EM algorithm initialized with
the MF-IVL estimator, respectively. Table 1 summarizes the results.

Note that for the two models MF-IVL outperforms MF-XYW as far as the overall
mean squared errors are concerned. This also holds for the estimators for the individual
system- as well as for the corresponding estimates of the noise parameters. When used
as initial estimators, again, MF-IVL outperforms MF-XYW. In addition, the number
of iterations for the EM algorithm decreases for both models when initialized with the
MF-IVL instead of the MF-XYW.

4 Conclusions

This paper proposes a new estimation procedure in the framework of VARmodels and
mixed-frequency data. The procedure is obtained by creating instrumental variables
by projecting the slow variables on present and past fast ones. We show generic
consistency of the system parameters for stock and flow variables. Simulations are
presented to compare the properties of our procedure compared to the XYWestimator.
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1212 L. Koelbl, M. Deistler

Both procedures are less accurate when compared to theMLE, our procedure however
outperforms the XYW estimator.
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